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Abstract

We consider a heavy fourth family with masses lying in the symmetry break-
ing channel of a new strong gauge interaction. This interaction generates a
heavy quark axial-type operator, whose effects can be enhanced through mul-
tiple insertions. In terms of the strength of this operator we can express new
negative contributions to the S and T parameters and the shifts of the Z cou-
plings to the third family. In particular we find that the new contribution to
T is strongly constrained by the experimental constraints on the Z coupling to
the τ .

1 Introduction

A heavy fourth family could play a prominent role in dynamical electroweak symmetry

breaking. However, the existence of additional families with masses greater than a

few hundred GeV is thought to be strongly constrained by the value of the S and T

electroweak correction parameters. Each new weakly interacting degenerate fermion

doublet contributes 1/6π to S. Also at least some mass splitting in new fermion

doublets is difficult to avoid, which for weakly interacting doublets implies positive

contributions to T . The current data, if anything, favors negative S and T .

If the fourth family fermions are strongly interacting, it is important to know how

these results for weakly interacting fermions will change. When the new dynamics

is QCD-like it is known that the new fermions will continue to give a positive con-

tribution to S, since the sign of the corresponding parameter in low energy QCD is
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known experimentally [1]. Here we will explore a situation which is distinctly non-

QCD-like in two ways: 1) the strong interaction breaks down close to a TeV, 2) the

fourth family quark masses are in a symmetry breaking channel with respect to this

interaction.

A model based on this type of symmetry breaking pattern has been described

in some detail in [2]. As far as providing some understanding of mass and flavor,

the model has some attractive features in comparison with conventional extended

technicolor models. In particular it was found that the dangerous isospin violating

operators involving the fourth family quarks are naturally suppressed relative to the

operator which feeds mass to the top. (More precisely, the latter operator is enhanced

relative to the former operators.) In addition, the allowed set of effective 4-fermion

operators have a rather different structure than usually considered, and provide a

better chance of producing realistic quark and lepton masses and mixings. Both of

these features relied on having fourth family quarks in a symmetry breaking channel.

It is therefore worthwhile to understand the implications for precision electroweak

observables, so that experimental data can be brought to bear on this and related

models.

We can comment further on the plausibility of a nonorthodox symmetry breaking

pattern. It is usually assumed that the dynamical mass will occur in the channel

preferred by a single gauge boson exchange (the MAC hypothesis). But it was shown

in [3] that the presence of a gauge boson mass has significant effects on the gap

equation beyond the ladder approximation. As we briefly summarize here, the next

order corrections can be large and of opposite sign to the leading order. Let the

strong interaction be SU (N)X (we discuss the cause of its breakdown shortly). The

4-point kernel appearing in the gap equation for Nf fermions transforming as N or

N multiplets, to leading order in N or Nf , and after an angular integration, has the

form

F (p, k) =
2

π
(2C2(N)− C2(R))(αF1(p, k) +Rα2F2(p, k)) + ... (1)

R is the SU (N)X representation of the condensing channel. R characterizes the

importance of the second order terms, given that F2 is appropriately normalized

relative to F1 at the momentum scale which dominates the integrations. In the

case of Nf = 15 (which is the case relevant for the model discussed below) it was
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found [3] that R ≈ −1.3 for gauge boson masses corresponding to the breakdown

SU (N)X → SU (N − 1)X , with the fermion mass in the symmetric tensor channel.

Given that α may well be greater than unity, there is no reason to believe the MAC

prediction of a strong repulsion in this channel.

We view the breakdown of SU (N)X as part of the breakdown of a larger flavor

interaction, which also couples to the lighter families. We suppose that this flavor

dynamics produces hierarchies among the various flavor gauge boson masses, with the

lightest being the broken SU (N)X gauge bosons. This hierarchy must be related to

the contributions of different order parameters. Since we restrict ourselves to fermions

which carry only standard model quantum numbers, no fermion bilinear condensates

are allowed above the electroweak scale except for right-handed neutrino condensates.

