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Abstract

We derive the Callan-Symanzik equation of the electroweak Standard Model

in the QED-like on-shell parameterization. The various coefficient functions,

the β-functions and anomalous dimensions, are determined in one-loop order

in the most general linear gauge compatible with rigid symmetry. In this

way the basic elements for a systematic investigation of higher-order leading

logarithmic contributions in the Standard Model are provided. The one-loop

β-function of the electromagnetic coupling turns out to be independent of

mass ratios and it is QED-like in this sense. Besides the QED-contributions

of fermions it contains non-abelian contributions from vectors and ghosts with

negative sign, which overcompensate the contributions of the fermions if one

restricts the latter to one fermion generation. We also compare our results

with the symmetric theory and give relations between the β-functions of the

spontaneously broken and the symmetric theory valid in one-loop order.
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1. Introduction

The precision tests of the electroweak theory have reached such a high level of experimental

accuracy [1] that in the perturbative evaluation of the theoretical predictions the incor-

poration of higher-order radiative corrections is indispensable (for a recent review see e.g.

Ref. [2]). The theoretical predictions obtained in a fixed order of perturbation theory can

be improved if it is known how the leading contributions can consistently be resummed to

all orders. In this context one is often also interested in the large-momentum behavior of

the contributing Green functions. In order to make the analysis of the large-momentum

behavior meaningful, also contributions which depend on large ratios of different mass

scales have to be considered.

Information of this kind can be obtained by studying the Callan-Symanzik (CS) equa-

tion [3] and the renormalization group (RG) [4] equation of the model under consideration.

The CS equation describes the breaking of dilatations and contains information about the

momentum structure of the theory. The RG equation on the other hand describes the

invariance of the model under variations of the normalization point. Both equations can

be systematically constructed in renormalized perturbation theory. Their importance is

founded in the fact that RG invariance as well as the hard breaking of dilatations can be

formulated as a partial differential equation. They both contain derivatives with respect to

the independent parameters of the theory, which give rise to the CS and RG β-functions,

and field differential operators, which are connected with the anomalous dimensions.

While these equations coincide in theories with unbroken symmetry and massless parti-

cles, in massive theories this is no longer the case. In theories with unbroken symmetry

the large-momentum behavior can be related to the large-momentum behavior of the

massless theory. In particular it can be shown that for asymptotic normalization condi-

tions the β-functions and anomalous dimensions of the massive theory coincide with those

of the massless theory [5]. This situation is changed drastically in theories with broken

symmetries: In the physical on-shell schemes the CS equation has a different form than

the RG equation, in particular it contains derivatives with respect to the physical masses

of the theory. Moreover, solving both equations consistently it has been shown that the

massless symmetric theory is not the asymptotic version of the spontaneously broken one,

but contains large logarithms of the mass parameters of the broken theory [6]. Conse-

quently it is not obvious how to interpret the solutions of the CS equation in terms of

“running” couplings and masses. It is therefore not guaranteed that the results obtained

from a RG-study using the symmetric parameterization of the theory (cf. Ref. [7] and

Refs. therein and also [8]) are directly applicable to the Standard Model (SM) of elec-

troweak interactions. Instead, modifications are to be expected beyond one-loop order.
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As a first step towards a systematic analysis of large-momentum and mass-dependent

higher-order contributions, we derive in the present paper the CS equation of the elec-

troweak SM in the on-shell parameterization (see e.g. Refs. [9, 10, 11]) and determine its

1-loop coefficient functions. The benefits of working within an on-shell parameterization

are founded not only in its transparency due to the formulation in terms of physical pa-

rameters, appropriate on-shell conditions for the mixing propagators involving massless

particles are also important for ensuring decent infrared properties of higher-order Green

functions. We evaluate the coefficient functions of the CS equation in the most general lin-

ear gauge compatible with rigid symmetry, providing them in this way in the form needed

for higher-order investigations. As an explicit example, the quadratic logarithms in the

asymptotic region are determined for the photon self-energy at two-loop order. We also

compare our results to the symmetric theory and to QED of charged fermions. Concern-

ing QED we find that the fermion contributions to the β-function of the electromagnetic

coupling are the same as in the electroweak SM. However, the non-abelian contributions

of ghosts and vectors enter with a negative sign. In particular it turns out that if one

restricts the fermions of the SM to one generation, the one-loop β-function of the elec-

tromagnetic coupling has a different sign compared to the familiar QED β-function. In

this context it should be noted that in QED there exist also partial differential equations

with respect to variations of single fermion masses. Such equations cannot be derived

in the electroweak SM. This gives rise to the fact that higher-order β-functions are not

restricted from abstract analysis in their mass-parameter dependence.

Apart from the above-mentioned applications the CS equation is also an important ob-

ject in the procedure of abstract renormalization. It allows to determine in a scheme-

independent way the independent parameters of the theory.1 The most important out-

come of the present analysis in this context is the observation that the ghost mass ratio

is an independent parameter of the model, i.e. it is renormalized independently from the

vector mass ratio. In order to introduce it as an independent parameter we have to

modify the BRS transformations in lowest order. Otherwise it is not possible to assign

well-defined infrared power counting degrees to the neutral Faddeev-Popov fields and the

off-shell infrared existence of higher-order Green functions is endangered (see Ref. [13]).

The plan of the paper is as follows: In section 2 we give the classical action of the elec-

troweak SM including the gauge-fixing and ghost sector in the on-shell parameterization.

The gauge fixing is constructed in such a way that it is compatible with the Ward iden-

tities of rigid symmetry and the local abelian U(1) Ward identity. The latter identity is

crucial for continuing the Gell-Mann Nishijima relation to higher orders. In section 3 we

1For an introduction to algebraic renormalization see Ref. [12].

2



give the Slavnov-Taylor identity in the tree approximation and show how the independent

ghost mass ratio can be consistently included. In section 4 we derive the CS equation

by constructing the invariant differential operators. In section 5 we apply the CS equa-

tion to different 1-loop vertices, calculating in this way the β-functions and anomalous

dimensions in one-loop order in a general gauge. As an application at two-loop order, the

leading logarithms of the photon self-energy are investigated. In section 6 we compare

the results with the symmetric theory and with QED of charged fermions. In section 7

we give our conclusions. The appendix contains a list of free field propagators determined

in the general linear Rξ gauge.

2. The classical action of the electroweak Standard Model

In order to set the general framework and to fix the notation we first give the classical

action of the SM in the on-shell parameterization. In our conventions we follow closely

the ones used in Ref. [11].

The Standard Model of electroweak interactions is a non-abelian gauge theory with the

non-semisimple gauge group SU(2) × U(1). It comprises four vector fields Vµ,a, a =

+,−, Z, A: the charged bosons Vµ,± ≡ Wµ,± with mass MW and electric charge ±1, the
neutral boson Vµ,Z ≡ Zµ with mass MZ and the massless photon field Vµ,A ≡ Aµ. The

masses of the vector bosons are generated by spontaneous symmetry breaking via the

Higgs mechanism. The SM contains a complex scalar doublet

Φ ≡




φ+(x)
1√
2
(H(x) + iχ(x))



 Φ̃ ≡ iτ2Φ
∗ =





1√
2
(H(x)− iχ(x))
−φ−(x)



 , (2.1)

where H is the physical Higgs field with mass mH , and φ
+, φ− and χ are the unphysical

would-be Goldstone bosons.

In the fermion sector there are the left-handed fermion doublets, the lepton and quark

doublet

FL
δ,i ≡ FL

l,i, F
L
q,i FL

l,i =





νLi

eLi



 FL
q,i =





uLi

dLi



 (2.2)

and the right-handed singlets

fR
i = eRi , u

R
i , d

R
i . (2.3)

Here i denotes the family index; νi stands for neutrinos, ei for charged leptons with mass

mei and electric charge Qe = −1, ui and di for up and down- type quarks with mass mui
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and mdi and electric charge Qu = 2
3
and Qd = −1

3
. Since we are mainly interested in the

CS functions of the vector sector we do not consider mixing between different families,

especially we assume CP-invariance throughout the paper.

For convenience we give the classical action of the SM as it arises after spontaneous break-

ing of the symmetry in terms of the physical fields, i.e. in mass and charge eigenstates.

The free parameters are the masses of the fields given above and one coupling, which is

chosen according to a QED-like parameterization:

MW ,MZ , mH , mfi, e. (2.4)

We introduce the notation

cos θW =
MW

MZ

, (2.5)

which relates the weak mixing angle to the mass ratio of the W - and Z-bosons. In higher

orders the masses and also the field renormalizations have to be fixed by appropriate

normalization conditions for the two-point functions. In a QED-like parameterization the

coupling can be fixed as the interaction strength of the photon to the electromagnetic

current in the Thompson limit, where it is determined by the fine structure constant.

ū(p)ΓeeAµ(p, p, 0)u(p)|p2=m2
e
= ieū(p)γµu(p). (2.6)

The classical action can be decomposed into a gauge-invariant part ΓGSW and the gauge-

fixing and ghost part, which are constructed to be BRS-invariant. The gauge-invariant

part of the action is given by:

ΓGSW = ΓYM + Γscalar + Γferm , (2.7)

ΓYM = −1
4

∫

d4x Gµν
a Ĩaa′Gµνa′ (2.8)

Γscalar =
∫

d4x
(

(Dµ(Φ + v))†Dµ(Φ + v)− 1

8

m2
H

M2
W

e2

sin2 θW
(Φ†Φ + v†Φ + Φ†v)2

)

(2.9)

Γferm =
NF
∑

i=1

∫

d4x
(

FL
l,iiD/F

L
l,i + FL

q,iiD/F
L
q,i + fR

i iD/f
R
i (2.10)

− e

MW

√
2 sin θW

(meiF
L
l,i(Φ + v)eRi +mui

FL
q,i(Φ + v)uRi

+mdiF
L
q,i(Φ̃ + ṽ)dRi + h.c.)

)

,

where NF is the number of fermion generations, and v denotes the shift of the scalar field

doublet, which generates the masses of the particles:

v =





0
1√
2
v



 with v =
2

e
MZ cos θW sin θW . (2.11)

4



It has a component into the direction of the physical Higgs field. Assigning to the fields

a definite transformation behavior under C,P and T the action can be shown to be CP-

invariant. (A table of quantum numbers for all fields of the Standard Model can be found

in Ref. [13].)

