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Abstract

We study one-pion transitions between charm baryon states in the framework

of a relativistic three-quark model. We calculate the charm baryon-pion cou-

pling factors that govern the S-wave, P-wave and D-wave one-pion transitions

from the s-wave and the lowest lying p-wave charm baryon states down to

the s-wave charm baryon states. For these we obtain: gΣcΛcπ=8.88 GeV−1,

fΛc1Σcπ=0.52 and fΛ∗
c1Σcπ=21.5 GeV−2. We compare our rate predictions for

the one-pion transitions with experimental results.

The last few years have seen significant progress in the study of the spectroscopy of
ground state and excited state charm baryons and their strong one-pion decays [1]- [7].
The CLEO [2]- [5], ARGUS [6], and E687 [7] Collaborations reported on measurements
of the mass difference between charm baryon states [2]- [7], upper limits for their total
widths [1,3,4] and first estimations of excited Σ∗

c baryon decay rates [5]. Due to the small
release of energy in these transitions the analysis of the one-pion decays of charmed baryons
provide an excellent laboratory for tests of heavy quark symmetry predictions on the one
hand and tests of the soft dynamics of the light-side one-pion diquark transitions on the

1

http://arxiv.org/abs/hep-ph/9807519v3


other hand. The one-pion transitions among charm baryons have been analyzed before
in the framework of the Heavy Hadron Chiral Perturbation Theory (HHCHPT) [9,11–13],
in the Constituent Quark Model [8,9] and in the Light-Front Quark Model [10]. In the
HHCHPT analysis one makes no assumptions about the composition of the light-side states
involved in the one-pion transitions of the heavy baryons. Using the measured rates of Σ∗

c

baryons Γ(Σ∗0
c → Λcπ

−)=13.0+3.7
−3.0 MeV and Γ(Σ∗++

c → Λcπ
+)=17.9+3.8

−3.2 MeV one can give
estimates of the unknown coupling parameters appearing in the effective chiral Lagrangian
[9,11–13]. In the Constituent Quark Model and Light-Front Quark Model approaches one
further assumes that the light-side state is composed of two constituent quarks. Using
one more assumption still, namely that the one-pion transitions are governed by single
quark transitions the authors of [8,9] were able to derive a number of relations between the
various one-pion coupling constants of the charm baryons. The Constituent Quark Model
calculations of [8,9] did not address the full dynamics issue in as far as no attempt was
made to model and to calculate the complete wave function overlap of the states involved in
the transition. A first true dynamical calculation of the one-pion couplings charm baryons
characterizing the S-wave, P-wave and D-wave transitions gΣcΛcπ, fΛc1Σcπ and fΛ∗

c1Σcπ was
done in [10] where use was made Light-Front quark model spin functions [10].

In this paper we report on the predictions of the Relativistic Three-Quark Model [14,15]
for the one-pion transitions between charm baryon states. As in the Light-Front model [10]
the Relativistic Three-Quark Model allows for a full dynamical evaluation of the one-pion
transition strengths between charm baryons. We want to mention that the Relativistic
Three-Quark Model approach was successfully applied before to a number of dynami-
cal problems involving the properties of pions [14–16], light baryons [17] and heavy-light
baryons [18–20].

The Lagrangian describing the couplings of a heavy baryon state to its constituent light
and heavy quarks considerably simplifies in the heavy quark limit. One has

Lint
BQ

(x) = gBQ
B̄Q(x)Γ1Q

a(x)
∫

dξ1

∫

dξ2FB(ξ
2
1 + ξ22) (1)

× qb(x+ 3ξ1 −
√
3ξ2)CΓ2λBQ

qc(x+ 3ξ1 +
√
3ξ2)ε

abc + h.c.

