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Special Symmetric Quark Mass Matrices
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Abstract

We give a procedure to construct a special class of symmetric quark mass
matrices near the democratic limit of equal Yukawa couplings for each sector.
It is shown that within appropriate weak-bases, the requirements of symmetry
and arg[det(M)] = 0 are very strong conditions, that necessarily lead to a
Cabibbo angle given by |Vus| =

√
md/ms, and to |Vcb| ∼ ms/mb, in first order.

In addition, we prove that the recently classified ansätze, which also reproduce
these mixing matrix relations, and which were based on the hypothesis of the
Universal Strength for Yukawa couplings, where all Yukawa couplings have
equal moduli while the flavour dependence is only in their phases, are, in fact,
particular cases of the generalized symmetric quark mass matrix ansätze we
construct here. In an excellent numerical example, the experimental values on
all quark mixings and masses are accommodated, and the CP violation phase
parameter is shown to be crucially dependent on the values of mu and Vus.

NIKHEF 98-008
hep-ph/9807549

1 Introduction

In the Standard Model (SM), the flavour structure of the Yukawa interactions is
not constrained by any symmetry, and the charged currents depend only on the left
handed quark fields. Thus, there is much freedom in defining a weak-basis for the
quarks. This freedom is often used to construct ansätze with which one hopes to
find relations between the quark masses and mixings, and perhaps some day, also
find some deeper symmetry beyond the SM, to restrict the parameters in the Yukawa
couplings [1].
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In the past there have been several attempts at relating the pattern of the Cabibbo-
Kobayashi-Maskawa (CKM) mixing matrix elements to the quark mass ratios. Many
of the ansätze, that one finds in the literature, are given in two distinct types of weak-
bases. The well-known Fritzsch ansatz [2], the Hermitic ansätze classified by Ramond,
Roberts and Ross, and others [3], use the so-called ”heavy” weak-basis, where one
of the quark mass matrix elements (by consensus usually the (3,3)-element) of both
sectors is much larger than the others. Some of the later may even be zero, possibly
as the result of some (unknown) symmetry.

A different approach is offered by the democratic weak-basis, where the quark
Yukawa interactions become equal and indistinguishable in the limit of two zero lower
masses (for each quark sector apart). Amongst others [4], one of the most interesting
examples of this approach is given by the hypothesis of the Universal Strength for
Yukawa couplings (USY) applied to the quark sector [5]. In USY all Yukawa couplings
have equal moduli, and the flavour dependence is only in the phases of the Yukawa
coupling matrix elements.

In this paper, we give, in section 2, a procedure to construct a special class of
symmetric ansätze near to the democratic quark mass limit. We obtain this class
by demanding that the quark mass matrices be symmetric and that, for both sec-
tors, arg[det(M)] = 0. We then find that (within our framework) the mixing an-
gles obey the phenomenological mass ratio relations where |Vus| = (md/ms)

1/2 and
|Vcb|∼ms/mb. In section 3, we prove that an important group of recently classified
ansätze, based on the USY idea, is, in fact, a particular case within this class. In
section 4, a relation is found between mu, Vus and the CP-violation phase. A nu-
merical example is given, using the most successful of the constructed ansätze, and
which accommodates all experimental results on quark masses and mixings. Finally,
in section 5, we present our conclusions.

The purpose of this paper is to find specific ansätze by making use of the freedom
that the SM model provides by choosing special weak-bases for the quarks. As a
typical example, we mention the Nearest Neighbour Interaction (NNI) weak-basis [6].
It was proven that, without any constraint on the quark masses and mixings, the
mass matrices could be written in the following way:

Mu =




0 au 0
a′u 0 bu
0 b′u cu


 , Md =




0 ad 0
a′d 0 bd
0 b′d cd


 (1)

The NNI weak-basis allows for different types of ansätze [7], [8]. By imposing the
Hermiticity conditions, i.e., a′u,d = a⋆u,d, b

′
u,d = b⋆u,d, cu,d = real, one obtains the famous

Fritzsch ansatz [2], now outruled because of the heavy top mass. Another ansatz,
within the NNI weak-basis, can be constructed if one imposes the non-Hermiticity
conditions a′u,d = au,d, b

′
u,d = cu,d, which then allow for a heavy top mass [7].