On the other hand a multitude of 4-fermion condensates are allowed, and we suppose

that some of these are responsible for SU (N)X breaking [2]. For our purposes here

we can take the effective theory describing the SU (N)X dynamics to have the gauge

boson masses explicitly present.

We are therefore considering fourth family quarks q′ with dynamical mass in the

N×N symmetric tensor representation of a broken SU (N)X gauge interaction. That

is, the q′L is one component in an N multiplet and the q′R is one component in

an N multiplet. (We discuss anomaly cancellation below.) The remaining quarks

transforming under SU (N − 1)X will not play an important role in our discussion if

they are sufficiently lighter. Given our ignorance of strong interactions there is also

the possibility that SU (N)X can be replaced by a U (1)X , in which case there is no

SU (N − 1)X sector. This possibility will be kept implicit below.

Our approach will be to model the broken gauge interactions as effective 4-fermion

interactions involving q′. This will be reasonable if, in the effective theory, the loops of

interest are dominated by momenta smaller than the 4-fermion compositeness scale.

This requires that there be a well defined separation between compositeness scale and

the fourth family quark masses mq ′
<
∼ 1 TeV (the fourth family leptons are taken to

be somewhat lighter). We might add that our use of 4-fermion operators to model

massive gauge boson dynamics is more justified than their frequent use in modeling

QCD, where the gluons remain massless.

The 4-fermion operators represent the effects of integrating out the massive SU (N)X
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gauge bosons to all orders in the coupling, and not just the effects of one gauge boson

exchange. These operators must respect the chiral flavor symmetries of the strong

interactions. In fact there is a SU (12) flavor symmetry acting on the 12 fields q′L

and(q′c)L, accounting for the QCD colors and the up and down flavors. This is not

an exact symmetry; it must be broken by the flavor physics at a higher scale, as well

as by QCD and weak interactions.

To represent the massive gauge boson exchanges, we find that there is only one

independent operator respecting the approximate flavor symmetry. We write it as a

product of color singlet currents,

c

2
(q′γµγ5q

′)(q′γµγ5q
′). (2)

We take c > 0, which reflects our assumption that the underlying theory produces

an attraction in the q′q′ mass channel. This of course is opposite in sign to the result

of the exchange of one massive SU (N)X gauge boson. Our interest in this operator

originates in the fact that one operator insertion in the appropriate 2-loop diagrams

will induce contributions to S and T proportional to −c.

Let Λ̂ be the naive compositeness scale set by the mass of the SU (N)X gauge

bosons. We now notice that in the effective theory below Λ̂ we are able to sum up

the effects of the above operator to leading order in the number of flavors. That

is we can sum up multiple insertions of the operator in the form of bubble chains,

illustrated in Fig. 1a. Each additional loop is an axial-vector 2-point function, which

at zero momentum will come with a factor 4cf 2
q ′. By f 2

q ′ we denote the heavy quark

contribution, which is the dominant contribution, to f 2 ≈ (250 GeV)2. f 2
q ′ includes

a factor of Nf = 6, the number of Dirac fermion flavors in the loops. The important

point is that these loops are dominated by momenta below Λ̂, and thus are safely

described by the effective theory.
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Figure (1): a) The axial bubble chains modify the 4-fermion operator, at leading order in

1/Nf . b) The axial bubble chains in the T -parameter. c) The axial bubble chains in the

coupling of the Z to the third family. d) The “chain of chains” in the S-parameter.

One effect of these axial bubble chains is that the operator in (2) can have an ef-

fective compositeness scale smaller than Λ̂. In other words our operator becomes

effectively nonlocal, of the form

q′γµγ5q
′C (k2)

2
q′γµγ5q

′ (3)

where kν is the momentum flowing from one q′γµγ5q
′ to the other. When C (k2) is

calculated and expanded in k2 we find

C (k2) =
3

2

m2
q ′

f 2
q ′Λ

2
(1−

k2

Λ2
+ ...) (4)

where

Λ2 = 6m2
q ′(1/(4cf

2
q ′)− 1). (5)

Λ becomes the new compositeness scale when Λ < Λ̂. In succeeding sections we will

let the smaller of Λ and Λ̂ be denoted by Λ.
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In any case, at momentum scales small compared to the true compositeness scale

we have the original local 4-fermion operator with an enhanced coefficient.