FB(ξ
2
1 + ξ22) =

∫ d4k1
(2π)4

∫ d4k2
(2π)4

eik1ξ1+ik2ξ2F̃B

{

[k2
1 + k2

2]

Λ2
B

}

Lint
π (x) =

igπ√
2
~π(x)

∫

dξFπ(ξ
2)q̄(x+ ξ/2)γ5~λπq(x− ξ/2) (2)

Fπ(ξ
2) =

∫

d4k

(2π)4
eikξF̃π

{

k2

Λ2
π

}

where Γi and λBQ
are spin and flavor matrices, respectively; gBQ

and gπ denote the couplings
of the respective hadrons with the constituent quarks; ΛB (Λπ) are the cutoff parameters
defining the distributions of light quarks in the heavy baryon (pion). The baryon cutoff
parameter ΛB is chosen to be the same for charm and bottom baryons such that one has the
correct normalization of the baryonic Isgur-Wise function [18] in the heavy quark symmetry
limit. The quantum numbers and matrices Γi and λBQ

define the structure of the relevant
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three-quark charm baryon currents and are listed in TABLE I. The square brackets [...] and
curly brackets {...} denote antisymmetric and symmetric flavour and spin combinations of
the light degrees of freedom.

The vertex function which defines the matrix element of the process Bi
Q(p) → Bf

Q(p
′) +

π(q) (see Fig. I) has the following form in the heavy quark limit

Mπ
inv(B

i
Q → Bf

Qπ) =
gπ√
2
gieffg

f
effCflavor · ū(v)Γf

1

(1+ 6v)
2

Γi
1u(v) · I ifq1q2(v, q) (3)

g2eff =
4Ccolor

(4π)4
Λ4

Bg
2
BQ

, Cflavor = tr
(

λπ(λBi + λ†

Bi)(λBf − λ†

Bf )
)

, Ccolor = 6

I ifq1q2(v, q) =
∫ d4k1

π2i

∫ d4k2
π2i

F̃B

{

−6
[

k2
1 + k2

2 + (k1 + k2)
2
]}

(4)

× F̃B

{

−6
[

(k1 + q)2 + (k2 − q)2 + (k1 + k2)
2
]}

×
F̃π

{

−(k2 − q/2)2
}

[−k1v − Λ̄q1q2 ]
· 1
4
tr
[

Γi
2Sq2(k1 + k2)Γ

f
2Sq1(k2 − q)γ5Sq1(k2)

]

where λπ, λBi and λBf are the flavor matrices of the pion, the initial and the final baryons,
respectively.

Here Sq(k) = 1/(mq− 6k) is the light quark propagator (q = u, d, s). The parameter
Λ̄q1q2 = MQq1q2 − mQ denotes the difference between the heavy baryon mass MQq1q2 and
the heavy quark mass mQ. All dimensional parameters are expressed in units of ΛB. The
integrals are calculated in the Euclidean region both for internal and external momenta.
Finally, the results for the physical region are obtained by analytic continuation of the
external momenta after the internal momenta have been integrated out.

As an illustration of our calculational procedure we first evaluate the matrix element
Eq. (4) in the simplified case where the pion has a local coupling to its constituent quarks,
i.e. where the vertex πqq̄ form factor F̃π(k

2) ≡ 1. As it turns out this is already a good
appriximation. For example, we have calculated the integral Eq. (4) with the baryonic
vertex function being chosen in the Gaussian form for two cases: (1) F̃π ≡1 and (2) F̃π =
exp(−k2/Λ2

π), Λπ =1 GeV. The results differ from each other by O(10%).
In the calculation of (4) with F̃π(k

2) ≡ 1 we use the α-parametrization for quark propa-
gators and the Laplace transform for the vertex function

1

A
=

∞
∫

0

dαe−αA, F̃B(6X) =

∞
∫

0

dsF̃L
B (6s)e

−sX (5)

I if(v, q) =

∞
∫

0

ds1F̃
L
B (6s1)

∞
∫

0

ds2F̃
L
B (6s2)e

2s2q2
∞
∫

0

d4αeα3Λ̄−(α1+α4)m2
q1

−α2m
2
q2

× 1

4
tr
[

Γi
2

(

mq2 −
6∂1+ 6∂2

2

)