The field strength tensor and the covariant derivative have the form

Gµν
a = ∂µV ν

a − ∂νV µ
a +

e

sin θW
Ĩaa′fa′bcV

µ
b V

ν
c (2.12)

DµΦ = ∂µΦ− i
e

sin θW

τa(Gs)

2
ΦVµa (2.13)

DµF
L
δ,i = ∂µF

L
δ,i − i

e

sin θW

τa(Gδ)

2
FL
δ,iVµa δ = l, q (2.14)

Dµf
R
i = ∂µf

R
i + ieQf

sin θW
cos θW

fR
i Zµ + ieQff

R
i Aµ . (2.15)

We use the summation convention for the roman indices a, b, c with values +,−, Z, A and

have introduced convenient notations. The tensor

fabc =







f+−Z = −i cos θW
f+−A = i sin θW

(2.16)

is completely antisymmetric and the matrices τa (a = +,−, Z, A) form a representation

of SU(2)× U(1) according to

[

τa

2
,
τb

2

]

= ifabcĨcc′
τc′

2
. (2.17)

They are explicitly given by (τi, i = 1, 2, 3, are the Pauli matrices)

τ+ = 1√
2
(τ1 + iτ2) τZ(G) = τ3 cos θW +G1 sin θW

τ−=
1√
2
(τ1 − iτ2) τA(G) = −τ3 sin θW+G1 cos θW . (2.18)

These combinations depend on the abelian coupling G, which is not determined by the

algebra. It is related to the weak hypercharge YW and accordingly to the electric charge

Qf of the particles:

Gk = −Y (k)
W

sin θW
cos θW

Y
(k)
W =















1 for the scalar (k = s)

-1 for the lepton doublets (k = l)
1
3

for the quark doublets (k = q) .

(2.19)

The matrix Ĩaa′ guarantees the charge neutrality of the classical action

Ĩ+− = Ĩ−+ = ĨZZ = ĨAA = 1 (2.20)

Ĩab = 0 else.
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The action ΓGSW is manifestly invariant under SU(2)×U(1) gauge transformations, if one

includes the shift of the Higgs field into the transformation. The transformation behavior

of the physical fields can be read off from the covariant derivatives.

In order to quantize the SM the gauge is fixed in such a way that renormalizability is

guaranteed by power counting. Taking the usual linear Rξ gauges we choose the following

gauge-fixing functions, which are the most general ones having definite transformation

with respect to CP:

F± ≡ ∂µW
µ
± ∓ iMW ζWφ

±

FZ ≡ ∂µZ
µ −MZζZχ (2.21)

FA ≡ ∂µA
µ −MZζAχ.

The mass terms of the would-be Goldstone fields are introduced in order to remove non-

integrable infrared divergencies from the propagators. Coupling the gauge-fixing functions

to a Lagrange multiplier field Ba, a = +,−, Z, A, with dimension 2 and odd under CP-

transformations, the gauge fixing reads

Γg.f. =
∫

d4x

(

1

2
ξabBaBb +BaĨabFb

)

. (2.22)

It can be transformed into its usual form by eliminating the Ba-fields via their equations

of motion:
δΓ

δBa

= ξabBb + ĨabFb
∗
=0. (2.23)

The gauge fixing breaks gauge invariance and also its integrated version, the rigid SU(2)×
U(1) symmetry, which is obtained by taking the infinitesimal transformation parameters

of gauge transformations as constants. Therefore the unphysical fields, the longitudinal

parts of the vectors and the would-be Goldstones, interact with the physical fields violating

thereby unitarity. For this reason one has to introduce the Faddeev-Popov fields ca, a =

+,−, Z, A, with ghost charge 1 and the respective antighosts c̄a, a = +,−, Z, A, with
ghost charge −1 and has to add the ghost part in such a way that the classical action is

invariant under BRS transformations:

sVµa = ∂µca +
e

sin θW
Ĩaa′fa′bcVµbcc

sca = − e

2 sin θW
Ĩaa′fa′bccbcc

sΦ = i
e

sin θW

τa(Gs)

2
(Φ + v)ca

sFL
δ = i

e

sin θW

τa(Gδ)

2
FL
δ ca δ = l, q (2.24)

sfR = −ieQf

sin θW
cos θW

fRcZ − ieQff
RcA
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sc̄a = Ba

sBa = 0.

Having formulated the gauge fixing with the auxiliary fields Ba, the BRS transformations

are nilpotent on all fields

s2 = 0. (2.25)

Requiring the classical action to be BRS-invariant

sΓcl = 0 with Γcl = ΓGSW + Γg.f. + Γghost, (2.26)

the ghost action is determined

Γghost =
∫

d4x
(

−c̄aĨabsFb

)

. (2.27)

The bilinear terms are given explicitly by

Γ
(bil)
ghost =

∫

d4x
(

−c̄a✷Ĩabcb − ζWM2
W (c̄+c− + c̄−c+) (2.28)

− ζZM2
Z c̄ZcZ − ζAM2

Z c̄AcZ
)

.

With the help of BRS invariance one is able to prove unitarity of the physical S-matrix

in the tree approximation. It is therefore the relevant symmetry for quantization and

renormalization because it fixes the interactions amongst the unphysical fields in such

a way that the complete action is renormalizable and eventually the physical S-matrix

unitary [14, 15].

The gauge-fixing parameters are not specified by BRS invariance. In general ξab is an

arbitrary symmetric matrix and ζa are arbitrary parameters. They have to be restricted

by normalization conditions on the ghost propagators or additional symmetries. A natural

choice in the tree approximation is

ξab = ξĨab ζW = ζZ ζA = 0, (2.29)

which makes the propagators of the longitudinal vectors and of the Faddeev-Popov ghosts

diagonal. If we constrain the gauge fixing according to (2.29), rigid invariance is still

broken by the mass terms and, moreover, the breaking transforms covariantly in such a

way that it can be controlled by introducing an external scalar doublet

Φ̂ =

(

φ̂+

1√
2
(Ĥ + iχ̂)

)

(2.30)

with the same quantum numbers as the scalar doublet Φ, but which is BRS-transformed

into an external doublet q with ghost charge 1 (cf. Refs. [13, 16])

sΦ̂ = q sq = 0. (2.31)
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In the most general linear gauge fixing invariant with respect to rigid symmetry transfor-

mations the gauge parameters are restricted as follows

ξab = ξĨab + ξ̂















0 0 0 0

0 0 0 0

0 0 sin2 θW sin θW cos θW

0 0 sin θW cos θW cos2 θW















(2.32)

ζW = ζ (2.33)

ζZ = ζ cos θW (cos θW − Ĝ sin θW ) (2.34)

ζA = −ζ cos θW (sin θW − Ĝ cos θW ). (2.35)

Then the gauge fixing (2.22) reads explicitly (including also the external scalars)

Γg.f.=
∫

d4x

(

1

2
ξBaĨabBb +

1

2
ξ̂(sin θWBZ + cos θWBA)

2 +BaĨab∂Vb

− ie

sin θW
((Φ̂ + ζv)†

τa(Ĝ)

2
Ba(Φ + v)− (Φ + v)†

τa(Ĝ)

2
Ba(Φ̂ + ζv))

)

, (2.36)

with v given in (2.11) and τa(G) in (2.18). Concerning the external scalar doublet Φ̂ and

the quantum scalar doublet Φ this gauge-fixing term is equivalent to the one used in the

background-field method [17, 18].

It is seen that the would-be Goldstone fields φ± and χ as well as the massive Faddeev-

Popov ghosts get their masses via the shift of the external scalar fields ζv. The gauge

parameter ξ̂ as well as the abelian coupling Ĝ are not determined by rigid symmetry,

gauge invariance or BRS symmetry. The parameterization chosen in (2.29) reads now:

ξ̂ = 0 and Ĝ = − sin θW
cos θW

. (2.37)

It turns out, however, that the minimal choice (2.37) is not stable under renormalization

as will be seen from the Callan-Symanzik equation. In particular, the ghost mass ratio

is independently renormalized from the vector mass ratio. In view of the investigation of

higher-order contributions it is therefore important to work in the general gauge specified

in (2.36).

3. Quantization

For a systematic treatment of quantization and renormalization one expresses invariance

under BRS transformations (2.24) and rigid symmetry in the form of functional operators,

the Slavnov-Taylor identity and the Ward identities of rigid symmetry.
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Since the BRS transformations include non-linear field transformations in propagating

fields, they have to be coupled to external fields. In order to avoid double definitions of

the insertions c+c− and V+c− − V−c+ one has to split off the linear U(1)-transformations

explicitly [19, 13]. We introduce the external field action in the following form:

Γext.f. =
∫

d4x
(

ρ
µ
+sWµ,− + ρ

µ
−sWµ,+ + ρ

µ
3 (cos θW sZµ − sin θW sAµ) (3.1)

+ σ+sc− + σ−sc+ + σ3(cos θW scZ − sin θW scA)

+ Y †sΦ + (sΦ)†Y

+
NF
∑

i=1

(
∑

δ=l,q

ΨR
δ,isF

L
δ,i +

∑

f

ψL
f,isf

R
i + h.c.)

)

.

The external fields ρµα and σα, α = +,−, 3, are SU(2)-triplets with ghost charge −1 and

−2, respectively. The external field Y is a complex scalar doublet with ghost charge −1,
ψL
f,i denotes external left-handed spinor singlets with ghost charge −1,

ψL
f,i ≡ ψL

e,i, ψ
L
u,i, ψ

L
d,i, (3.2)

whereas ΨR
δ,i denotes external right-handed spinor doublets

ΨR
δ,i ≡ ΨR

l,i, Ψ
R
q,i ΨR

l,i =





ψR
ν,i

ψR
e,i



 ΨR
q,i =





ψR
u,i

ψR
d,i



 . (3.3)

The transformation under discrete symmetries is assigned in such a way that the external

field part is neutral and CP-invariant.

The classical action corresponds to the lowest order of the perturbative expansion of 1PI

Green functions and one can read off the respective functional operators of the defining

symmetries in the tree approximation. Including the external field part (3.1) into the

classical action (2.26) one is able to encode the BRS transformations (2.24) in the Slavnov-

Taylor (ST) operator:

S(Γ) =
∫

d4x

(

(sin θW∂µcZ + cos θW∂µcA)
(

sin θW
δΓ

δZµ

+ cos θW
δΓ

δAµ

)

(3.4)

+
δΓ

δρ
µ
3

(

cos θW
δΓ

δZµ

− sin θW
δΓ

δAµ

)

+
δΓ

δσ3

(

cos θW
δΓ

δcZ
− sin θW

δΓ

δcA

)

+
δΓ

δρ
µ
+

δΓ

δWµ−
+

δΓ

δρ
µ
−

δΓ

δWµ+

+
δΓ

δσ+

δΓ

δc−
+

δΓ

δσ−

δΓ

δc+
+

δΓ

δY †
δΓ

δΦ
+

δΓ

δΦ†
δΓ

δY

+
NF
∑

i=1

( δΓ

δψL
f,i

δΓ

δfR
i

+
δΓ

δΨR
δ,i

δΓ

δFL
δ,i

+ h.c.
)

+Ba

δΓ

δc̄a
+ q

δΓ

δΦ̂
+

δΓ

δΦ̂†
q†
)

.
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The ST identity of the tree approximation

S(Γcl) = 0 (3.5)

is fulfilled by construction.

Rigid symmetry can be formulated in terms of linear, integrated Ward operators which

satisfy the SU(2)× U(1) algebra
[Wα,Wβ] = εαβγ Ĩγγ′Wγ′ (3.6)

[Wα,W4] = 0.