C (0) =
c

1− 4cf 2
q ′

(6)

We will restrict ourselves here to 4cf 2
q ′ < 1, and in particular to the case when Λ is

greater than and not too close to mq ′ . We stress the role played by a large Nf , which

can imply a nonnegligible 4cf 2
q ′ even when there is a hierarchy between Λ̂ and mq ′.

From the form of C (k2) one might wonder whether there is some sort of tachyonic

pole at k2 ≈ −Λ2. From the full form of C (k2) we find that a possible pole is pushed

down to more negative values of k2, in which case it becomes physically meaningless if

it occurs in the region of−Λ̂2. There remains the interesting question of what happens

when 4cf 2
q ′ is fine-tuned to approach unity from below, so that a low ‘mass’ tachyonic

axial meson apparently does appear. There is also the possibility of a real axial-vector

meson resonance for 4cf 2
q ′ > 1. These issues will be considered elsewhere [4].

When Fierz transformed the operator in (2) contains a scalar-scalar (q′q ′)(q′q ′)

piece with the appropriate sign to induce a mass. But there is no large Nf justifica-

tion (or large N justification, since we are discussing only one massive fermion in a

SU (N)X multiplet) for the consideration of bubble chains in the scalar channel, in

which case the existence of a light scalar particle with mass of order the fermion mass

becomes questionable. In any case the physics of fermion mass generation is very

sensitive to the physics at scale Λ̂, in contrast to the physics in the effective theory

which we claim is of interest for S and T . It is the latter which we focus on in this

paper.

2 The Fourth and Third Families

Our first task is to produce an anomaly free set of fermions which can realize the

previous description. Rather than introducing yet more fermions, we will instead

assume that SU (N)X also couples to the third family in such a way that gauge

anomalies are canceled between the third and fourth families. The consequence of

this is another observable effect of the new physics, in the form of shifts in the Z

couplings to the third family. This in turn will place strong constraints on how the

new physics can affect S and T .
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The third and fourth family quarks transform under SU (3)QCD × SU (N)X as

follows.

q′L = (3, N), q′R = (3, N), qL = (3, N), qR = (3, N) (7)

The broken SU (N)X dynamics is assumed to produce the fourth family quark masses,

corresponding to q′1q
′
1, where the subscript denotes the first component of an N or N

multiplet. The third family quark masses corresponding to q1q1 are assumed not to be

generated by the broken SU (N)X dynamics, even though their couplings are the same

as the fourth family quarks. This is presumably due to a cross-channel coupling in

some effective potential. (The reader may recall how a two Higgs potential, symmetric

between the two Higgs and with a cross-coupling term φ2
1φ

2
2, will produce a vacuum

expectation value for only one of the Higgs for a range of parameters.) The t and b

will instead have masses fed down via isospin-violating 4-fermion operators generated

by flavor physics at a higher scale. The quarks which transform under SU (N − 1)X

represent an additional sector in the theory, and we will return to it below.

We are in fact discussing a modified version of the model in [2], where the U (1)X

described there is replaced by SU (N)X . We refer the reader to that reference for more

details on the generation of quark and lepton masses. A realistic mass spectrum re-

quires that the charged leptons (τ ′L, τ
′
R, τL, τR) transform as (N,N,N,N) respectively

under SU (N)X . There are no right-handed neutrinos in the theory at TeV scales,

while the left-handed neutrinos (ν ′
L, νL) transform as (N,N). Thus the fourth family

charged lepton mass τ ′1τ
′
1 is in the N ×N channel of SU (N)X while the fourth family

Majorana neutrino mass ν ′
L1ν

′
L1 is in the symmetric tensor, like the quarks.