Γf
2

(

mq1 −
6∂2
2
− 6q

)

γ5
(

mq1 −
6∂2
2

)] ∫

d4k1
π2i

∫

d4k2
π2i

ekAk−2kB
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=

∞
∫

0

ds1F̃
L
B (6s1)

∞
∫

0

ds2F̃
L
B (6s2)e

2s2q2
∞
∫

0

d3αeα3Λ̄−(α1+α4)m2
q1

−α2m
2
q2

× 1

4
tr
[

Γi
2

(

mq2 −
6∂1+ 6∂2

2

)

Γf
2

(

mq1 −
6∂2
2
− 6q

)

γ5
(

mq1 −
6∂2
2

)]

e−BA−1B

|A|2

Here

kAk − 2kB =
2

∑

i,j=1

kiAijkj − 2
2

∑

i=1

kiBi, 6∂i =
∂

∂ 6Bi

(6)

Aij =







2(s1 + s2) + α2 s1 + s2 + α2

s1 + s2 + α2 2(s1 + s2) + α1 + α2 + α4







B1 = −s2q − α3v/2 B2 = (s2 + α1)q

The kinematics of the one-pion transitions allows one to make use of the approximations:

q2 = m2
π ≈ 0, qv =

1

2mi

(m2
i −m2

f +m2
π) ≈ 0 (7)

where mπ, mi and mf are the masses of the pion, the initial and the final baryons, respec-
tively, divided by ΛB. Then, by making the variable replacement αi → (s1 + s2)αi and by
using Γi

2 = γµ and Γf
2 = γ5 the overlap integral can be seen to be proportional to qµ such

that

Iµ(v, q) = qµJ (8)

with

J =

∞
∫

0

d3αα1

|A|2 F̃ 2
B(6z)

{

mq1mq2+α3
∂z

∂α3
[A−1

12 +A−1
22 ]

[

1+
(1 + α1)A

−1
22 − A−1

12

2

]

−α2
3

4
A−1

12 [A
−1
11 +A−1

12 ]
}

z =
α2
3

4
A−1

11 − α3Λ̄ + α1m
2
q1
+ α2m

2
q2

Aij =







2 + α2 1 + α2

1 + α2 2 + α1 + α2





 , A−1
ij =

1

|A|







2 + α1 + α2 −(1 + α2)

−(1 + α2) 2 + α2







The last integral may be evaluated numericaly for any given function F̃B. Here we will
use a Gaussian vertex functions both for baryons and the pion in Eq. (4).

In order to make contact with experimental numbers let us first define a set of coupling
constants describing the one- pion transitions. For the transitions discussed in this paper the
coupling constants are defined through the expansion of the the invariant one-pion transition
matrix elements. One has [10]
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Mπ
inv(Σc → Λcπ) =

1√
3
gΣcΛcπI1ū(v

′) 6q⊥γ5u(v) p-wave transition

Mπ
inv(Σ

∗
c → Λcπ) = gΣ∗

cΛcπI1ū(v
′)q⊥µu

µ(v) p-wave transition

(9)

Mπ
inv(Λc1 → Σcπ) = fΛc1ΣcπI3ū(v

′)u(v) s-wave transition

Mπ
inv(Λ

∗
c1 → Σcπ) =

1√
3
fΛ∗

c1
ΣcπI3ū(v

′)γ5 6q⊥uµ(v)q⊥µ d-wave transition

where the I1 and I3 are the flavor factors which are directly connected with flavor coefficients
Cflavor (see Eq. (3)) via relations Ii = fi · Cflavor, i = 1 or 3. The sets of Ii and fi are given
in TABLE II. We have also indicated the orbital angular momentum of the pion in Eq. (9).
The transversity in Eq. (9) is defined with regard of the velocity v = p/m of the decaying
baryon, i.e. q⊥µ = qµ − vµ(q · v). In fact, to leading order in the HQET expansion one has
v = v′. In general, however, v 6= v′ from momentum conservation. By keeping track of
momentum conservation in Eq. (9) using v 6= v′ one is including a part of the nonleading
effects. The structure of the covariants in Eq. (9) is patterned after the leading order HQET
result which predicts gΣcΛcπ = gΣ∗