The Greek indices are SU(2)-group indices and run over +,−, 3, the Ward operator W4

corresponds to the transformation under the U(1)-group and commutes therefore with all

Ward operators. The tensor εαβγ denotes the structure constants of charged SU(2) and

is completely antisymmetric:

ε+−3 = −i. (3.7)

Vector fields, Faddeev-Popov ghosts and the auxiliary fields Ba transform according to

the adjoint representation, whereas all the scalars transform according to the fundamental

representation. The external fields ρµα and σα, α = +,−, 3, are only transformed under

SU(2). We thus arrive at

WαΓcl = 0 and W4Γcl = 0, (3.8)

where the Ward operators of the tree approximation are given by

Wα = Ĩαα′

∫

d4x

(

(

V
µ
b ε̂bc,α′ Ĩcc′

δ

δV
µ
c′

+ {c, B, c̄}
)

(3.9)

+
(

ρ
µ
βεβγα′ Ĩγγ′

δ

δρ
µ
γ′

+ {σ}
)

+
(

i(Φ + v)†
τα′

2

−→
δ

δΦ†
− i
←−
δ

δΦ

τα′

2
(Φ + v) + {Y, Φ̂ + ζv, q}

)

+
∑

δ,i

(

iFL
δ,i

τα′

2

−→
δ

δFL
δ,i

− i
←−
δ

δFL
δ,i

τα′

2
FL
δ,i + {ΨR

δ,i}
)

)

.

Fields in curly brackets in (3.9) denote that these fields are transformed in the same way as

the one explicitly given in the respective line of the formula. The matrices τα = τ+, τ−, τ3

are the Pauli matrices of the charged representation of SU(2) (3.7). The tensor ε̂bc,α, which

governs the transformation of the vector fields, is antisymmetric in the first two indices.

These indices are field indices and are generated by rotating the neutral SU(2)-fields and

the abelian fields by the weak mixing angle θW into on-shell fields:

ε̂bc,α =















ε̂Z+,− = −i cos θW
ε̂A+,− = i sin θW

ε̂+−,3 = −i
. (3.10)
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In the electroweak Standard Model there are several rigid abelian operators W4 which

commute with the SU(2) operators (3.9). The respective symmetries of the classical action

correspond to the conservation of electromagnetic charge (Wem −W3) and conservation

of lepton and quark family number (Wli and Wqi),

W4Γcl = 0 where W4 ≡ (Wem −W3) +
NF
∑

i

gliWli + gqiWqi . (3.11)

Here Wem is the usual electromagnetic charge operator; explicit expressions are given in

Ref. [13]. From the corresponding classically conserved currents only the electromagnetic

current is gauged. When the gauge-fixing sector and ghost sector is constructed in accor-

dance with rigid symmetry (2.36), then it is possible to establish the local abelian Ward

identity corresponding to electromagnetic current conservation

w
Q
4 Γcl −

1

e
cos θW

(

sin θW∂
δΓcl

δZ
+ cos θW∂

δΓcl

δA

)

=
1

e
cos θW (sin θW✷BZ + cos θW✷BA) ,

(3.12)

with

w
Q
4 = wem −w3 . (3.13)

The local operators w3 and wem are defined by taking away the integration from the rigid

operators:

W3 =
∫

d4x w3 and Wem =
∫

d4x wem . (3.14)

The local Ward identity together with (3.13) is the functional generalization of the Gell-

Mann Nishijima relation and allows to determine the weak hypercharges of fermion dou-

blets and the electromagnetic charges of fermion singlets. In higher orders this local Ward

identity plays an important role for a scheme-independent definition of the abelian charges

(for details see Ref. [13]).2

In the procedure of renormalization and quantization one has to construct the Green

functions in such a way that they satisfy simultaneously the Slavnov-Taylor identity, the

Ward identities of rigid symmetry specified by the commutation relation (3.6), and the

abelian local Ward identity (3.12). This problem has to be taken seriously due to the fact

that the photon and the respective Faddeev-Popov ghosts are massless and these massless

particles have non-abelian interactions. In order to ensure that all integrals are infrared

convergent for non-exceptional momenta in higher orders of perturbation theory one has

to supplement the usual normalization conditions, which fix the free parameters (2.4)

and the wave function normalization, by the requirements that also the mixed 2-point

2In [20] the abelian charges are fixed by postulating an antighost equation. From there the local Ward

identity is defined by using the consistency with the ST identity.
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functions of massive and massless particles vanish at p2 = 0:

ΓZA(p
2 = 0) = ΓAA(p

2 = 0) = 0 (3.15)

Γc̄AcZ(p
2 = 0) = Γc̄ZcA(p

2 = 0) = Γc̄AcA(p
2 = 0) = 0.

A careful analysis of higher orders shows that on-shell conditions which include (3.15) as

well as corresponding conditions at the mass of the massive fields can be only fulfilled

in agreement with the Slavnov-Taylor identity and the Ward identities if one takes into

account higher-order corrections of the ST operator and the Ward operators [13]. The

β-functions and anomalous dimensions of the 1-loop CS equation are independent of these

higher-order corrections. But one cannot completely stick to the tree approximation as

defined by the parameterization (2.37) and the BRS transformations (2.24) since the ghost

mass ratio turns out to be an independent parameter of the Standard Model. This means

that we have to keep the parameters of the gauge-fixing functions (2.36) ξ, ξ̂, ζ and Ĝ

as independent parameters. Keeping Ĝ arbitrarily and using at the same time the BRS

transformation (2.24) brings about that the non-diagonal mass term c̄AcZ arises in the

action (see (3.17)). Such a non-diagonal mass term leads in higher orders to off-shell

infrared divergent contributions and prevents the introduction of definite infrared degrees

of power counting for the ghosts. In order to remedy the situation one has to introduce a

ghost angle into the BRS transformations already in the tree approximation, which allows

consistently to remove the infrared divergent contributions c̄AcZ from the classical action

for arbitrary ghost mass ratio and to derive the CS equation.

For the purpose of this paper we want to outline the definition of the ghost angle in the

tree approximation, whereas a detailed analysis especially of higher orders is given in

Ref. [13]. The linear Rξ gauge-fixing functions (2.21) are restricted by rigid symmetry as

given in (2.32)–(2.35). They include only four free parameters:

ξ, ξ̂, ζ, Ĝ. (3.16)

The parameters ζ and Ĝ are connected with the ghost masses:

−ζMW

∫

d4x
(

MW (c̄+c−+c̄−c+)+MZ c̄ZcZ(cos θW−Ĝsin θW )−MZ c̄AcZ(sin θW+Ĝcos θW )
)

.

(3.17)

Introducing in analogy to (2.19) the notation

Ĝ = − sin θG
cos θG

, (3.18)

the ratio of the ghost masses is determined by

ζWM
2
W

ζZM
2
Z

=
cos θW cos θG
cos(θW − θG)

, (3.19)
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where ζWM
2
W is the mass of the charged ghosts and ζZM

2
Z the mass of the massive neutral

ghosts. The ghost angle θG is uniquely determined for arbitrary ghost masses. In order to

be able to remove the non-diagonal ghost mass term for arbitrary ghost mass ratio from

the action one has to redefine the neutral ghosts cZ and cA as well as the antighosts c̄Z

and c̄A by a non-diagonal matrix ĝab:

ca −→ ĝabcb, c̄a −→ c̄bĝ
−1
ba . (3.20)

This procedure is analogous to the one which has to be carried out if one constructs mass

eigenstates in the vector sector by introducing the weak mixing angle. The matrix ĝab is

determined from the normalization conditions (3.15) up to two constants which we have

fixed for convenience:

ĝ+− = 1 ĝ−+ = 1

ĝZZ = cos(θW − θG) ĝAZ = − sin(θW − θG) (3.21)

ĝZA = 0 ĝAA = 1.

In matrix notation it reads:

ĝab =















1 0 0 0

0 1 0 0

0 0 cos(θW − θG) 0

0 0 − sin(θW − θG) 1















. (3.22)

With these redefinitions the bilinear part of the Faddeev-Popov ghost action is diagonal

also in the general gauge (2.36):

Γ
(bil)
ghost =

∫

d4x
(

−c̄a✷Ĩabcb − ζWM2
W (c̄+c− + c̄−c+)− ζZM2

Z c̄ZcZ
)

. (3.23)

Consequently the ghost propagators are diagonal and allow to assign a well-defined in-

frared degree of power counting to Z and A-ghosts. For arbitrary masses, however, the

ghost angle enters the BRS transformations and the ST identity and eventually also the

ghost–vector interactions. Explicitly the ST operator reads

S(Γ) =
∫

d4x

(

(sin θG∂µcZ + cos θW∂µcA)
(

sin θW
δΓ

δZµ

+ cos θW
δΓ

δAµ

)

(3.24)

+
δΓ

δρ
µ
3

(

cos θW
δΓ

δZµ

− sin θW
δΓ

δAµ

)

+
δΓ

δσ3

(

cos θW
δΓ

δcZ
− sin θG

δΓ

δcA

) 1

cos(θW − θG)

+
(

cos(θW − θG)BZ − sin(θW − θG)BA

) δΓ

δc̄Z
+BA

δΓ

δc̄A

+
δΓ

δρ
µ
+

δΓ

δWµ,−
+

δΓ

δρ
µ
−

δΓ

δWµ,+
+

δΓ

δσ+

δΓ

δc−
+

δΓ

δσ−

δΓ

δc+
+B+

δΓ

δc̄+
+B−

δΓ

δc̄−

+
NF
∑

i=1

(

∑

f

δΓ

δψL
f,i

δΓ

δfR
i

+
∑

δ=l,q

δΓ

δΨR
δ,i

δΓ

δFL
δ,i

+ h.c.
)

+
( δΓ

δY †
δΓ

δΦ
+ q

δΓ

SδΦ̂
+ h.c.

)

)
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and the ST identity is fulfilled in the tree approximation for arbitrary ghost angle θG:

S(Γcl) = 0 (3.25)

Establishing the ST identity in higher orders, θW and θG get independent higher-order

corrections in the on-shell scheme. Their correct treatment is a necessary prerequisite for

obtaining infrared convergent higher-order corrections for off-shell Green functions [13].

The ghost angle enters also the Ward identities of rigid SU(2)-transformations (3.8),(3.9)

via the redefinitions (3.20). It is worth to note that the algebra (3.6) remains unchanged

by such field redefinitions.

The usual formulation of the gauge-fixing sector without the Ba fields is achieved if one

eliminates the Ba fields via their equations of motion from the gauge-fixing action (2.36)

and inserts the result into the gauge fixing as well as in the ST identity (3.24). The above

discussion concerning the ghost angle is independent from the formulation of the gauge

fixing with or without Ba fields.

4. The Callan-Symanzik equation

The Callan-Symanzik equation describes the response of the Green functions to the scaling

of all momenta by an infinitesimal factor. The dilatational operator, which is just the

scaling operator, acts on the 1PI Green functions in the same way as the differentiation

with respect to all the mass parameters of the theory:

WDΓ = −m∂mΓ with (4.1)

m∂m ≡MW∂MW
+MZ∂MZ

+mH∂mH
+

NF
∑

i=1

∑

f

mfi∂mfi
+ κ∂κ .

Here κ is a normalization point which is introduced in order to fix the on-shell infrared

divergent residua of charged particles off-shell without introducing a photon mass term.