We are now able to derive the operators arising from integrating out the massive

SU (N)X gauge bosons. We focus on the fourth family (fields with a prime) and the

third family (fields without a prime) and omit the ‘1’ subscripts. There is now an

approximate SU (15)× SU (15) flavor symmetry acting on the 15-plets (q′L, (q
′c)L, τ

′
L,

(τ c)L, ν
′
L) and (qL, (q

c)L, τL, (τ
′c)L, νL) respectively. In addition to this symmetry the

effective 4-fermion operators should respect a discrete symmetry under interchange

of these two multiplets. The allowed operators can then be written in the following

form.
c−

2
J−
5µJ

−µ
5 +

c+

2
J+
5µJ

+µ
5 (8)

J−
µ = −q′γµγ5q

′ + qγµγ5q + ν ′
Lγµν

′
L − νLγµνL + τ ′γµτ

′ − τγµτ (9)
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J+
µ = q′γµγ5q

′ + qγµγ5q − ν ′
Lγµν

′
L − νLγµνL + τ ′γµγ5τ

′ + τγµγ5τ (10)

There is again a single operator involving the q ′ fields only. J−
µ distinguishes between

q and q′ while J+
µ does not. Thus it is only the c− term which causes the q′q′ mass

channel to have a different interaction strength than the q′q mass channel. We expect

that c− + c+ > 0 in order for the q′q′ channel to be attractive, and c− > 0 in order

for the q′q′ channel to be more attractive than the q′q channel.

There will also be many other operators arising from the flavor physics at a higher

scale, which leave behind the approximate flavor symmetries at a TeV. Some of these

operators may not be negligible at a TeV due to anomalous scaling [2]. One example

is the operator which feeds mass to the t, and another is the operator (τ ′Lτ
′
R)(τ

′
Rτ

′
L)

which can help to induce the τ ′ mass. There are also some operators (e.g. those

labeled by C and D in [2]) which contribute to the breakdown of SU (N)X . But none

of these enhanced operators consist purely of q′ fields. Thus the operators induced

by flavor physics are not expected to compete with the SU (N)X induced operators

in our discussion below.

3 Results

We first consider the contributions to T . We find that the basic loops can be expressed

in terms of the contributions to f 2 ≈ (250 GeV)2 from the heavy q′ quarks, the t

quark, the τ ′, and the ν ′
L. We denote these contributions by f 2

q ′ ≡ f 2
t ′ + f 2

b′, f
2
t , f

2
τ ′ ,

and 2f 2
ν′ respectively. We can represent the various f ’s in terms of effective ultraviolet

cutoffs in the corresponding loops [6].

f 2
q ′ =

3m2
q ′

2π2
ln(

Λq ′

mq ′
), f 2

t =
3m2

t

4π2
ln(

Λt

mt

), f 2
τ ′ =

m2
τ ′

4π2
ln(

Λτ ′

mτ ′
), f 2

ν′ =
m2

ν′

4π2
ln(

Λν′

mν′
)

(11)

We allow the various cutoffs to be different, since they are provided either by the

compositeness scale of the 4-fermion operators or by the momentum dependence of

the mass in question.

In terms of these quantities we find

αf 2T =
3∆m2

q ′ +∆m2
ℓ′

12π2
− f 2

ν′ − 4(c−D2
1 + c+D2

2 )

− 16f 2
q ′(c

−D1 + c+D2)(ĉ
−D1 + ĉ+D2) (12)
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where

ĉ± ≡
c±

1− 4(c− + c+)f 2
q ′

(13)

D1 = ∆f 2 − f 2
t + f 2

ν′ (14)

D2 = ∆f 2 + f 2
t + f 2

ν′ − f 2
τ ′ (15)

∆f 2 = f 2
t ′ − f 2

b′ ≈
∆mq ′

mq ′
f 2
q ′ (16)

and mq ′ = (mt ′ + mb′)/2, ∆mq ′ = mt ′ −mb′ and ∆mℓ′ = mν′ −mτ ′ . The first two

terms in (12) arise at one loop where the first is the usual contribution and the −f 2
ν′

term arises from the Majorana nature of the ν ′ mass, as described in [5]. It is clear

that f 2
ν′ must not be too large, if we wish to avoid fine-tuned cancellations.