cΛcπ = g [11]. It is an easy exercise to rewrite e.g. the
p-wave 6q⊥γ5-coupling in terms of the usual γ5-coupling. The expression for g is written as

g =
1

ΛB

· gπ√
2
· RΣΛπ√

RΛ

√
RΣ

(10)

RΣΛπ =

∞
∫

0

dαα2

1 + α+ t

∞
∫

0

dβ

1
∫

0

dθθ exp(∆1)
3
4
+ α + α2θ(1− θ) + t(1 + α(1− θ))

×
{

mq1mq2 + β2
1
4
+ α

2
+ α2θ(1− θ)

(1 + α + t)2
+

1

32[3
4
+ α + α2θ(1− θ) + t(1 + α(1− θ))]

}

RΛ =

∞
∫

0

dαα

(1 + α)2

∞
∫

0

dββ

1
∫

0

dθ exp(∆2)
{

mq1mq2 + β2
5
4
+ 3

2
α + α2θ(1− θ)

(1 + α)2
− Λ̄β

1 + α

}

RΣ =

∞
∫

0

dαα

(1 + α)2

∞
∫

0

dββ

1
∫

0

dθ exp(∆2)
{

mq1mq2 + β2
3
4
+ α + α2θ(1− θ)

(1 + α)2
− Λ̄β

2(1 + α)

}

∆1= −24
{

α[m2
q1
θ +m2

q2
(1− θ)] + β(β − 2Λ̄)

3
4
+ α + α2θ(1− θ) + t(1

2
+ α(1− θ))

1 + α + t

}

∆2≡ ∆1|t=0, t = (ΛB/Λπ

√
24)2

One can then go on and calculate the one-pion decay rates using the general formula

Γ =
1

2J + 1

| ~q |
8πM2

BQ

∑

spins

| Mπ
inv |2 (11)

where | ~q | is the pion momentum in the rest frame of the decaying baryon. In terms of the
above coupling constants one obtains

Γ (Σc → Λcπ) = g2I21
| ~q |3
6π

MΛc

MΣc

(12)
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Γ (Σ∗
c → Λcπ) = g2I21

| ~q |3
6π

MΛc

MΣ∗
c

(13)

Γ (Λc1 → Σcπ) = f 2
Λc1ΣπI

2
3

| ~q |
2π

MΣc

MΛc1

(14)

Γ (Λ∗
c1 → Σcπ) = f 2

Λ∗
c1ΣπI

2
3

| ~q |5
18π

MΣc

MΛ∗
c1

(15)

We use different values for the parameter Λ̄q1q2 for baryons containing only nonstrange
light quarks and one or two strange quarks: Λ̄, Λ̄s and Λ̄ss, respectively. For the time being
we shall avoid the appearance of unphysical imaginary parts in the Feynman diagrams by
imposing the following condition: the baryon mass must be less than the sum of constituent
quark masses. In the case of heavy-light baryons this restriction implies that the parameter
Λ̄q1q2 must be less than the sum of light quark masses. The last constraint serves as the
upper limit for our choices of the parameter Λ̄q1q2.

Let us now specify our model parameters. The coupling constants gBQ
and gπ in Eqs.

(1) and (2) are calculated from the compositeness condition (see, ref. [18]), which means
that the renormalization constant of the hadron wave function is set equal to zero ZH =
1 − g2HΣ

′
H(MH) = 0 where ΣH is the hadron (charm baryon and pion) mass operator.