In the SM dilatations are already broken in the tree approximation by the mass terms of

the fields and the 3-dimensional interactions. Due to the spontaneous symmetry breaking

all the masses of the physical fields are generated by the shift of the Higgs field. According

to the construction of the gauge-fixing sector using rigid symmetry (2.36), the ghost masses

are generated by the shift of the external Higgs field. In the tree approximation one gets

therefore the expression

m∂mΓcl =
∫

d4x v
(δΓcl

δH
+ ζ

δΓcl

δĤ

)

+
m2

H

2
∆inv ≡

∫

d4x v
( δ

δH
+ ζ

δ

δĤ
+αinv

δ

δϕ̂o

)

Γcl. (4.2)
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Here ∆inv is the 2-dimensional BRS- and rigid-invariant scalar polynomial

∆inv ≡
∫

d4x (2φ+φ− + χ2 +H2 + 2vH) =
∫

d4x (Φ†Φ + v†Φ + Φ†v) , (4.3)

which we couple to an external invariant scalar ϕ̂o. For proceeding to higher orders it

is important to note that the differential operators m∂m as well as δ
δH

and δ

δĤ
are BRS-

symmetric operators and have a certain covariance with respect to rigid symmetry:

[

Wα, m∂m
]

=
[

Wα,

∫

d4x v
( δ

δH
+ ζ

δ

δĤ

)]

, α = +,−, 3, 4. (4.4)

The soft breaking is completely characterized by these symmetries and takes therefore

the same form to all orders of perturbation theory, if one takes higher-order corrections

of the shift and the coefficient αinv into account:

v =
2

e
MZ cos θW sin θW +O(h̄), αinv =

m2
H

2v
+O(h̄). (4.5)

In higher orders the dilatations are not only broken by the soft mass terms but also by

hard terms, the dilatational anomalies. The importance of the Callan-Symanzik equation

is founded in the fact that these anomalies can be absorbed into differential operators

with respect to fields and with respect to the independent parameters of the model.

Their coefficients are the anomalous dimensions and the β-functions. In this way the CS

equation determines the parameters that are independently renormalized in a scheme-

independent way.

The dilatational anomalies at one-loop order are normalization-point-independent, but

the differential operators introduced depend on the parameterization and the specific

form of the breaking mechanism. They are essentially characterized by the symmetries

of the tree approximation, i.e. the ST identity (3.24) and the Ward identities of rigid

symmetry (3.8). To be more specific we want to outline the one-loop construction of the

CS equation of the SM according to these symmetries.

Applying the quantum action principle [21, 22] one derives from (4.2) that the dilatations

in 1-loop order are broken by

(

m∂m −
∫

d4x v
( δ

δH
+ ζ

δ

δĤ
− αinv

δ

δϕ̂o

)

)

Γ = ∆m +O(h̄2) , (4.6)

where ∆m is an integrated field polynomial in quantum and external fields compatible

with ultraviolet dimension 4 and infrared dimension 2, neutral with respect to electric

and ghost charge and CP-even. According to the fact that the l.h.s is BRS-symmetric

and symmetric with respect to rigid symmetry (4.4), one gets

sΓcl
∆m = 0, Wα∆m = 0. (4.7)
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Thereby sΓcl
is the linearized version of the ST operator and acts on the quantum fields

in the same way as the classical BRS transformations. We have therefore the task to find

all independent field polynomials satisfying the above constraints and to express them in

form of symmetric differential operators.

The 2- and 3-dimensional polynomials are already exhausted in the l.h.s, if one takes

higher-order corrections of the shift and the parameter αinv into account. The 4-dimen-

sional polynomials are classified according to BRS variations, which are related to the

anomalous dimensions, and non-variations, which are related to the β-functions. First we

give a list of all symmetric field operators in the vector-ghost sector:

NV =
∫

d4x
(

Va
δ

δVa
− ρα

δ

δρα

+
1

cos(θW − θG)
(sin θGcZ + cos θW cA)(sin θW

δ

δcZ
+ cos θG

δ

δcA
)
)

N̂V =
∫

d4x
(

(sin θWZ + cos θWA)(sin θW
δ

δZ
+ cos θW

δ

δA
)

+
1

cos(θW − θG)
(sin θGcZ + cos θW cA)(sin θW

δ

δcZ
+ cos θG

δ

δcA
)
)

NB =
∫

d4x
(

Ba

δ

δBa

+ c̄a
δ

δc̄a

)

(4.8)

N̂B =
∫

d4x
(

(sin θWBZ + cos θWBA)(sin θW
δ

δBZ

+ cos θW
δ

δBA

)

+
1

cos(θW − θG)
(sin θW c̄Z + cos θGc̄A)(sin θG

δ

δc̄Z
+ cos θW

δ

δc̄A
)
)

Nc =
∫

d4x
(

c+
δ

δc+
+ c−

δ

δc−

+
1

cos(θW − θG)
(cos θGcZ − sin θW cA)(cos θW

δ

δcZ
− sin θG

δ

δcA
)

−σ+
δ

δσ+
− σ−

δ

δσ−
− σ3

δ

δσ3

)

.

Some remarks are in order concerning the special form of these operators: According to

rigid symmetry the counting operators of the charged fields are related to the ones of the

neutral sector restricting the number of independent operators to two for the vectors and

Ba fields and one for the ghosts. Invariance under the ST identity relates the abelian

field differential operators of ghosts and vectors. Furthermore it is seen that the abelian

operator is not a BRS-variation and is related to the β-functions by the local abelian Ward

identity (3.12), as it is usual in abelian gauge theories. The respective relation is given in

(4.20). For completeness we have given the field operators for arbitrary ghost mass ratio

(3.19); if one has introduced normalization conditions which set the ghost angle equal to

the weak mixing angle, θG can be immediately replaced by θW in the above expressions.
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The symmetric field operators of fermions can be split into the ones of the left-handed

and right-handed fields. Due to the fact that we do not consider fermion mixing, we do

not have to consider mixed operators between different fermion families:

N L
Fδ,i

=
∫

d4x
(

FL
δ,i

δ

δFL
δ,i

−ΨR
δ,i

δ

δΨR
δ,i

+
δ

δFL
δ,i

FL
δ,i −

δ

δΨR
δ,i

ΨR
δ,i

)

, δ = l, q (4.9)

NR
fi

=
∫

d4x
(

fR
i

δ

δfR
i

− ψL
f,i

δ

δψL
f,i

+
δ

δfR
i

fR
i −

δ

δψL
f,i

ψL
f,i

)

, fi = ei, di, ui.

The field operators of scalars comprise also the ones of the external scalars. They are

symmetric with respect to the rigid operators, if one includes the shift of the Higgs field

and the external Higgs field:

NS + v

∫

d4x
δ

δH
=

∫

d4x
(

(Φ + v)†
δ

δΦ†
+

δ

δΦ
(Φ + v)− Y†

δ

δY†
− δ

δY
Y
)

(4.10)

NŜ + ζv

∫

d4x
δ

δĤ
=

∫

d4x
(

(Φ̂ + ζv)†
δ

δΦ̂†
+

δ

δΦ̂
(Φ̂ + ζv) + q†

δ

δq†
+

δ

δq
q
)

.

Among the symmetric insertions there is one which mixes the external scalar with the

quantum scalar. Defining the following mixed operator, which is symmetric with respect

to rigid transformations,

ÑS + ζv

∫

d4x
δ

δH
=

∫

d4x
(

(Φ̂ + ζv)†
δ

δΦ†
+

δ

δΦ
(Φ̂ + ζv)

)

, (4.11)

the corresponding BRS-symmetric insertion is given by:

(

ÑS + ζv

∫

d4x
δ

δH

)

Γcl +
∫

d4x (q†Y − Y †q). (4.12)

The remaining symmetric insertions have to be generated by differentiating the classical

action with respect to the free parameters; these are the coupling e, which is the pertur-

bative expansion parameter, and furthermore the mass ratios, MW

MZ
, for the weak interac-

tions, mH

MZ
for the scalar interaction, and

mfi

MZ
for the Yukawa interactions. At this stage it

is unavoidable to treat θG, i.e. the ghost mass ratio (3.19), as an independent parameter,

because its differentiation corresponds to an independent insertion in the gauge-fixing and

ghost sector. Similarly it turns out that also the differentiations with respect to the two

gauge parameters ξ and ξ̂ have to be included (cf. (2.36)).

Differentiations with respect to parameters which do not appear in the ST identity and

the rigid Ward operators of the tree approximation directly correspond to symmetric

insertions:

mH∂mH
, mfi∂mfi

, ξ∂ξ, ξ̂∂ξ̂ . (4.13)
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The differentiation with respect to the coupling e is immediately symmetrized if one

includes the shift; the operator

e∂e − e∂ev
∫

d4x
( δ

δH
+ ζ

δ

δĤ

)

= e∂e +
2

e
MZ sin θW cos θW

∫

d4x
( δ

δH
+ ζ

δ

δĤ

)

(4.14)

is BRS- and rigid symmetric. However, the differentiations with respect to the weak

mixing angle and to the ghost angle

∂θW = −MZ sin θW∂MW
, ∂θG (4.15)

have to be supplemented by field differentiations in order to be BRS-symmetric:

∂̃θW ≡ ∂θW +
∫

d4x
(

A
δ

δZ
− Z δ

δA
+BA

δ

δBZ

− BZ

δ

δBA

)

+
1

cos(θW − θG)
∫

d4x cA
( δ

δcZ
+ sin(θW − θG)

δ

δcA

)

− 1

cos(θW − θG)
∫

d4x
(

c̄Z + sin(θW − θG)c̄A
) δ

δc̄A
(4.16)

∂̃θG ≡ ∂θG −
1

cos(θW − θG)
∫

d4x cZ
( δ

δcA
+ sin(θW − θG)

δ

δcZ

)

+
1

cos(θW − θG)
∫

d4x
(

sin(θW − θG)c̄Z + c̄A
) δ

δc̄Z
. (4.17)

These two operators are immediately symmetric with respect to the rigid transformations

up to soft insertions corresponding to the shift. The shift depends in the tree approxi-

mation on the weak mixing angle and one has to enlarge ∂̃θW by the differentiation with

respect to the Higgs field and the external Higgs field. The operator

∂̃θW − ∂θW v
∫

d4x
( δ

δH
+ ζ

δ

δĤ

)

= ∂̃θW −
2

e
MZ cos 2θW

∫

d4x
( δ

δH
+ ζ

δ

δĤ

)

(4.18)

is then also rigid symmetric.

Acting with the symmetric operators (4.8), (4.9), (4.10), (4.13), (4.14), (4.18) and (4.17)

on the classical action one produces together with the polynomial (4.12) a complete basis

for the breaking of the symmetric dilatational operator (4.6) in 1-loop order. Therefore it

is possible to give the breaking in the form of a CS equation, i.e. as a linear combination

of differential operators. Writing all the soft breakings produced by symmetrization with

respect to the shift on the r.h.s we get in 1-loop order the CS equation of the SM:

(

m∂m + βee∂e − βMW
∂̃θW + βmH

mH∂mH
+

NF
∑

i=1

∑

f

βmfi
mfi∂mfi

− βθG ∂̃θG (4.19)

− γVNV − γBNB − γξ∂ξ − γcNc − γ̂V N̂V − γ̂BN̂B − γξ̂∂ξ̂ − γSNS − γŜNŜ − γ̃SÑS
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−
NF
∑

i=1

(γFl,i
N L

Fl,i
+ γFq,i

N L
Fq,i

+ γeiNR
ei
+ γui

NR
ui
+ γdiNR

di
)
)

Γ

=
∫

d4x
(

(1 + βee∂e − βMW
∂θW )v

( δΓ

δH
+ ζ

δΓ

δĤ

)

+ v(γS + γ̃S)
δΓ

δH
+ ζvγŜ

δΓ

δĤ
+ αinv

δΓ

δϕ̂o

)

+
∫

d4x γ̃S(q
†Y − Y †q).