2 Symmetric ansätze

In this section, we construct a class of complex quark mass matrix ansätze which lead
to important mixing matrix relations, where |Vus| = (md/ms)

1/2 and |Vcb| ∼ ms/mb.
The ansätze are symmetric and near to the democratic mass matrix limit. The
procedure, we propose here, is analogous to the NNI-Fritzsh example. This means
that we work in a specific weak-basis, but instead of requiring, e.g., the somewhat
arbitrary Hermiticity conditions, we require that the quark mass matrices be,

- symmetric, and that,
- for each quark sector, arg[det(M)] = 0.
The importance of these two requirements, (which will also contribute to the

calculability of the model), for the quark mass matrices is evident: symmetric fermion
mass matrices are crucial in realistic unification schemes, such as in SO(10) [9], and
the requirement that arg[det(M)] = 0 is a conditio sine qua non for most solutions of
the strong CP problem [10].

We begin with the most general, arbitrary, and complex quark mass matrix,

M◦ =



α◦ β◦ γ◦
δ◦ ǫ◦ ζ◦
η◦ θ◦ ι◦


 (2)

One can prove that there exists a weak-basis transformation of the right-handed quark
fields, W , such that M◦ → M = M◦ ·W , and where some of the mass matrix elements
become equal:

M =



u u ẑ
û v w
z ŵ ŵ


 (3)

The proof is simple. Take the first line of the general complex quark mass matrix M◦
in Eq.(2). This is the (line)vector a+

◦ = (α◦, β◦, γ◦). Now construct three orthonormal
(column)vectors (v1,v2,v3), such that the ending points of v1 and v2 define a line
which is perpendicular to a+

◦ , then a+
◦ · (v1 −v2) = 0 or a+

◦ · v1 = a+
◦ ·v2. By turning

this line around a+
◦ , we can assure that the third vector v3 lies in such a direction

that another line, through the ending points of v3 and v2, is perpendicular to the
third (line)vector of M◦, c

+
◦ = (η◦, θ◦, ι◦). Thus c

+
◦ · (v2−v3) = 0 or c+◦ ·v2 = c+◦ ·v3.

Therefore, defining W = [v1,v2,v3], we get the result of Eq.(3). Furthermore, one
can choose the phase of the complex number u in such a way that u(z−w)2 =real. Up
to this point, no conditions were imposed on M which constrain the mass spectrum or
mixing angles. We stress that the form of M in Eq.(3) is just a choice of weak-basis.

Now, we demand the first of the two conditions: symmetry. Then û = u, ẑ = z,
ŵ = w, and M becomes of the form,

M =



u u z
u v w
z w w


 (4)



Next, we implement the second condition, arg[det(M)] = 0. Computing the determi-
nant of M ,

det(M) = −u(z − w)2 + (v − u)(uw − z2) (5)

and using u(z−w)2 =real, we find that v = u is a solution, because tan(arg[det(M)])
is proportional to |v−u|. Therefore, requiring symmetry and arg[det(M)] = 0 reduces
a general complex mass matrix in the weak-basis of Eq.(3) to a matrix of the form,

M =



u u z
u u w
z w w


 = u




1 1 z′

1 1 w′

z′ w′ w′


 (6)

where z′ = z/u and w′ = w/u.
In the following, we prove that the correct quark mass hierarchy implies that

the ansatz of Eq.(6) is near to the democratic limit, thus z′, w′ ≈ 1, and that it
reproduces the crucial mixing matrix relations, where |Vus| = (md/ms)

1/2 and |Vcb| ∼
ms/mb. In order to do this, we introduce the dimensionless square mass matrix
H = 3( M · M †)/tr( M · M †). It is clear that by construction tr(H) = 3. Taking
the right-handed side of Eq.(6), (we drop the primes on z′ and w′ to simplify the
notation), we get,

H =
1

tzw
·




2 + |z|2 2 + zw⋆ z⋆ + w⋆ + zw⋆

2 + z⋆w 2 + |w|2 z⋆ + w⋆ + |w|2
z + w + z⋆w z + w + |w|2 |z|2 + 2|w|2


 (7)

where tzw = (4 + 2|z|2 + 3|w|2)/3. The determinant δ, the second invariant χ, and
the trace t, which are the three invariants of H , can be expressed in its dimensionless
eigenvalues λi,