The last two terms are the negative contributions from the 4-fermion operators.

The third term is a two loop contribution and the fourth term sums up the axial

bubble chains involving fourth family quarks, as illustrated in Fig. 1b. Bubble chains

involving lighter fermions are safely neglected. From (11) we see that these bubble

chains are characterized by a new logarithm for every operator insertion. As we have

mentioned, these chains are leading in 1/Nf , since each bubble sums over the three

colors and two flavors of the q′ quarks. This chain occurs in the isosinglet channel;

isospin breaking masses occur in the two loops at the ends of the chain, allowing all

the interior loops to be without τ3 factors.

Similar corrections are found for the Z couplings to the third family, as illustrated

in Fig. 1c. We find1

∆gbV = 0 (17)

∆gbA = 2(c−D1 + c+D2) + 8f 2
q ′(c

−D1 + c+D2)(ĉ
− + ĉ+) (18)

∆gτV = 2c−D1 + 8f 2
q ′(c

−D1 + c+D2)ĉ
− (19)

∆gτA = 2c+D2 + 8f 2
q ′(c

−D1 + c+D2)ĉ
+ (20)

∆gντL = c−D1 + c+D2 + 4f 2
q ′(c

−D1 + c+D2)(ĉ
− + ĉ+) (21)

These shifts involve the same two combinations of f 2
i ’s which appeared in the T cor-

rection. The experimental constraints on the Z couplings are quite strong especially

for the leptonic couplings, and in particular ∆gτA. This has the consequence that the

1The Z couplings are normalized such that, for example, gb
A

= −1/2 and gντ
L

= 1/2.
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4-fermion contributions to T are constrained to be small compared to the first two

terms in (12).

For S we find the following result.

S =
15

24π
−

1

3π
ln(

mτ ′

mν′
)

−
2

3π
f 2
q′(ĉ

+ + ĉ−) ln(
Λ

mq′
)

1−
1

6
f 2
q′(ĉ

+ + ĉ−)

(1−
1

3
f 2
q′(ĉ

+ + ĉ−))2
(22)

The first two terms are the one-loop contributions to S from the massive fourth family

(with no right-handed neutrino and with all masses sufficiently above the Z mass).

The origin of the second term is described in [7].

The third term is the negative contribution from the 4-fermion operators. Here

a loop integral emerges which is different from the f 2
q′ integral, and this produces

a ln(Λ/mq′) dependence in addition to the one in f 2
q′ . The ĉ±’s appearing in this

term again reflect the effect of the axial bubble chains. The last factor in the third

term indicates that we have summed another bubble chain (in the isovector channel),

where at each “vertex” the axial bubble chain is exchanged in the t channel. This

is illustrated in Fig. 1d. This outer chain in the “chain of chains” is summing a

particular subset of the subleading graphs (subleading in 1/Nf). In the case that

Λ < Λ̂, there would be additional contributions, with loop momenta lying in the

range between Λ and Λ̂. These contributions are complicated by the momentum

dependence of the axial bubble chain (as given by C (k2) in (3)); they could be of the

same order as the terms we are keeping although they lack the ln(Λ/mq′)
2 factor. We

have also dropped terms proportional to any f 2
i other than f 2

q′ , since the f 2
q′ terms

clearly dominate.

4 Another Sector?

We now consider the additional fermions transforming under the unbroken, and we

assume confining, SU (N − 1)X . Here the discussion is much more model dependent.

We will just comment on the possible significant changes to the S result, since any

new contributions to T are just a reflection of the unknown up-down mass splittings

in the new sector. There are four possibilities.
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• The whole SU (N − 1)X sector doesn’t exist. This would assume that a U (1)X

could replace and play the role of the SU (N)X [2].

— Our results remain as is.

• The SU (N − 1)X fermion masses are small enough so that the one loop contribu-

tions to S are small, while the SU (N − 1)X confining scale is large enough so that

the bound states have so far escaped detection. We include here the possibility

that the SU (N − 1)X fermion masses are forbidden by certain discrete chiral sym-

metries [8].