Further information on the coefficient functions can be achieved by using the local Ward

identity (3.12), which expresses gauge invariance of the classical action under the abelian

transformation (3.13). Calculating the commutator of the CS operator and the local Ward

operator one gets:

βe =
sin θW
cos θW

βMW
+ γV + γ̂V . (4.20)

Since we have used a linear gauge fixing in the propagating fields all the Green functions

which include B-fields in the external legs do not get logarithmic higher-order corrections.

The action ofm∂m on these Green functions is therefore trivial according to their canonical

dimensions. Therefrom we get:

γB = −γV γ̂B = −γ̂V
γξ = 2ξγV γξ̂ = 2(γV + γ̂V )ξ̂ + 2ξγ̂V

βθG = sin θG cos θGγV γŜ = βe +
cos θW
sin θW

βMW
+ γV − γS .

(4.21)

From the explicit 1-loop expressions it is seen that the choice θG = θW and ξ̂ = 0 (2.37) is

not stable under renormalization: Since the coefficients of the respective differential oper-

ators βθG and γξ̂ are functions of the anomalous dimensions of vectors and for this reason

non-vanishing (see (5.6)), the differentiation with respect to the independent parameters

ξ̂ and θG has to be included in order to be able to formulate the CS equation.

According to the derivation, the CS equation (4.19) and the relations (4.20) and (4.21)

are valid in this form only in 1-loop order. Proceeding to higher orders of perturbation

theory goes along the same lines as in the 1-loop order, especially the number of inde-

pendent operators remains the same to all orders of perturbation theory. Their explicit

form is modified order by order in such a way that they become symmetric with respect

to the ST identity and rigid Ward identities valid for higher-order Green functions. Mod-

ifications essentially arise from establishing the normalization conditions for separating

massless/massive fields at p2 = 0 in addition to the usual on-shell conditions for the

masses. It is interesting to note that the importance of these normalization conditions for

the off-shell existence of Green functions can be already seen from the CS equation: Inser-

tions with infrared degree 2 as AµAµ on the r.h.s. are not forbidden from infrared power

counting, but those terms are mass terms for massless particles and endanger infrared
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existence off-shell and physical interpretation. In particular insertions of such field poly-

nomials in higher-order Green functions are non-integrable and have to be proven to be

absent. (A similar analysis has been carried out in a simple non-gauge model with spon-

taneously broken symmetry in Ref. [23].) The test with respect to the respective 2-point

functions at p2 = 0 shows that these terms vanish if the mass matrix of massless/massive

fields is diagonal at p2 = 0.

5. The 1-loop coefficient functions

Due to the spontaneous symmetry breaking mechanism the CS equation has an uncon-

ventional form compared to the symmetric SU(2)×U(1) gauge theory: It is an inhomo-

geneous equation with a soft mass insertion on the r.h.s., because dilatations are broken

by the mass terms. The hard anomalies have to be absorbed in β-functions with respect

to mass differentiations and cannot be expanded in power series of couplings according

to the loop expansion. Moreover, since the W - and Z-bosons have different masses the

anomalous dimensions are not purely leg counting operators in the neutral sector, but

include field operators, which mix the neutral vectors and ghosts. Such field operators

are not present in the renormalization group equation of the symmetric theory. The

perturbative expansion parameter is the electromagnetic coupling, which gives rise to a

β-function βe.

We want to demonstrate how the β-functions and anomalous dimensions are determined

from the CS equation by testing with respect to appropriate vertices. For this purpose

we give that part of the CS equation which is relevant for the test with respect to vectors,

quantum scalars and fermions in its explicit form, setting external fields and ghosts to

zero:
{

m∂m + βee∂e + βmH
mH∂mH

+
∑

fi

βmfi
mfi∂mfi

− βMW

(

∂θW −
∫

d4x(Zµ δ

δAµ
−Aµ δ

δZµ
)
)

−γV
(

∫

d4xV µ
a

δ

δV
µ
a

+ 2ξ∂ξ + 2ξ∂ξ̂ + sin θG cos θG∂θG
)

− γS
∫

d4x(Φ
δ

δΦ
+

δ

δΦ†
Φ†) (5.1)

−γ̂V
(

∫

d4x(sin θWZ
µ + cos θWA

µ)(sin θW
δ

δZµ
+ cos θW

δ

δAµ
) + 2(ξ̂ + ξ)∂ξ̂

)

−
∑

Fδ,i

γFδ,i

∫

d4x
(

FL
δ,i

δ

δFL
δ,i

+
δ

δFL
δ,i

FL
δ,i

)

−
∑

fi

γfi

∫

d4x
(

fR
i

δ

δfR
i

+
δ

δfR
i

fR
i

)

}

Γ

∣

∣

∣

∣ ext.f.=0

ca,c̄a=0

= [∆s]
3
3 · Γ.

One is able to determine the β-functions from vertex functions of UV-dimension 4, using

thereby that the soft insertion will vanish for asymptotic Euclidean momenta much larger
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than the mass of the heaviest particle involved. Similarly the anomalous dimensions are

determined from the residua at asymptotic momentum. We evaluate the coefficient func-

tions in the most general linear gauge fixing invariant with respect to rigid symmetry

transformations as given in (2.36). For completeness, in the appendix we list the prop-

agators of vector and scalar fields in the general linear Rξ gauge (2.22). From there the

propagators compatible with rigid symmetry are obtained by assigning to the gauge-fixing

parameters the values (2.32) – (2.35). In the computation of the CS coefficient functions

only those parts of propagators of vector and scalar fields contribute which behave like 1
p2

in the expansion for asymptotically large p2.

First we determine the β-functions of the electromagnetic coupling, βe, and of the W -

boson mass, βMW
, and the anomalous dimensions of the vectors γV and γ̂V . The anomalous

dimensions of the vectors are calculated from the transverse parts of the 2-point functions:

Γµν
VaVb

(p) ≡ −
(

ηµν − pµpµ

p2

)

ΓT
ab(p

2)− pµpµ

p2
ΓL
ab(p

2). (5.2)

In the tree approximation we have

∂p2Γ
T (0)
ab = Ĩab. (5.3)

We find therefore in the asymptotic region (all functions involved are purely of 1-loop

order)

m∂m∂p2Γ
T (1)
+−

p2→−∞
= 2γ

(1)
V (5.4)

m∂m∂p2Γ
T (1)
ZZ

p2→−∞
= 2(γ

(1)
V + sin2 θW γ̂

(1)
V )

m∂m∂p2Γ
T (1)
AA

p2→−∞
= 2(γ

(1)
V + cos2 θW γ̂

(1)
V )

m∂m∂p2Γ
T (1)
ZA

p2→−∞
= 2 sin θW cos θW γ̂

(1)
V ,

which determines the high-energy logarithms of the one-loop self-energies, e.g.

(

∂p2Γ
T (1)
+−

)

lead. log
= −γ(1)V ln

|p2|
m2

. (5.5)

Accordingly, the anomalous dimensions γV and γ̂V are obtained by calculating the high-

energy logarithms of two of the self-energies appearing in (5.4), while the leading loga-

rithms of the other two self-energies are then already fixed. In the general linear gauge

specified in (2.36) we get the following result:

γ
(1)
V =

e2

4π2 sin2 θW

(6ξ − 25

24
+

1

3
NF

)

(5.6)

γ̂
(1)
V =

e2

4π2

(

− 6ξ − 25

24 sin2 θW
+

1

24 cos2 θW
+
−3 + 8 sin2 θW

9 sin2 θW cos2 θW
NF

)

. (5.7)
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The fermion contributions to the coefficients of the high-energy logarithms are the same

as those given in Ref. [18] in the framework of the background-field method, while the

contributions of the vector bosons are gauge-parameter-dependent. The gauge-parameter

dependence of the anomalous dimensions is the same as in usual Rξ gauges, i.e. they are

independent of the abelian gauge parameter ξ̂, the ghost mass parameter ζ and of the

ghost angle (3.19). This is seen most easily by noting that the diagrams which contribute

to the photon self-energy and to the Z-photon self-energy have only charged fields in

internal lines and are not affected by non-diagonal propagators in the neutral sector nor

by transformations of neutral ghosts (3.20). As before NF denotes the number of fermion

generations.

The β-function βMW
can be determined from the neutrino–neutrino–photon vertex at high

energies. Testing the CS equation (5.1) with respect to this vertex we get the following

result:

m∂mΓ
(1)
ν̄νAµ

p2→−∞
= (β

(1)
MW

+ sin θW cos θW γ̂
(1)
V )Γ

(0)
ν̄νZµ

. (5.8)

Since the photon does not couple to neutrinos in the tree approximation the contributions

on the r.h.s. completely arise from the mixed field operators A δ
δZ

present in the symmetric

operators of β
(1)
θW

and γ̂
(1)
V . In the Feynman gauge (ξ = 1, ξ̂ = 0) one has

β
(1)
MW

+ sin θW cos θW γ̂
(1)
V = − e2

4π2

cos θW
sin θW

, (5.9)

which gives the result

β
(1)
MW

= − e2

4 · 24π2 sin θW cos θW

(

(43− 8NF )− (42− 64
3
NF ) sin

2 θW
)

. (5.10)

Applying the algebraic control of gauge-parameter dependence [24] to spontaneously bro-

ken theories [25] it can be derived that βMW
is gauge-parameter-independent.

The abelian relation (4.20) allows to determine β(1)
e without calculating further diagrams

from the results obtained for γ
(1)
V , γ̂

(1)
V and β

(1)
MW

:

β(1)
e = − e2

24 · 4π2

(

42− 64
3
NF

)

. (5.11)

Alternatively β(1)
e can of course also directly be obtained from the W+W−A vertex at

asymptotic momenta

m∂mΓ
(1)

W
µ
+
W ν

−
Aρ −→ (3γ

(1)
V − β(1)

e −
cos θW
sin θW

β
(1)
MW

)Γ
(0)

W
µ
+
W ν

−
Aρ (5.12)

or from the ēeA vertex (cf. (5.18)). We have explicitly checked that this indeed results

in β(1)
e as given in (5.11). As can be seen in (5.11), the β-function of the electromagnetic
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coupling is QED-like in the sense that it only depends on the electromagnetic coupling

e2 but not on sin2 θW . However, due to non-abelian interactions of the photon with the

W -bosons it receives contributions with negative sign. This leads to the fact that β(1)
e

in the SM has a negative sign if one includes only one fermion family. In section 6.2 we

compare it to the QED β-function.