δ = det(H) = λ1λ2λ3

χ = χ(H) = λ1λ2 + λ1λ3 + λ2λ3 ; λi = 3 (mi/m3)
2

[1+(m2/m3)
2+(m1/m3)

2]
t = tr(H) = λ1 + λ2 + λ3 = 3

(8)

In order to find the predictions of the ansatz of Eq.(6), it is very useful to introduce
the following parameterization for z and w,

z = 1 + ρ eiα , w = 1 + ρ eiα − ρ◦ eiβ (9)

This parameterization is general, but we shall now see that the mass hierarchy imposes
constraints on ρ◦ and ρ, such that these are small. Therefore z, w ≈ 1 andM is almost
democratic.

Because of the parametrization of Eq.(9) one can give a simple expression for ρ◦
in terms of the determinant δ of H and tzw,

ρ2◦ = 3
√
3δ ·

(
tzw
3

)3/2

(10)



where tzw can also be expressed as a function of the variables defined in Eq.(9),

tzw = 3 +
10

3
ρ cos(α)− 2ρ◦ cos(β) +

5

3
ρ2 − 2ρρ◦ cos(α− β) + ρ2◦ (11)

Using δ in Eq.(8) in terms of mass ratios, we find that the parameter ρ◦ is proportional
to (m1m2)

1/2/m3. From H in Eq.(7), one computes also the second invariant as a
function of ρ, ρ◦, cos(α) and cos(β). From this, one deduces an expression for the ρ
written in terms of quark mass ratios, a rest-term, and tzw,

ρ2 =
9

4
· χ ·

(
tzw
3

)2

· [1 + ozw]
−1 (12)

where the rest-term ozw is dependent on powers of ρ, ρ◦, ρ◦/ρ , cos(α) and cos(β).
Using the expression for χ in Eq.(8) in mass ratios, we find that ρ is proportional to
m2/m3. We conclude that ρ◦ and ρ are indeed small. Then from Eq.(11), we find
that tzw ≈ 3. Consequently, it is possible to give a leading order approximation for
ρ◦ and ρ:

ρ◦ = 3
√
3

√
m1m2

m3
, ρ = 9

2
m2

m3
. (13)

A more complete expression for ρ◦ and ρ as a power series in the mass ratios can be
derived from the Eqs.(10, 11, 12) using the method of iteration. Starting with the
leading order approximations, one obtains after a couple of iterations,

ρ◦ = 3
√
3m1m2

m3
·
[
1 + 15

4

(
m2

m3

)
cos(α)− 3

√
3

2

√
m1m2

m3
cos(β) + · · ·

]

ρ = 9
2
m2

m3
·
[
1− m1

m2
+ 1

2

(
m2

m3

)
cos(α) +

√
3
√
m1m2

m3
cos(β) + · · ·

] (14)

Resuming: we have extracted ρ◦ and ρ from the two (δ and χ) mass ratio relations
of H . The two remaining phase parameters α, β will be free. However, from Eq.(14),
we see that the contribution of α and β to ρ◦ and ρ are small.

The next step is to compute the unitary matrix which diagonalizes H . The way
to do this, is to introduce the power series of ρ◦, ρ in the parametrization of z, w of
Eq.(9), and in the matrix H of Eq.(7). Thus, we obtain the square matrix H as a
power series in the mass ratios, and it is then easy to calculate the eigenvectors as a
series in these ratios, because the eigenvalues of H are also expressed as functions of
ratios of masses. We prefer, however, to calculate the diagonalization matrix V in an
appropriate ”heavy” weak-basis for H . In this weak-basis all matrix elements of H
are small, except H33 ≈ 3, and only the relevant contributions of Hu and Hd to VCKM

are present. Thus the irrelevant contributions to the Cabibbo Kobayashi Maskawa
mixing matrix VCKM , where,

VCKM = V †
u · Vd (15)

and which would cancel out in the matrix product, are absent. In this way, Vu and
Vd are both near to 1I. The ”heavy-basis” is defined in the following way:



