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Abstract

The representation of the total cross section at high energy
√
s in the next-

to-leading ln s approximation is given with definition of the impact factors

and explicit expression for the BFKL kernel. The estimate of the Pomeron

intercept and the next-to-leading contributions to anomalous dimensions near

j = 1 are presented.
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At large c.m.s. energy
√
s in the leading logarithmic approximation (LLA) the

total cross-section σ(s) for the high energy scattering of colourless particles A,B

can be presented [1] in terms of their impact factors Φi(
−→qi ) and the Green function

G(s; ~q1, ~q2) for the reggeized gluon scattering at zero momentum transfer. Let us

consider the impact factors as (not normalized) wave functions of the t-channel

two-particle states, denote these states |A〉 and |B〉 and use the complete set of

the states |~q〉 in the transverse momentum space with the properties 〈~q1 |~q2〉 =

δ(~q1 − ~q2) ,
∧

q2 |~qi〉 = q2i |~qi〉 , so that ΦA(~q) = 2πq2 〈~q |A〉 . In these denotations

σ(s) = 〈A|
∧

G (s) |B〉 ,
∧

G (s) =
(

s

s0

)

∧

K

(1)

with the kernel

〈~q1|
∧

K |~q2〉 = 2ω(q1) δ(~q1 − ~q2) +Kr(~q1, ~q2) (2)

which is expressed in terms of the gluon Regge trajectory ω(q) and the integral

kernel Kr(~q1, ~q2), related with the real particle production. Taking separately ω(q)

and Kr(~q1, ~q2) contain the infrared divergencies; after their cancellation the kernel

averaged over the angle between the momenta ~q1 and ~q2 can be presented in LLA

as

〈~q1|
∧

KB |~q2〉 =
αs(µ

2)Nc

π2

∫

dq2

|q 2
1 − q 2|

(

δ(q2 − q22)− 2
min(q21, q

2)

(q21 + q2)
δ(q21 − q22)

)

. (3)

Remind, that the dependence from the energy scale s0 as well as from the argument

µ2 of the coupling constant is beyond the LLA accuracy.

The program of calculating next-to-leading corrections to the BFKL equation

was formulated several years ago [2]. It was shown, that in the next-to-leading log-

arithmic approximation (NLLA), due to the gluon Reggeization, the form (1) of the

cross section, as well as the representation (2) for the kernel remain unchanged, but

the trajectory ω(q) should be taken with the two-loop correction (it was obtained

in [3]) and the integral kernel Kr(
−→q1 ,−→q2 ) - with one-loop accuracy. The one-loop
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correction to the integral kernel is obtained as a sum of two contributions. The

first one is related with the one-loop virtual correction to the one-gluon production

cross-section [4] and the second one is determined by the Born cross-sections for

production of two gluons [5] and quark-antiquark pair [6].

For the total NLLA kernel it was obtained [7]:

〈~q1|
∧

K |~q2〉 =
αs(µ

2)Nc

π2

∫

dq2
1

|q 2
1 − q 2|

(

δ(q2 − q22)− 2
min(q21, q

2)

(q21 + q2)
δ(q21 − q22)

)

×
[

1− αs(µ
2)Nc

4π

(

(

11

3
− 2nf

3Nc

)

ln

(

|q 2
1 − q 2|2

max(q21, q
2)µ2

)

−
(

67

9
− π2

3
− 10

9

nf

Nc

))]

−α
2
s(µ

2)N2
c

4π3

[

1

32

(

1 +
nf

N3
c

)(

2

q22
+

2

q12
+ (

1

q22
− 1

q12
) ln

q1
2

q22

)

+
(ln (q21/q

2
2))

2

|q21 − q22|

+

(

3 + (1 +
nf

N3
)

(

3

4
− (q21 + q22)

2

32q21q
2
2

))

∫ ∞

0

dx

q21 + x2q22
ln
∣

∣

∣

∣

1 + x

1− x

∣

∣

∣

∣

]

− 1

q22 + q21

(

π2

3

−4L(min(
q21
q22
,
q22
q21
))

)

+
α2
s(µ

2)N2
c

4π3

(

6ζ(3)− 5π2

12

(

11

3
− 2nf

3Nc

)

)

δ(q21 − q22) , (4)

where

L(z) =
∫ z

0

dt

t
ln(1− t) , ζ(n) =

∞
∑

k=1

k−n. (5)

In NLLA the impact factors in (1) depend on the energy scale s0:

ΦP (~qR; s0) =

√

N2
c − 1

2πs

∫

dsPRIPRσ
(s0)
PR (sPR)θ(sΛ − sPR)

−
∫ d~q

(2π)D−1
Φ

(B)
P (~q)

g2Nc~q
2

R

~q 2(~qR − ~q)2
ln

(

s2Λ
(~qR − ~q)2s0

)

. (6)

Here D is the space-time dimension, σ
(s0)
PR (sPR) is the total cross section of the

particle-Reggeon scattering at the c.m.s. energy
√
sPR averaged over colours of the

Reggeon with the one-loop corrections calculated for case when the energy scale in

the Regge factors is equal s0; IPR is the invariant flux, IPR =
√

(sPR − p2P + ~q 2
R )2 + 4p2P~q

2
R ,

and Φ
(B)
P (~qR) is the Born (LLA) value of the impact factor. The right hand part
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of the above equation is assumed to be taken in the limit sΛ → ∞, so that the

dependence from sΛ disappears due to the factorization properties of the Reggeon

vertices in the regions of strongly ordered rapidities of the produced particles.