We now turn to the anomalous dimensions of the fermions, which are needed e.g. for the

independent determination of β(1)
e from the electron–electron–photon vertex. Splitting the

fermion self-energy into left- and right-handed parts and into the scalar mass contribution,

Γf̄ f = p/−mf + p/
1

2
(1− γ5)ΣL

f + p/
1

2
(1 + γ5)ΣR

f +mΣm
f , (5.13)

one is able to calculate γFδ,i
from left-handed and γfi from right-handed contributions:

m∂mΣ
L(1)
ei

p2→−∞
= 2γ

(1)
Fl,i

, m∂mΣ
L(1)
di

p2→−∞
= 2γ

(1)
Fq,i

, (5.14)

m∂mΣ
R(1)
fi

p2→−∞
= 2γ

(1)
fi

.

Calculating the high-energy logarithms of the fermion self-energy contributions one gets

the following result:

γ
(1)
Fl,i

=
e2

16π2

1

sin2 2θW

[

(

3− 2 sin2 θW
)

ξ + sin2 θW ξ̂ +
m2

ei

M2
Z

]

(5.15)

γ
(1)
Fq,i

=
e2

16π2

1

sin2 2θW

[

(

3− 26

9
sin2 θW

)

ξ +
1

9
sin2 θW ξ̂ +

m2
ui
+m2

di

M2
Z

]

(5.16)

γ
(1)
fi

=
e2

16π2

2

sin2 2θW

[

2Q2
f sin

2 θW
(

ξ + ξ̂
)

+
m2

fi

M2
Z

]

. (5.17)

For the asymptotic behavior of the electron–electron–photon vertex we obtain:

m∂mΓ
(1)
ēeAµ

p2→−∞
= e

(

γ
(1)
V + γ̂

(1)
V − β(1)

e + 2γ(1)e + β
(1)
MW

sin θW
cos θW

)

γµ (5.18)

+e
(

2γ
(1)
Fl
− 2γ(1)e −

1

sin 2θW
(β

(1)
MW

+ sin θW cos θW γ̂
(1)
V )

)

γµ
1

2
(1− γ5).

In this formula we have already inserted the tree vertices

Γ
(0)
ēeAµ

= eγµ (5.19)

Γ
(0)
ēeZµ

= −e 1

sin 2θW
γµ

1

2
(1− γ5) + e

sin θW
cos θW

γµ.

As mentioned above, using (5.18) and the results of (5.15) one can check the abelian

relation we have used to determine βe. It is seen in (5.18) that the parity non-violating

contribution satisfies an analogous relation as in QED: The high-energy logarithms of the
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electron–electron–photon vertex are completely related to the anomalous dimensions of

(right-handed) electrons. Due to the non-abelian contributions there are however parity-

violating high-energy logarithms for the off-shell Green functions.

For calculating the remaining β-functions of fermion masses and the Higgs mass one first

has to determine the anomalous dimensions of the scalars. We obtain

γ
(1)
S =

e2

8π2

1

sin2 2θW

[

∑

i

m2
ei
+ 3m2

di
+ 3m2

ui

M2
Z

+
1

2

(

3− 2 sin2 θW
)

(ξ − 3) +
1

2
sin2 θW ξ̂

]

.

(5.20)

The β functions β(1)
mfi

and β(1)
mH

are determined from the high-energy logarithms according

to the following formulas:

m∂mΓ
(1)

f̄ifiH

p2→−∞
=

(

−β(1)
e − 2

cos 2θW
sin 2θW

β
(1)
MW
− β(1)

mfi
+ γ

(1)
S + γ

(1)
Fδ,i

+ γ
(1)
fi

)

Γ
(0)

f̄ifiH

m∂mΓ
(1)
HHHH

p2→−∞
= 2

(

−β(1)
e − 2

cos 2θW
sin 2θW

β
(1)
MW
− β(1)

mH
+ 2γ

(1)
S

)

Γ
(0)
HHHH . (5.21)

Therefrom we derive the result:

β(1)
mei

=
e2

24π2 sin2 2θW

{9

2

m2
ei

M2
Z

+ 3
∑

fj

m2
ej
+ 3m2

uj
+ 3m2

dj

M2
Z

(5.22)

+(
59

2
− 8NF )− (95− 16NF ) sin

2 θW + (42− 64
NF

3
) sin4 θW

}

β(1)
mui

=
e2

24π2 sin2 2θW

{9

2

m2
ui
−m2

di

M2
Z

+ 3
∑

fj

m2
ej
+ 3m2

uj
+ 3m2

dj

M2
Z

(5.23)

+(
59

2
− 8NF )− (81− 16NF ) sin

2 θW + (42− 64
NF

3
) sin4 θW

}

β(1)
mdi

=
e2

24π2 sin2 2θW

{9

2

m2
di
−m2

ui

M2
Z

+ 3
∑

fj

m2
ej
+ 3m2

uj
+ 3m2

dj

M2
Z

(5.24)

+(
59

2
− 8NF )− (75− 16NF ) sin

2 θW + (42− 64
NF

3
) sin4 θW

}

β(1)
mH

=
e2

24π2 sin2 2θW

{

9
m2

H

M2
Z

+ 6
∑

fj

m2
ej
+ 3m2

uj
+ 3m2

dj

M2
Z

(5.25)

−12
∑

fj

m4
ej
+ 3m4

dj
+ 3m4

uj

M2
Zm

2
H

+(16− 8NF )− (68− 16NF ) sin
2 θW + (42− 64

NF

3
) sin4 θW

+
M2

Z

m2
H

(

27− 36 sin2 θW + 18 sin4 θW
)}

.

From considerations of gauge-parameter dependence it is seen that these β-functions are

gauge-parameter-independent [24, 25]. As mentioned above, the same holds for the β-

functions of the electromagnetic coupling and the vector-boson mass ratio.
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Finally, by testing with respect to the ghost self-energy one finds the following result for

the anomalous dimension of the ghosts, γc:

γ(1)c =
e2

4π2 sin2 θW

(

ξ

2
− 43

24
+

1

3
NF

)

. (5.26)

In the Landau gauge (ξ = 0) the anomalous dimension of the Faddeev-Popov ghosts is

equal to the β-function of the non-abelian gauge coupling g2 in (6.5):

γ(1)c

∣

∣

∣

ξ=0
= β(1)

e +
cos θW
sin θW

β
(1)
MW

. (5.27)

This coincidence is not accidental, but is derived from the existence of an integrated

antighost equation in the Landau gauge.

Having determined the 1-loop β-functions and anomalous dimensions, it is possible to

determine the high-energy logarithms of any 1-loop vertex function of the Standard Model

in an analogous way as shown, for instance, in (5.12) for the W-boson–photon vertex

and in (5.18) for the electron–electron–photon vertex. Since we have also calculated

the anomalous dimensions of ghosts (5.26), this is also possible for the external field

vertices appearing in (3.1), which determine the higher-order corrections to the BRS

transformations.

In their applications the importance of the CS and RG equation is founded in the fact

that from the knowledge of the equations at 1-loop order one can draw conclusions for the

asymptotic behavior of the vertex functions in higher orders. In particular, if the 1-loop

coefficient functions of the CS equation are given in a general gauge as has been worked

out above, one is able to determine the quadratic (leading) logarithms of 2-loop order for

any vertex function of the Standard Model. For illustration we evaluate the CS equation

for the photon self-energy in 2-loop order at an asymptotically large momentum:

m∂m∂p2Γ
T (2)
AA

p2→−∞
=

(

2γ
(1)
V + 2γ̂

(1)
V cos2 θW − β(1)

e e∂e + β
(1)
MW

∂θW + 2γ
(1)
V ξ∂ξ

)

∂p2Γ
T (1)
AA

+(2γ̂
(1)
V cos θW sin θW + 2β

(1)
MW

)∂p2Γ
T (1)
ZA + Const.(2). (5.28)

In Const.(2) all terms are included which approach constants if we take the limit of asymp-

totically large Euclidean momentum p2. They give rise to linear logarithmic contributions.

Contributions to these terms arise from three different sources:

1. Applying the CS equation (4.19) with 2-loop coefficient functions to the tree ver-

tices in analogy to the 1-loop case (5.4), one gets constant contributions with 2-loop

coefficient functions which have to be determined by testing with respect to appro-

priate vertex functions. In the example above the 2-loop coefficient functions read

2(γ(2) + γ̂(2) cos2 θW ).
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2. Since the ST operator and the Ward operators of rigid symmetry are renormalized

in the on-shell schemes, the symmetric operators which build up the CS equation

(see section 4) get higher-order corrections. In 2-loop order these corrections depend

on the 1-loop corrections to the ST and Ward operators and on the CS coefficient

functions of 1-loop order. These contributions depend strongly on the normalization

conditions, but can be determined by a 1-loop calculation.

3. In 2-loop order for asymptotic momenta not only logarithms arise from the 1-loop

vertex functions, but also constants, i.e. in the example above

Γ
T (1)
ZA

p2→−∞
= − sin θW cos θW γ̂

(1)
V ln

|p2|
m2

+ C
(1)
ZA . (5.29)

The finite constant C
(1)
ZA is determined from the normalization conditions for diago-

nalizing the mass matrix of photon and Z-boson on-shell and depends on the mass

parameters of the Standard Model. In general such finite constants as shown in the

above example are specific for on-shell normalization conditions of spontaneously

broken theories.

All these constant terms contribute to the single logarithms of the photon self-energy in 2-

loop order and, of course, the computation of all single logarithms of 2-loop order demands

a 2-loop calculation. However, in the list above we have given also such constant contri-

butions which can be determined from a 1-loop calculation. They all depend strongly on

the normalization conditions. In Ref. [6] such 1-loop induced logarithmic contributions

with large mass-dependent logarithmic coefficients have been found in the spontaneously

broken Yukawa-Higgs model. They arise from normalization-dependent 1-loop contribu-

tions as discussed above and have to be separated from the mass-parameter independent

logarithmic contributions to the 2-loop order. In Ref. [6] this has been achieved by using

the consistency equation between the CS equation and the RG equation. For further

applications it is certainly very interesting to completely single out these large 1-loop in-

duced contributions by a self-consistent construction of higher-order solutions to the CS

equation or by using the RG equation in a similar way as in Ref. [6].

Focusing now on the quadratic logarithms of 2-loop order, we are able to evaluate (5.28)

by inserting the asymptotic 1-loop results (5.4)

(

∂p2Γ
T (1)
AA

)

lead. log
= −(γ(1)V + cos2 θW γ̂

(1)
V ) ln

|p2|
m2

(5.30)

(

∂p2Γ
T (1)
ZA

)

lead. log
= − sin θW cos θW γ̂

(1)
V ln

|p2|
m2

.

Further simplification can be achieved by eliminating β(1)
e using the abelian relation (4.20)

and by noting that the coefficient of the leading logarithm of the photon self-energy
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depends only on the electromagnetic coupling in 1-loop order. Then we end up with

∂p2Γ
T (2)
AA

p2→−∞
= −1

2
(γ̂

(1)
V sin θW cos θW + β

(1)
MW

)
sin θW
cos θW

γ
(1)
V ln2 |p2|

m2
(5.31)

+
1

2
γ
(1)
V ξ∂ξ(γ

(1)
V + cos2 θW γ̂

(1)
V ) ln2 |p2|

m2
+O(ln |p

2|
m2

).