We thus remain with the cutoff parameters (ΛB,Λπ) and parameters (Λ̄, Λ̄s, Λ̄ss) as the
adjustable parameters in our approach. The masses of the u and the d quarks are set equal
(mu = md = mq). The value of mq is determined from an analysis of nucleon data: mq=420
MeV. The pion cutoff parameter Λπ = 1 GeV is fixed from the description of low-energy
pion observables (constants fπ and gπγγ, electromagnetic radii and form factors defining
the transitions π → πγ and π → γγ∗) [14]- [16]. The parameters ΛBQ

, ms, Λ̄ are taken
from the analysis of the Λ+

c → Λ0 + e+ + νe decay data. To reproduce the present average
value of B(Λ+

c → Λe+νe) = 2.2 % we use the following values for our parameters: ΛBQ
=1.8

GeV, ms=570 MeV and Λ̄=600 MeV. The values of the unknown parameters Λ̄s and Λ̄ss

are determined from the relations Λ̄s = Λ̄+ (ms −m) and Λ̄ss = Λ̄+ 2(ms −m), which give
Λ̄s = 750 MeV and Λ̄ss = 900 MeV. Using the values of ΛBQ

=1.8 GeV and Λ̄=600 MeV one
can describe the decay Λ0

b → Λ+
c e

−ν̄e decay: the width Γ(Λ0
b → Λ+

c e
−ν̄e) = 5.06 × 1010s−1

and the slope of the Λb Isgur-Wise function ρ2 = 1.44. Finally, the mass values of the charm
baryon states including current experimental uncertainties, are taken from TABLE I [1,13].
For Ξ+′

c and Ξ0′
c we use mass value with theoretical uncertainty mΞ′

c
= 2600 ± 30 MeV.

For the pion masses we take their experimental values mπ± = 139.6 MeV and mπ0 = 135
MeV [1].

We now present our numerical results for the strong charm baryon-pion couplings and
for the one-pion decay rates. In TABLE III we list our results for one-pion coupling con-
stants. For comparison we give also the results of Light-Front (LF) Quark Model [10] which
have been only available up to now. One can see that the values of the P -wave coupling
constants are in qualitive agreement with the Light-Front quark model prediction. However,
we disagree on the values of the S-wave and D-wave coupling constants fΛc1Σcπ and fΛ∗

c1Σcπ.
The disagreement can be traced to different choices of the momentum distribution of the
light quarks in the charm baryon. The smaller values of fΛc1Σcπ and fΛ∗

c1Σcπ are welcome
from comparison the results for exclusive one-pion rates of the Λc1 and Λ∗

c1 (see, TABLE
IV) to the experimental data [1]. It is seen that our predictions are consistent with current
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experimental estimations whereas the Light-Front model results lay above the experimental
rates. Also our predictions for S-wave and D-wave transitions are preferable if one sums
up the three exclusive one-pion rates of the Λc1 and Λ∗

c1 and compares the sums to the
total experimental rates Γ(Λc1) = 3.6+2.0

−1.3 MeV and Γ(Λ∗
c1) < 1.9 MeV. From the results of

our model calculation we obtain Γ(Λc1) > 2.6 ± 0.3 MeV and Γ(Λ∗
c1) > 0.25 ± 0.03 MeV

consistent with the experimental total rate of Λc1 and lower limit for rate of Λ∗
c1 whereas

the Light-Front model has Γ(Λc1) > 6.49 MeV and Γ(Λ∗
c1) > 2.19 MeV which lay above the

experimental rates. One can hope that more precise experimental study of strong decays of
excited Λc1 baryons in the near future can test the predictions of our approach and the LF
quark model. All our results for the one-pion decay rates of charm baryons are collected in
TABLE IV. The uncertainties for the calculated rates reflect the experimental errors in the
charm baryon masses (see, TABLE I). For comparison we have also listed the predictions
of the Light-Front quark model [10] and experimental results, where available. One can
only hope that there will be more precise data on the one-pion transitions of the excited
Λc1 baryon states to the ground states in the near future such that one can perform a more
detailed comparison with the model predictions of dynamical models such as described in
our approach and in the LF quark model.