Hu → HHeavy
u = F † ·Hu · F

Hd → HHeavy
d = F † ·Hd · F

; F =




1√
2

1√
6

1√
3

−1√
2

1√
6

1√
3

0 −2√
6

1√
3


 (16)

We find, in leading and next leading order,

|V12| =
√

m1

m2

[
1− m1

2m2
+ m2

4m3
cos(α)

]
; |V23| =

√
2m2

m3

[
1−

√
3m1

4m2
cos(α− β)

]

|V13| = 1√
2

√
m1m2

m3

[
1 + 13m2

4m3

cos(α)
]
; |V31| = 3√

2

√
m1m2

m3

[
1−

√
m1

3m2

cos(α− β)
]

(17)
where we stress again that the phases α, β are free parameters, in the sence that they
are not constrained by mass relations. This freedom will be used in section 4, where
we shall define a specific ansatz by fixing these two free phases to accommodate the
CP violation phase together with the quark masses and mixings.

To complete the description of our special symmetric ansätze near the democratic
limit, we contruct another explicit example. As before, we take the most general
complex quark mass matrix of Eq.(2), but choose a slightly different weak-basis from
the previous one in Eq.(3). We choose,

M =



u u ẑ
û v v
z v̂ w


 (18)

where u(v − z)2 real. We follow the prescribed scheme, i.e., require symmetry and
arg[det(M)] = 0, and obtain the ansatz,

M =



u u z
u u u
z u w


 = u




1 1 z′

1 1 1
z′ 1 w′


 (19)

where again z′ = z/u and w′ = w/u. The procedure to solve this ansatz is as in the
first example. However, here a different but general parameterization for z and w is
better suited, (we mean in fact the z′ and w′ on the right-handed side of Eq.(19) but
as before, in the following, leave out the prime). In order to obtain similar relations
as in Eqs.(10, 12), we propose,

z = 1 + ρ◦ eiβ , w = 1 + ρ◦ eiβ + ρ eiα (20)

and find that the diagonalization matrix elements V23, V13 and V31, (again in the
”heavy weak-basis” of Eq.(16)), are somewhat different from the previous ansatz. We
obtain in leading and next leading order,

|V12| =
√

m1

m2

[
1− m1

2m2

− m2

4m3

cos(α)
]
; |V23| = 1√

2
m2

m3

[
1 +

√
3m1

m2

cos(α− β)
]

|V13| = 1√
2

√
m1m2

m3

[
1 + 5m2

4m3

cos(α)
]
; |V31| =

√
3
2
m1

m3

[
1−

√
m1

3m2

cos(α− β)
] (21)



By now it should be clear how to obtain similiar symmetric ansätze near the
democratic limit.

3 The particular case of USY

Next, we shall apply the procedure of the previous section to an important case,
where the quark mass matrices are based on the hypothesis of a Universal Strength
for Yukawa couplings. In particular, in this section we prove that ansätze of USY,
thus obtained, coincide with other special USY-ansätze, which were classified recently,
in Ref.[11], using different arguments of calculability, and for which all parameters
are given by the quark mass ratios. These also predicted |Vus| = (md/ms)

1/2and
|Vcb| ∼ ms/mb.

In USY, it is assumed that there is only one universal Yukawa strength λ for all
quarks. Two different Higgs doublets Φu, Φd give mass to the up and down quarks
respectively, and all flavour dependence is in the phases of the Yukawa couplings.
The quark mass matrices have the following form:

Mu = cu [ eiφ
u
ij ] , Md = cd [ eiφ

d
ij ] (22)

with cu = λ vu, cd = λ vd, where vu = < Φu >, vd = < Φd >
1.

We apply our scheme to the USY mass matrix. As can be seen from Eq.(22),
the general USY matrix has 9 parameter-phases for each sector. However, one can
choose some of the phases in Eq.(22) to be equal, in the same way as it was done
for the matrix elements of the general case of Eq.(3). Then with the symmetry and
arg[det(M)] = 0 procedure, we obtain a symmetric mass matrix of the following form:

M = c◦




eia eia e−i(a+c)

eia eia eic

e−i(a+c) eic eic


 = c′◦




1 1 eiq

1 1 ei(q−r)

eiq ei(q−r) ei(q−r)