Since the anomalous dimensions of vectors are not gauge-parameter-independent, the

derivative with respect to the gauge parameter contributes to the 2-loop order leading

logarithms and underlines the significance of having calculated 1-loop coefficient functions

in a general gauge. Inserting the explicit expressions of 1-loop order, (5.6) and (5.10), we

finally get

∂p2Γ
T (2)
AA

p2→−∞
=

e2

4π2
γ
(1)
V ln2 |p2|

m2

1

2

(

ξ

2
+

3

4

)

+O(ln |p
2|

m2
) (5.32)

=
e4

16π4
ln2 |p2|

m2

1

2 sin2 θW

(

ξ

2
+

3

4

)(

6ξ − 25

24
+

1

3
NF

)

+O(ln |p
2|

m2
).

Here m denotes the largest mass parameter of the Standard Model. As a result, for

asymptotic momenta much larger than all masses of the theory the photon self-energy

includes quadratic logarithms in 2-loop order. This is in contrast to pure QED and is

caused by the non-abelian interaction of the photon with the W-bosons and the Faddeev-

Popov ghosts.

Further applications as well as a detailed consideration of the above-mentioned 1-loop

induced large logarithms in 2-loop order will be given elsewhere.

6. Comparison with the massless symmetric theory and QED

6.1. Symmetric theory

From pure power-counting arguments it has been reasoned that the divergence structure

of the symmetric theory is related to the one of the corresponding spontaneously broken

theory [26]. The divergence structure corresponds to the appearance of high-energy loga-

rithms order by order in perturbation theory. In 1-loop order the high-energy logarithms

of the spontaneously broken theory are the same as the ones of the symmetric theory,

since they arise from diagrams with only 4-dimensional vertices which are not affected

by spontaneous breaking of the theory. The low-energy structure of the spontaneously
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broken theory is summarized in the r.h.s. of the CS equation, which vanishes if one goes to

non-exceptional momenta much larger than the masses of the theory. As we have shown in

the previous section, the β-functions of the CS equation are related to the asymptotic log-

arithms of the model. For this reason there exist in 1-loop order simple relations between

the β-functions of the electroweak Standard Model and the corresponding SU(2)× U(1)
massless symmetric theory. These relations reflect the tree relations between the pa-

rameters of the symmetric and the spontaneously broken theory. Since these relations

get higher-order corrections it is expected that the higher-order β-functions get differ-

ent higher-order contributions in the spontaneously broken theory than in the symmetric

one. Indeed the constants which appear as a consequence of on-shell conditions in the

asymptotic limit (see (5.29)) enter these higher-order corrections and affect – as already

pointed out above – the coefficients of 2-loop single logarithms. A detailed computation

of mass effects due to spontaneous breaking of the theory and due to on-shell conditions

has been carried out in Ref. [6]. In order to specify these contributions one has to find

self-consistent solutions of the CS equation in higher orders in the on-shell schemes. In

the present context we restrict ourselves to the 1-loop relations between the β-functions

of the symmetric and spontaneously broken theory.

As usually the independent parameters of the massless symmetric theory are parame-

terized with the U(1)-coupling g1, the SU(2)-coupling g2, the Yukawa coupling Gfi and

the Higgs self-coupling λ. With the conventions of Ref. [7] the parameters of the spon-

taneously broken theory are related to the couplings of the symmetric theory in the tree

approximation by

g1 =
e

cos θW
+O(h̄)

g2 =
e

sin θW
+O(h̄)

Gfi =

√
2mfi

MZ sin 2θW
+O(h̄)

λ = e2
4m2

H

M2
Z sin2(2θW )

+O(h̄). (6.1)

In the massless theory one has to introduce a scale parameter, the normalization point

κ, for fixing the coupling constants. Usually there is introduced only one normalization

point κ, its variation κ∂κ expresses at the same time renormalization group invariance

and breaking of dilatations. The corresponding partial differential equation is then valid

to all orders of perturbation theory,
{

κ∂κ + βg1∂g1 + βg2∂g2 + βλ∂λ +
∑

fi

βGfi
∂Gfi

(6.2)
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−γV1
(

∫

d4xBµ δ

δBµ
− ξ1∂ξ1)− γV2

(∫

d4x
(

W µ
α

δ

δW
µ
α
− c̄α

δ

δc̄α

)

− ξ2∂ξ2
)

−
NF
∑

i=1

[

∑

δ

γLFδ,i

∫

d4x
(

FL
δ,i

δ

δFL
δ,i

+
δ

δFL
δ,i

FL
δ,i

)

−
∑

f

γRfi

∫

d4x
(

fR
i

δ

δfR
i

+
δ

δfR
i

fR
i

)]

−γS
∫

d4x
(

Φ
δ

δΦ
+

δ

δΦ†
Φ†
)

− γg
∫

d4x cα
δ

δcα

}

Γ

∣

∣

∣

∣

ext.f.=0
= 0. (6.3)

Here W µ
α , α = 1, 2, 3, are the SU(2)-gauge fields and Bµ is the abelian gauge field. The

abelian relation in the symmetric theory reads:

βg1 = γV1 . (6.4)

Comparing (6.2) with the CS equation of the Standard Model it is seen that we did not

have to introduce the external scalar doublet. In addition we have left out the abelian

ghosts, since they are free fields in the symmetric theory. Comparing the CS equa-

tion of the spontaneously broken theory to the one of the symmetric theory for different

high-energy vertex functions one gets the following 1-loop relations by inserting the tree

relations (6.1) into the β-functions of the symmetric theory

β(1)
g1

= β(1)
e −

sin θW
cos θW

β
(1)
MW

β(1)
g2

= β(1)
e +

cos θW
sin θW

β
(1)
MW

λ−1β
(1)
λ = 2

(

β(1)
e + 2

cos 2θW
sin 2θW

β
(1)
MW

+ β(1)
mH

)

β
(1)
Gfi

= β(1)
e + 2

cos 2θW
sin 2θW

β
(1)
MW

+ β(1)
mfi

. (6.5)

These relations can be verified using the explicit form of the β-functions for the sponta-

neously broken theory given above and the β-functions in the symmetric parameterization

from Ref. [7]. Similar relations occur if renormalization constants introduced for the pa-

rameters of the symmetric theory are expressed in terms of the renormalization constants

of the electric charge and the particle masses of the spontaneously broken theory (see

e.g. [10]). The simple relations (6.5) between the β-functions are not expected to hold

beyond one-loop order since scheme-dependent corrections enter in higher orders.

6.2. QED

Considering only the charged fermions and conservation of electromagnetic charge one is

able to construct usual QED as it is embedded in the classical action of the Standard

Model. Among the vector bosons it only includes the photon which is now an abelian
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gauge field by construction. Since all fermion masses are invariant under QED transfor-

mations, one does not have to introduce a Higgs field into the theory. Charged scalars

are not added because they are unphysical particles in the Standard Model and even

more their interaction with fermions is only well-defined if we include the non-abelian

symmetries of weak interactions.

The QED-action takes then the usual form

ΓQED
cl =

∫

d4x
(

−1
4
F µνFµν +

∑

fi

(if̄iγ
µDµfi −mfi f̄ifi)−

1

2ξ
(∂µA

µ)2
)

, (6.6)

and

Dµfi = ∂µfi − ieQfAµfi. (6.7)

The action and the charges are defined by the QED Ward identity

(

ewem − ∂µ
δ

δAµ

)

Γ =
1

ξ
✷∂A. (6.8)

The CS equation is given to all orders by:

{

m∂m + βee∂e − γA
(

NA − ξ∂ξ
)

−
∑

fi

γfiNfi

}

Γ =
∑

fi

mfi

∫

d4x
δΓ

δϕ̂fi

, (6.9)

with

m∂m = κ∂κ +
∑

fi

mfi∂mfi

NA =
∫

d4xAµ δ

δAµ
(6.10)

Nfi =
∫

d4x(f̄i
δ

δf̄i
− δ

δfi
fi).

The ϕ̂fi are external scalar fields, which are introduced for defining the soft breaking of

dilatations. In pure QED the β-function is related to the anomalous dimension of the

photon field

βe = γA. (6.11)

The 1-loop contributions to the β-function are exactly the same as the ones which con-

tribute to the β-function of the electromagnetic coupling in the electroweak Standard

Model from fermions (5.11):

β(1)
e =

e2

4π2

1

3
NF (Q

2
e + 3Q2

u + 3Q2
d). (6.12)

The Standard Model β-function in addition includes contributions from unphysical scalars

φ± and especially non-abelian contributions from charged vector bosons and charged
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ghosts with negative sign, which sum up to a negative sign if one considers only one

family. In QED one defines the effective coupling by the characteristic equation

∂e

∂t
= eβe with t = ln

∣

∣

∣

∣

∣

p2

κ2

∣

∣

∣

∣

∣

. (6.13)

Its solution is interpreted as the momentum and scale dependence of the interaction

strength in the high-energy region. Due to the relation between the anomalous dimension

of the photon field and the β-function (6.11) the solution can also be identified with

the complete Dyson-summed photon propagator. The behavior of the 1-loop effective

coupling of the Standard Model as solution of the corresponding characteristic equation

(6.13) differs from the QED-behavior by the additional non-abelian contributions from

ghosts and vector bosons. It approaches zero if one includes only one family, and goes

much more flat to infinity if one takes into account two or three families of fermions.

Moreover, since the abelian relation of QED (6.11) is replaced by the relation (4.20) an

interpretation of the running coupling in terms of 2-point photon Green functions is not

clear in the Standard Model.

For evaluating the CS equation it is important to control the β-functions of higher orders.

In particular it has to be shown that the result which one obtains by integrating the CS

equation is meaningful if one includes only lowest order β-functions. In this context it is

important to mention that in pure QED there exist also equations for the differentiation

with respect to single fermion masses. The fermion-mass equations read

(

mfi∂mfi
+ βfi

e e∂e − γfiA (NA − 2ξ∂ξ)−
∑

fj

γ
fi
fj
Nfj

)

Γ = mfi

∫

d4x
δ

δϕ̂fi

Γ. (6.14)

The Ward identity (6.8) relates the β-function and anomalous dimension of the photon

for any of these equations,

βfi
e = γ

fi
A . (6.15)

The β-functions of these equations depend strongly on the normalization condition im-

posed for the photon residuum, e.g.

∂p2Γ
T
AA

∣

∣

∣

p2=κ2
= 1. (6.16)

They all vanish to all orders if the residuum of the photon is normalized at a normalization

point at infinity (κ2 → −∞),

lim
κ2→−∞

βfi
e = 0. (6.17)

Taking the normalization point at zero momentum they are given in 1-loop order by

βei
e (κ

2 = 0) =
e2

4π2

1

3
Q2

e +O(h̄2) βqi
e (κ

2 = 0) =
e2

4π2

1

3
3Q2

q +O(h̄2) , q = u, d. (6.18)
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In higher orders the consistency equations of the fermion-mass equation (6.14) with the

CS equation (6.9) in QED give important restrictions on the mass dependence of the

various β-functions. The fermion-mass equations together with the consistency equations

are the main ingredients for being able to formulate the running of the effective coupling

from the low-energy to the high-energy region in the simplified version introducing step

functions. Eventually they also allow to study decoupling of fermions and the construction

of effective low-energy theories.