In Ref. [7] the energy scale s0 was taken equal q1q2 which is natural from the

point of view of the Watson-Sommerfeld representation for high energy scattering

amplitudes. It was pointed out in Ref. [7], that the change of the energy scale leads

generally to the corresponding modification of the impact factors and the BFKL

equation for the Green function G, but the physical results are not changed. Since

with the NLLA accuracy

(

s

s0

)

∧

K

= s
∧

K(1−
∧

KB ln s0) =
∫

d~q1

∫

d~q2





1 + ln







f1(
∧

q2)

s0







∧

KB

2







× |~q1〉 〈~q1|




s
√

f1(q21)f2(q
2
2)





∧

K

|~q2〉 〈~q2|





1 +

∧

KB

2
ln







f1(
∧

q2)

s0











 , (7)

where f1 and f2 are some functions, we obtain that at the transition from the

scale s0 to any factorizable scale
√

f1(q21)f2(q
2
2) we can keep the kernel unchanged,

changing the impact factors to

ΦP (~qi; fi(q
2
i )) = ΦP (~qi; s0) +

1

2

∫

d~qΦB
P (~q) ln

(

fi(q
2)

s0

)

KB(~q, ~qi)
q2i
q2
. (8)

The action of the kernel (4) on the eigenfunctions q
2(γ−1)
2 of the Born kernel

gives us [7]

∫

d~q2 K(~q1, ~q2)

(

q22
q21

)γ−1

=
αs(q

2
1)Nc

π

(

χ(B)(γ) +
αs(q

2
1)Nc

π
χ(1)(γ)

)

, (9)

were χ(B)(γ) = 2ψ(1) − ψ(γ) − ψ(1 − γ) is proportional to the eigenvalue of the

Born kernel, ψ(γ) = Γ′(γ)/Γ(γ) , and the correction χ(1)(γ) is:

χ(1)(γ) = −1

4

[(

11

3
− 2nf

3Nc

)

1

2

(

χ2(γ)− ψ′(γ) + ψ′(1− γ)
)

3



−6ζ(3) +
π2 cos(πγ)

sin2(πγ)(1− 2γ)

(

3 +

(

1 +
nf

N3
c

)

2 + 3γ(1− γ)

(3− 2γ)(1 + 2γ)

)

−
(

67

9
− π2

3
− 10

9

nf

Nc

)

χ(γ)− ψ′′(γ)− ψ′′(1− γ)− π3

sin(πγ)
+ 4φ(γ)

]

(10)

with

φ(γ) = −
∫ 1

0

dx

1 + x

(

xγ−1 + x−γ
)

∫ 1

x

dt

t
ln(1− t)

=
∞
∑

n=0

(−1)n
[

ψ(n+ 1 + γ)− ψ(1)

(n+ γ)2
+
ψ(n + 2− γ)− ψ(1)

(n+ 1− γ)2

]

. (11)

For the relative correction r(γ) defined as χ(1)(γ) = −r(γ)χ(B)(γ) in the sym-

metrical point γ = 1/2, corresponding to the Pomeron singularity we have r(1/2) ≃

6, 46 + 0.05
nf

Nc
+ 2.66

nf

N3
c
, i.e., the correction is large. In some sense, the large value

of the correction is natural and is a consequence of the large value of the Born

intercept ωB
P = 4Nc ln 2αs(q

2)/π . If we express the corrected intercept ωP in terms

of the Born one, we obtain

ωP = ωB
P (1−

r
(

1
2

)

4 ln 2
ωB
P ) ≃ ωB

P (1− 2.4ωB
P ). (12)

The coefficient 2.4 does not look very large. Moreover, it corresponds to the rapidity

interval where correlations become important in the hadron production processes.

Nevertheless, if we take (12) for αs(q
2) = 0.15 we obtain ωP ≃ 0.07 that is too small.

But it is necessary to realize that, firstly, the estimate (12) is quite straightforward

and does not take into account neither the influence of the running coupling on the

eigenfunctions nor the nonperturbative effects [9]; secondly, the value of the correc-

tion strongly depends on its representation. For example, if one takes into account

the next-to-leading correction by the corresponding increase of the argument of the

running QCD coupling constant, ωP at αs(q
2) = 0.15 turns out to be only two times

smaller, than its Born value.
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The results obtained for the BFKL kernel can be applied for the calculation of

anomalous dimensions of the local twist-2 operators near point ω = J − 1 = 0,

which are determined [7] from the solution of the equation

ω =
αsNc

π

(

χ(B)(γ) +
αsNc

π
(χ(1)(γ)− 2χ(B)(γ)(χ(B)(γ))′)

)

. (13)

For the low orders of the perturbation theory the solution of (13) reproduces the

known results and gives the higher loop correction [7] for ω → 0:

γ ≃ αsNc

π
(
1

ω
− 11

12
− nf

6N3
c

)−
(

αs

π

)2 nf Nc

6ω
(
5

3
+

13

6N2
c

)

− 1

4ω2

(

αsNc

π

)3
(

395

27
− 2ζ(3)− 11

3

π2

6
+
nf

N3
c

(
71

27
− π2

9
)

)

. (14)

The results obtained in [7] for the BFKL kernel and the anomalous dimensions

were confirmed in [8].
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