 (23)

where c′◦ = c◦ eia, q = −2a − c, r = −a − 2c. Comparing Eq.(23) with Eq.(6), we
see that this USY ansatz is a special case, where general complex numbers have been
replaced by complex numbers of modulus one. With regard to the parameter space,
we have, applying the parameterization of the general case, given in Eq.(9) for z and
w in terms of ρ, ρ◦, α and β, to this USY ansatz,

z = 1 + ρ eiα = eiq ρ = 2 | sin( q
2
)| , α = ±π

2
+ q

2

=⇒
w = 1 + ρ eiα − ρ◦ eiβ = ei(q−r) ρ◦ = 2 | sin( r

2
)| , β = ±π

2
− r−2q

2

(24)

where the sign for the phases α and β depend on the sign of q and r respectively.

1In our original paper [5], we did not discuss how a USY mass matrix could be obtained. This
work was done recently by Fishbane and Hung with a mimimum of six Higgs fields [14]



In principle, one can write the mass power series for the parameters q and r,
derived from the series of ρ and ρ◦ as given in Eq.(14). However, for this USY-ansatz
there exist exact formulæ for q and r in term of δ and χ, the mass ratio invariants of
Eq.(8):

sin2( r
2
) = 3

4

√
3δ , sin2( q

2
) =

9

16
χ− 9

8

√
3δ

1− 3

4

√
3δ

(25)

These exact relations are only possible because for the USY case, e.g., the function
tzw, related to the trace of H in Eq.(11), becomes very simple, and is equal to 3. One
obtains, of course, the same leading order approximation relations as in Eq.(13):

|r| = 3
√
3

√
m1m2

m3
, |q| = 9

2
m2

m3
. (26)

Next, we show that the USY ansatz of Eq.(23) is equivalent to one of the ansätze
of Ref.[11]. In fact, the expressions of Eq.(25), for the phases r and q, were given in
Ref.[11] with regard to a different USY-ansatz:

M = c◦




1 eir 1
eiq 1 ei(q−r)

1 1 1


 (27)

which apparently does not correspond to our USY ansatz in Eq.(23), obtained with
the symmetry and arg[det(M)] = 0 argument. What is the connection? Writing,

M = c◦




1 eir 1
eiq 1 ei(q−r)

1 1 1


 = c◦ P23 ·




1 1 eiq

1 1 ei(q−r)

eiq ei(q−r) ei(q−r)


 ·KR · P23 (28)

where KR =diag(1, 1, e−i(q−r)), and P23 is the permutation of the second with the
third quark field, it becomes obvious that our USY-ansatz in Eq.(23), and the USY
ansatz of Ref.[11] in Eq.(27), are, in fact, equivalent. This is because these ansätze
are related by a weak-basis transformation as in Eq.(28).

The diagonalization matrix elements for this USY ansatz can be read off from the
matrix elements for the corresponding general case in Eq.(17), using the specific USY
phases α = ±π/2 + q/2 and β = ±π/2 − (r − 2q)/2. The diagonalization matrix
elements, that one obtains in this way are, of course, the same as in Ref.[11].

To complete our discussion of the particular hypothesis of USY, we give a second
USY example, derived in a similar way as the previous one, and which is related to
the second general case in Eq.(19):

M = c◦




eia eia e−i2a

eia eia eia

e−i2a eia eic


 = c′◦




1 1 eip

1 1 1
eip 1 eiq


 (29)



where c′◦ = c◦ eia, p = −3a, q = c − a. Again, in Ref.[11] this ansatz was given in
a different weak-basis. One can show the equivalence between the two, by explicitly
writing the weak-basis relation:

M = c◦




1 1 eip

1 1 1
eip 1 eiq


 = c◦ P13 ·



eip

′

e−iq′ 1
eiq

′

1 1
1 1 1




Ref.[11]

· P321 ·KR
(30)

where p′ = q − p, q′ = −p, the P ’s are self-evident permutations, and the phase
unitary matrix KR =diag(1, 1, eip). The diagonalization matrix elements are deduced
in the same way as in the previous USY example.

Finally, one can prove that for each USY case in Ref.[11] there exists a corre-
sponding general ansatz, which is obtained with our symmetry and arg[det(M)] = 0
scheme.