— There will be additional negative contributions to S from 4-fermion opera-

tors, for example operators formed as the product of SU (N)X currents, which

involve both the SU (N − 1)X fermions and the fourth family quarks. The light

SU (N − 1)X fermions then appear in a loop which only depends logarithmically

on the light fermion mass, giving contributions like the third term in (22) except

with a different log factor. These new negative terms can easily be larger than the

one appearing in (22).

• The SU (N − 1)X fermion masses are large enough so that the usual one loop

contributions to S apply, but are still significantly lower than the fourth family

quark masses.

— We would have to include the positive one loop contributions from SU (N − 1)X

fermions. This could be offset to some extent by terms like the second term in (22),

coming from isospin splittings in the quarks and leptons of that sector. The one

loop results are also modified by the SU (N − 1)X strong interactions. 4-fermion

induced effects beyond those in previous case would not be substantial as long as

the decay constant of the SU (N − 1)X fermions is sufficiently less than fq ′.

• The SU (2)X fermion masses are of the same order as the fourth family quark

masses.

— There would be many additional contributions from the 4-fermion effects, but

the individual fermion masses are reduced because f 2 is fixed. The basic bubble

loop contributing to S would be enhanced relative to those appearing in T and the

Z couplings by a SU (3)X color factor.
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5 Discussion

For illustration we provide some numbers for the case when we ignore all contribu-

tions from the model-dependent SU (N − 1)X sector. We note that the strongest

constraints come from ∆gτV = .00083± .00158 and ∆gτA = .00015± .00063 [9].

• The masses can be fine-tuned, mq ′ = 670,∆mq ′ = 44, mτ ′ = 735, mν′ = 304 GeV

with cutoffs Λq ′ = Λt = 2mq ′,Λτ ′ = 2mτ ′ ,Λν′ = 2mν′ , to give T = D1 = D2 = 0

(and f = 250 GeV). Then c− and c+ are free to vary to produce a negative S.

But this is not a serious possibility in the absence of a dynamical mechanism to

produce these particular masses.

• If we insist on no significant fine tuning among the terms in D1 and D2 then we

expect that |D1| /f
2 >

∼ 0.03 and |D2| /f
2 >

∼ 0.03, which in turn would require that

c−f 2 <
∼ 0.03 and c+f 2 <

∼ 0.02. This would imply that the contributions of the

4-fermion operators to both S and T are negligible. The one loop contributions

are such that T is small as long as there is a suitable hierarchy in the masses

mq ′ > mτ ′ > mν′ [5], while S ≈ 0.13(0.08) for mτ ′/mν′ = 2(3).

• It has been suggested recently that the τ -polarization data shows internal in-

consistencies [10]. If we exclude the τ -polarization data then we have ∆gτV =

−.0059 ± .0042 and ∆gτA = .0007 ± .0007 [9]. For example the masses mq ′ ≈

700,∆mq ′ ≈ 25, mτ ′ ≈ 550, mν′ ≈ 245 GeV yield D1/f
2 ≈ −0.03 and D2/f

2 ≈ 0.03

which along with c−f 2 ≈ 0.12 and c+f 2 ≈ 0.08 would produce values of ∆gτV and

∆gτA consistent with the remaining data. In this case the 4-fermion contribution

to S could easily be comparable to the other contributions, resulting in a much re-

duced or even negative S. T is still completely dominated by the first two terms in

(12), which need to cancel at the 10% level (for these masses and when T ≈ −0.2).

In summary we have considered fourth family quarks in a symmetry breaking channel

of a new strong interaction. Below the symmetry breaking scale we find a single

effective 4-fermion operator involving the fourth family quarks. A single insertion of

this operator generates a negative contribution to both S and T . We summed multiple

insertions in a complete model in which gauge anomalies are cancelled through the

couplings of the new interaction to the third family. The constraints on the shifts of
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Z couplings to the third family then strongly constrain the new contributions to T .

Significant negative contributions to S are still possible.
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