Let us add a comment of the relation of our approach to the chiral invariant coupling
method used for example in [11]. The chiral formalism implies that all one-pion coupling
factors are proportional to the factor 1/fπ associated with the pion field. In our approach
the corresponding factor emerges in the following way. The pion-quark-antiquark coupling
gπ can be seen to obey the Goldberger-Treiman relation gπ · fπ = 2mq with an accuracy of
a few percent. Hence our approach agrees with the chiral approach [11] in that the pion
leptonic constant fπ effectively appears as a dimensional parameter in the coupling factors.

In conclusion, we have calculated strong one-pion decays of charm baryons. We have
obtained predictions for the values of couplings of charm baryons with pions and for the
rates of the two-body transitions Bi

c(p) → Bf
c (p

′) + π(q). We have compared our results
with data obtained with the use Light-Front Quark Model [10]. As a next step we plan to
study one-photon transitions between charm baryons. Also we intend to extend our results
to the bottom baryon sector.
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J.G. Körner, M. Krämer and D. Pirjol, Progr. Part. Nucl. Phys., 33 , 787 (1994).

List of Tables
TABLE I Quantum numbers of charm baryons (λu = diag{1,0,0}, λd = diag{0,1,0})
TABLE II Flavor coefficients I1, I3 and f1, f3.

TABLE III Charm baryon-pion couplings.

TABLE IV Decay rates Γ (in MeV) for charm baryon states.

List of Figures
FIG. I One-pion charm baryon transition: Σc → Λcπ decay.
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TABLE I

Baryon JP Quark Content Γ1 ⊗ CΓ2 λBQ
Mass (MeV) [1,13]

Λ+
c

1
2

+
c[ud] I ⊗ Cγ5 iλ2/2 2284.9± 0.6

Ξ+
c

1
2

+
c[us] I ⊗ Cγ5 iλ5/2 2465.6± 1.4

Ξ0
c

1
2

+
c[ds] I ⊗ Cγ5 iλ7/2 2470.3± 1.8

Ξ+′
c

1
2

+
c{us} γµγ5 ⊗ Cγµ λ4/(2

√
3) 2600± 30

Ξ0′
c

1
2

+
c{ds} γµγ5 ⊗ Cγµ λ6/(2

√
3) 2600± 30

Σ++
c

1
2

+
c{uu} γµγ5 ⊗ Cγµ λu/

√
6 2452.8± 0.6

Σ+
c

1
2

+
c{ud} γµγ5 ⊗ Cγµ λ1/(2

√
3) 2453.6± 0.9

Σ0
c

1
2

+
c{dd} γµγ5 ⊗ Cγµ λd/

√
6 2452.2± 0.6

Ξ∗+
c

3
2

+
c{us} I ⊗ Cγµ λ4/2 2644.6± 2.1

Ξ∗0
c

3
2

+
c{ds} I ⊗ Cγµ λ6/2 2643.8± 1.8

Σ∗++
c

3
2

+
c{uu} I ⊗ Cγµ λu/

√
2 2519.4± 1.5

Σ∗0
c

3
2

+
c{dd} I ⊗ Cγµ λd/

√
2 2517.5± 1.4

Λc1
1
2

−
c[ud] 6∂ξ1γ5 ⊗ Cγ5 iλ2/(2

√
3) 2593.9± 0.8

Λ∗
c1

3
2

−
c[ud] ∂µ

ξ1
⊗ Cγ5 iλ2/2 2626.6± 0.8

Ξ∗
c1

3
2

−
c[us] ∂µ

ξ1
⊗ Cγ5 iλ5/2 2815
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TABLE II