Contrary to QED none of these fermion-mass differential equations exists in the Stan-

dard Model, since differentiations with respect to single mass parameters produce hard

insertions of Yukawa interactions. As a consequence the CS β-functions can in principle

depend on mass ratios in an arbitrary way. The appearance of such a logarithmic mass

dependence in theories with spontaneously broken symmetry has been demonstrated in

the simple Higgs-Yukawa-model [6], and the respective analysis has to be continued to

the Standard Model by a systematic construction of one-loop induced higher-order con-

tributions (cf. the discussion at the end of section 5).

7. Conclusions

In theories with spontaneously broken symmetry the CS equation plays a crucial role for a

systematic investigation of the large-momentum behavior of higher-order contributions. It

is furthermore an important instrument within the framework of abstract renormalization

allowing to determine the independent parameters of the theory in a scheme-independent

way. In this paper we have derived the CS equation for the electroweak Standard Model in

the on-shell parameterization and evaluated all its coefficient functions in one-loop order.

As a direct application, we have shown that the ghost mass ratio is an independent

parameter of the model. It is renormalized independently from the vector-boson mass

ratio, and consequently the choice of setting these parameters equal in lowest order is not

stable under renormalization.

We have compared the CS equation of the Standard Model with the ones of the symmetric

SU(2)× U(1) theory and of QED. While the one-loop β-function of the electromagnetic

coupling depends only on the coupling itself and is QED-like in this sense, due to non-

abelian interactions it receives contributions with negative sign, which dominate over the

contributions of the fermions if only one family of fermions is considered. The one-loop

β-functions in the on-shell parameterization can be related to the β-functions of the sym-

metric theory in a simple way. These simple relations are not expected to hold anymore

32



beyond one-loop order, since the higher-order β-functions in the on-shell parameterization

will contain logarithms of the masses which are absent in the symmetric theory.

With the CS equation and its one-loop coefficient functions we have provided the basic

tools necessary for an investigation of one-loop induced higher-order contributions in the

electroweak Standard Model, as e.g. the leading logarithms. Since a restricted choice

of the gauge fixing will in general not be stable under renormalization, we have given

the explicit form of all one-loop coefficient functions in the most general linear gauge

compatible with rigid symmetry transformations. As an example we have determined the

leading quadratic logarithms of the photon self-energy in 2-loop order. Contrary to QED

it is seen that the quadratic logarithms of the photon self-energy in the asymptotic region

are non-vanishing. In this context we have also discussed the possible sources for the

appearance of large mass-dependent logarithms in 2-loop order. All these contributions

strongly depend on the normalization conditions imposed for fixing the free parameters

of the Standard Model. If the Standard Model is renormalized in the on-shell schemes,

these contributions are expected to be present and to depend logarithmically on the

different mass ratios. Due to the presence of massless particles on-shell conditions which

allow to diagonalize the mass-matrix of the neutral massive/massless particles on-shell are

crucial for obtaining off-shell infrared-finite Green functions in higher orders. A systematic

analysis of mass-dependent higher-order contributions is needed for an improvement of

the perturbative series on the basis of a summation of large higher-order terms by using

the CS or RG equation and its 1-loop β-functions. This issue is the subject of further

investigations.
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Appendix

In this appendix we give the propagators of the free fields in the general linear gauge

defined in (2.22) and (2.21). The propagators of vector and scalar fields are non-diagonal

in the vector/scalar and in the neutral vector fields. We omit propagators with Ba fields,

since they do not contribute in loops and are not relevant for determining the coefficient

functions of the Callan-Symanzik equation. The free field propagators determined from
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the action with Ba fields are equivalent to the ones determined in usual Rξ gauges where

Ba fields are eliminated via their equations of motion (see (2.23)).

For determining the β-functions and anomalous dimensions we have taken the choice

(2.32) – (2.35), which is compatible with rigid symmetry. Moreover, from boson propa-

gators only those terms contribute to the CS coefficient functions in 1-loop order which

behave like 1
p2

for asymptotically large p2, the other terms contribute as soft mass inser-

tions on the r.h.s. of the CS equation.

We have taken the following definitions for determining the free field propagators of vector

and scalar fields:

∑

l

∫

d4zΓ(0)
ϕkϕl

(x, z)∆ϕlϕm(z, y) = iδkmδ
4(x− y). (A.1)

Here ϕk denotes all vector and scalar fields of the Standard Model, and the index k is

understood to include field indices as well as Lorentz indices:

ϕk = (W+
µ ,W

−
µ , Zµ, Aµ, φ

+, φ−, H, χ). (A.2)

The Γ(0)
ϕkϕl

denote the lowest-order vertex functions derived from the generating functional

of 1PI Green functions,

Γ(0)
ϕkϕl

(x, y) ≡ δ2Γcl

δϕk(x)δϕl(y)

∣

∣

∣

∣

∣

all fields = 0

. (A.3)

The free field propagators ∆ϕkϕl
(x, y) are the time ordered vacuum expectation values of

free fields:

∆ϕkϕl
(x, y) = 〈0|T ϕk(x)ϕl(y)|0〉(0). (A.4)

The Fourier transformed propagators are defined according to the conventions:

∆ϕkϕl
(x, y) =

∫

d4p

(2π)4
∆ϕkϕl

(p,−p)e−ip(x−y) (A.5)

(2π)4δ4(p+ q)∆ϕkϕl
(p, q) =

∫

d4xd4y∆ϕkϕl
(x, y)ei(px+qy). (A.6)

1. Free field propagators of the charged vector and scalar fields

Starting from the general gauge-fixing action (2.22) we find with the notation

ξW ≡ ξ+− = ξ−+ (A.7)

the following expressions:

∆φ+φ−(p2) =
i

p2 − ζWM2
W

(

1− (ξW − ζW )M2
W

p2 − ζWM2
W

)

(A.8)
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∆L
φ+W−

(p2) =
i(ξW − ζW )MW

(p2 − ζWM2
W )2

(A.9)

∆T
W+W−

(p2) =
i

p2 −M2
W

(A.10)

∆L
W+W−

(p2) =
i

p2 − ζWM2
W

(

ξW +
(ξW − ζW )ζWM

2
W

p2 − ζWM2
W

)

. (A.11)

Here we have defined the longitudinal and transverse parts of vector propagators by

∆V
µ
a V ν

b
(p,−p) = −

(

ηµν − pµpµ

p2

)

∆T
VaVb

(p2)− pµpµ

p2
∆L

VaVb
(p2). (A.12)

Similarly we have split off the 4-momentum pµ from the scalar/vector propagator:

∆φaV
µ

b
(p,−p) = pµ∆L

φaVb
(p2). (A.13)

The remaining propagators are obtained by complex conjugation:

∆∗ϕkϕl
(p,−p) = −Ĩkk′ Ĩll′∆ϕk′ϕl′

(−p, p). (A.14)

The matrix Ĩ is defined in analogy to eq. (2.20), and (A.14) means in particular:

∆∗φ+W
µ
−

(p,−p) = −∆φ−W
µ
+
(−p, p) = ∆φ−W

µ
+
(p,−p). (A.15)

2. Free field propagators of the neutral scalar and vector fields

With the notation

ξZ ≡ ξZZ ξA ≡ ξAA (A.16)

for the arbitrary gauge parameters of (2.22) one obtains

∆HH(p
2) =

i

p2 −m2
H

(A.17)

∆χχ(p
2) =

i

p2 − ζZM2
Z

(

1− (ξZ − ζZ)M2
Z

p2 − ζZM2
Z

)

(A.18)

∆L
χZ(p

2) =
−(ξZ − ζZ)MZ

(p2 − ζZM2
Z)

2
(A.19)

∆L
χA(p

2) =
MZ

p2(p2 − ζZM2
Z)

(

ζA − ξAZ −
(ξZ − ζZ)ζAM2

Z

p2 − ζZM2
Z

)

(A.20)

∆T
ZZ(p

2) =
i

p2 −M2
Z

(A.21)

∆T
ZA(p

2) = 0 (A.22)

∆T
AA(p

2) =
i

p2
(A.23)

∆L
ZZ(p

2) =
i

p2 − ζZM2
Z

(

ξZ +
(ξZ − ζZ)ζZM2

Z

p2 − ζZM2
Z

)

(A.24)

35



∆L
ZA(p

2) =
i

p2 − ζZM2
Z

(

ξZA +
(ξZ − ζZ)ζAM2

Z

p2 − ζZM2
Z

)

(A.25)

∆L
AA(p

2) =
i

p2

(

ξA +
(2ξAZ − ζA)ζAM2

Z

p2 − ζZM2
Z

+
(ξZ − ζZ)ζAM4

Z

(p2 − ζZM2
Z)

2

)

. (A.26)

Non-diagonal propagators that are not given in the above list vanish identically

because of CP-invariance of the free field action.

3. Free field propagators of the Faddeev-Popov fields

The free field propagators of the Faddeev-Popov fields are derived from the bilinear

part of the ghost action (3.23). They are diagonal according to the construction out-

lined in section 3, eqs. (3.16) – (3.24). For this reason they have their conventional

form:

∆c+c̄−(p
2) =

i

p2 − ζWM2
W

(A.27)

∆cZ c̄Z(p
2) =

i

p2 − ζZM2
Z

(A.28)

∆cAc̄A(p
2) =

i

p2
(A.29)

∆cAc̄Z(p
2) = ∆cZ c̄A(p

2) = 0. (A.30)

They are derived from the classical action in an equivalent way to (A.1),

∑

d

∫

d4zΓ
(0)
cac̄d(x, z)∆cb c̄d(y, z) = iδabδ

4(x− y), Γ
(0)
cac̄b(x, y) ≡

δ2Γcl

δca(x)c̄b(y)
,

(A.31)

and are related to the time ordered vacuum expectation values of free fields by

∆cac̄b(x, y) = 〈0|T ca(x) c̄b(y)|0〉(0). (A.32)

Fourier transformation is defined as in (A.5), (A.6).

4. Free field propagators of fermions

For completeness we also give the free field propagator of a Dirac fermion:

∆ff̄ (p,−p) =
i(6p +mf )

p2 −m2
f

. (A.33)

It is determined from the classical action by

∑

β

∫

d4zΓ
(0)

f̄αfβ
(x, z)∆fβ f̄γ

(z, y) = iδαγδ
4(x− y) (A.34)

with

Γ
(0)

f̄f
(x, y) ≡

→
δ

δf̄(x)
Γcl

←
δ

δf(y)
. (A.35)
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Differentiation with respect to the adjoint spinor f̄ is applied from the left, whereas

differentiation with respect to the spinor f is applied from the right, α, β, γ are

spinor indices. The free field propagator is related to the time ordered vacuum

expectation value of free fields by

∆ff̄ (x, y) = 〈0|T f(x) f̄(y)|0〉(0). (A.36)

Fourier transformation is defined as in (A.5), (A.6).
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