4 CP-violation and a numerical example

In this section, we analise the CP-violation for a typical case of the ansätze that we
constructed, and give a numerical example. From the Refs.[11], [12] we already know
that the particular case of USY can accommodate the quark masses and mixings.

There are, however, two difficulties with the USY cases of Ref.[11]. The first is
related to Vus. For these USY cases, one can choose the phases in VCKM in such a
way that, in leading order, Vcs, Vub and Vcb are real, while,

Vus =

√
md

ms
±

√
mu

mc
(31)

where the sign is a matter of choice, dependent on the specific USY sign of the
phase-parameters as explained for Eq.(24). If one combines the experimental limits
on md/ms, ms, mc, then the experimental value for |Vus| = 0.2205(18) can only be
accommodated if one takes a very small value for mu ≤ 1 MeV or even mu = 0.

The second problem has to do with JCP = Im(VusVcbV
⋆
csV

⋆
ub), which measures the

CP violation [13]. In the USY ansätze of the Ref.[11], with the phase convention given
above, only second and higher order terms of Vcs, Vub, Vcb and Vus are complex and
contribute to JCP . The reason for this shall be made explicitly clear, but essentially
this is because, in the USY cases mentioned, all phase parameters, which enter in the
mass matrix elements, are small, thus, a mass matrix element like eiq in the ansatz
of Eq.(23), is in leading order equal to 1 + iq. The mass matrix M is, therefore, in
this order, equal to the democratic mass matrix plus a small imaginary matrix. The
diagonalization matrix elements V12, V22, V23 and V13, of both quark sectors get the
same phase factor which cancels out in the CKM matrix product, and only higher
order terms give a contribution to JCP . One finds |JCP | = o(10−6 − 10−7), and it is
impossible to obtain a large value for |JCP |.



In fact, the two problems are related2. If it were possible to exchange the ± sign
in the expression for Vus of Eq.(31) for a phase factor eiδ, while at the same time
keeping Vcs, Vub and Vcb real, then one would solve both problems. The new relation,

|Vus| =
∣∣∣∣∣

√
md

ms

+ eiδ ·
√
mu

mc

∣∣∣∣∣ (32)

would support a larger value for mu, and one would find in leading order for |JCP |,
supposing that | sin(δ)| is large,

|JCP | = |VusVcbVcsVub| · | sin(δ)| (33)

The solution to both problems lies, therefore, in choosing a different complex phase
content for the mass matrices of the two quark sectors. Let us specify more precisely
how to obtain this. First we have to choose a specific ansatz. We find it appealing
to have similar ansätze for the down as well as for the up quarks, and propose (the
already discussed) mass matrices of the form:

Mu = cu




1 1 zu
1 1 wu

zu wu wu


 , Md = cd




1 1 zd
1 1 wd

zd wd wd


 (34)

In order to find out what the contribution of the CP-phase is to Vus, we write the
diagonalization equation in the following form: V ·D ·V † = H , (the indices {u,d}have
been dropped to simplify), where H is given in the ”heavy-basis” of Eq.(16), and
D =diag(λ1, λ2, λ3); the λi are the eigenvalues of H as given in Eq.(8). One obtains,
thus, (also using the unitarity of V ):

(λ2 − λ1) · V12V
⋆
32 + (λ3 − λ1) · V13V

⋆
33 = H13

(λ2 − λ1) · V22V
⋆
32 + (λ3 − λ1) · V23V

⋆
33 = H23

(λ2 − λ1) · V12V
⋆
22 + (λ3 − λ1) · V13V

⋆
23 = H12

(35)

With the general parametrization z = 1 + ρ eiα and w = 1 + ρ eiα − ρ◦ eiβ , for H
in Eq.(7), one finds that H12 is an exact real number, while, in first order, H13 =
(1/

√
6) ρ◦ eiβ and H23 = (2

√
2/3) ρ eiα. Therefore, in leading order, the following

expressions, relating the phases α and β of the parameterization of z and w with the
phases of V13 and V23, hold:

V13 = |V13| eiβ
V23 = |V23| eiα (36)

where we haved used the possibility to choose the phase of some of the elements of
V ; in this case V33 =real. Furthermore, combining the expressions for V12, V23 and
V13 in Eq.(17), one gets the leading order relation: |λ2 · V12V