Decay mode I1 f1 Decay mode I3 f3

Σ+
c → Λcπ

0 1
√
3/2 Λc1(2593) → Σ0

cπ
+ 1 3/2

Σ0
c → Λcπ

− 1
√
3/2 Λc1(2593) → Σ+

c π
0 1 3/2

Σ++
c → Λcπ

+ 1
√
3/2 Λc1(2593) → Σ++

c π− 1 3/2

Σ∗0
c → Λcπ

− 1 1/2 Ξ∗
c1(2815) → Ξ∗0

c π+ 1/
√
2 1/2

Σ∗++
c → Λcπ

+ 1 1/2 Ξ∗
c1(2815) → Ξ∗+

c π0 1/2 1/2

Ξ∗0
c → Ξ0

cπ
0 1/2 1/2 Λ∗

c1(2625) → Σ0
cπ

+ 1
√
3/2

Ξ∗0
c → Ξ+

c π
− 1/

√
2 1/2 Λ∗

c1(2625) → Σ+
c π

0 1
√
3/2

Ξ∗+
c → Ξ0

cπ
+ 1/

√
2 1/2 Λ∗

c1(2625) → Σ++
c π− 1

√
3/2

Ξ∗+
c → Ξ+

c π
0 1/2 1/2 Ξ∗

c1(2815) → Ξ0′
c π

+ 1/
√
2
√
3/2

Ξ∗
c1(2815) → Ξ+′

c π0 1/2
√
3/2

TABLE III

Coupling Our Ref. [10]

gΣcΛcπ 8.88 GeV−1 6.81 GeV−1

gΞ∗
cΞcπ 8.34 GeV−1

fΛc1Σcπ 0.52 1.16

fΞ∗
c1
Ξ∗
cπ

0.32

fΛ∗
c1Σcπ 21.5 GeV−2 96.0 GeV−2

fΞ∗
c1Ξ

′
cπ

20 GeV−2
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TABLE IV

BQ → B′
Qπ Our Ref. [10] Experiment

P-wave transitions

Σ+
c → Λcπ

0 3.63± 0.27 1.70

Σ0
c → Λcπ

− 2.65± 0.19 1.57

Σ++
c → Λcπ

+ 2.85± 0.19 1.64

Σ∗0
c → Λcπ

− 21.21± 0.81 12.40 13.0+3.7
−3.0

Σ∗++
c → Λcπ

+ 21.99± 0.87 12.84 17.9+3.8
−3.2

Ξ∗0
c → Ξ0

cπ
0 1.01± 0.15 0.72

Ξ∗0
c → Ξ+

c π
− 2.11± 0.29 1.16 Γ(Ξ∗0) < 5.5

Ξ∗+
c → Ξ0

cπ
+ 1.78± 0.33 1.12

Ξ∗+
c → Ξ+

c π
0 1.26± 0.17 0.69 Γ(Ξ∗+) < 3.1

S-wave transitions

Λc1(2593) → Σ0
cπ

+ 0.83± 0.09 2.61 0.86+0.73
−0.56

Λc1(2593) → Σ+
c π

0 0.98± 0.12 1.73 Γ(Λc1) = 3.6+2.0
−1.3

Λc1(2593) → Σ++
c π− 0.79± 0.09 2.15 0.86+0.73

−0.56

Ξ∗
c1(2815) → Ξ∗0

c π+ 0.91± 0.03 4.84

Ξ∗
c1(2815) → Ξ∗+

c π0 0.48± 0.02 2.38 Γ(Ξ∗
c1) < 2.4

D-wave transitions

Λ∗
c1(2625) → Σ0

cπ
+ 0.080± 0.009 0.77 < 0.13

Λ∗
c1(2625) → Σ+

c π
0 0.095± 0.012 0.69 Γ(Λ∗

c1) < 1.9

Λ∗
c1(2625) → Σ++

c π− 0.076± 0.009 0.73 < 0.15

Ξ∗
c1(2815) → Ξ0′

c π
+ 0.46± 0.39 0.30

Ξ∗
c1(2815) → Ξ+′

c π0 0.25± 0.21 0.15 Γ(Ξ∗
c1) < 2.4
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