⋆
22| = |λ3 · V13V

⋆
23|. Then,

using H12 =real, we find with Eq.(35), also in this order,

arg(V12V
⋆
22) = − arg(V13V

⋆
23) , arg(V11V

⋆
21) = − arg(V12V

⋆
22) (37)

2Friztsch pointed this out in the context of a different anstaz [15]



where the second relation follows from unitarity.
Finally combining the results for the phases of the matrix elements in Eq.(36)

and Eq.(37) for both sectors Vd and Vu, and ignoring higher order contributions, we
obtain for the CP violating phase in Vus:

δ = π + (αd − βd)− (αu − βu) (38)

This equation explains exactly why, for the USY cases of Ref.[11], the CP violation
is so small: for these USY cases, the α’s and the β’s are all equal to ±π/2, in leading
order (see e.g. Eq.(24)).

With regard to our numerical example, we specify the ansatz in Eq.(34) further,
by explicitly giving all the phases of the mass matrix elements zu,d, wu,d. We keep the
USY ansatz of Eq.(23) for the down sector, but introduce for the up sector, matrix
elements with moduli that are not anymore equal to 1. We propose the following
ansatz:

Mu = cu




1 1 zu
1 1 wu

zu wu wu


 ; Md = cd




1 1 eiqd

1 1 ei(qd−rd)

eiqd ei(qd−rd) ei(qd−rd)


 (39)

where for the up sector:

zu = 1 + qu eiπ/3 ; wu = 1 + qu eiπ/3 − ru (40)

The difference in the phases of the matrix elements of the up and down sectors is
evident:

αu = π
3

αd = ±π
2
+ qd

2

;
βu = 0 βd = ±π

2
− rd−2qd

2

(41)

where the ± sign for the down sector depends, as was explained, on the sign of qd
and rd. Remember also that rd and qd are small. Taking different signs for rd and qd,
we get with Eq.(38) in leading order (mod 2π),

δ = −π

3
(42)

From the Eqs.(32,33) one would expect that a choice for δ = ±π/2 is better
suited to support a large mu value and a large |JCP |. However, numerically one must
also adjust the other CKM matrix elements, and JCP depends not only on the CP-
phase δ, but also on the moduli of Vus,Vcb,Vcsand Vub. We have found the best fit for
all experimental results with a CP-phase δ = −π/3, the following parameters and
corresponding quark masses:

Input:
qu = 1.891× 10−2 ru = 1.074× 10−3

qd = −9.264× 10−2 rd = 2.205× 10−2 (43)



which correspond to mass ratios given by the masses, at 1 GeV [16]:

mu = 3.4 MeV mc = 1.43 GeV mt = 340 GeV
md = 5.3 MeV ms = 135 MeV mb = 6.3 GeV

(44)

Output:

|VCKM | =



0.9754 0.2206 0.0029
0.2204 0.9746 0.0395
0.0106 0.0382 0.9992


 (45)

In this numerical example no approximations were made. The ratio |Vub/Vcb| = 0.074
is perfectly well within its experimental limit, |Vub/Vcb|Exp = 0.08 ± 0.02. We get
for the CP violation |JCP | = 2.02 · 10−5. This value corresponds to a CP-phase
| sin(δ)| = 0.816, which is somewhat smaller (8%) than the first order prediction
sin(π/3) = 0.886, because of the influence the higher order contributions to δ.

5 Concluding remarks

We have shown how to construct a class of symmetric ansätze near the democratic
limit, which reproduce the important phenomenological mixing matrix relations where
|Vus| = (md/ms)

1/2 and |Vcb| ∼ ms/mb. We have proven that the recently classified
USY-ansätze of Ref.[11], which also reproduce these mixing matrix expressions, are
particular examples within this class. In addition, we have also shown, for an ansatz-
example of the constructed class, how the CP-violation phase can be computed. For
this example, all the experimental values of the quark masses and mixings, including
the CP violation phase, can be accommodated with great success.

We find it very surprising that, with this class, the important issues of symmetry
and arg[det(M)] = 0, for the quark mass matrices, become suggestively linked with
the expected phenomenological mixing matrix relations in terms of quark mass ratios.
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