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aCentre de Physique Théorique, UPR 7061, CNRS Luminy, F-13288 Marseille, France

bDepartment of Theoretical Physics, University of Thessaloniki,
Gr-54006, Thessaloniki, Greece.
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1 Introduction

One difficulty in our effort to test the Standard Model (SM) at a hadronic collider, and
search for any new physics (NP) beyond it, is due to the uncertainties pertaining to
the gluon distribution [1, 2, 3]. Remembering for example, that gg → H provides the
dominant contribution to H-production at LHC in the region of 100 GeV . mH .

800 GeV [4, 5], we infer that a good knowledge of the gluon distribution is necessary for
studying the properties of the Higgs particle and precisely estimating the backgrounds.

The main constraints to the gluon distribution inside a nucleon at present, arise from
DIS measurements which probe the low x range [6], and at higher x from measurements
of the pT distribution of a prompt photon produced in pp → γX at

√
s = 23 GeV WA70

[7], and in pBe → γX at plab = 530 GeV [8], and also from heavy flavor production [9].
The combinations of subprocess cross sections contributing to prompt photon production
are always forward-backward symmetrical in the subprocess c.m., and consist of

dσ̂(qq̄ → γg)

dt̂
, (1)

and
dσ̂(gq(q̄) → γq(q̄))

dt̂
+

dσ̂(q(q̄)g → γq(q̄))

dt̂
, (2)

as well as of subprocess cross sections in which the photon comes from a quark or gluon
fragmentation. The sensitivity of such measurements on g(x), arises from the fact that
for pp or proton-Nucleus scattering, the second subprocess (2) dominates over most of the
pT region [1], provided that the produced photon is constrained to be sufficiently isolated
[10], in order to reduce the magnitude of the fragmentation contribution.

Further information on g(x), from such forward-backward symmetrical subprocesses,
could arise at LHC and the upgraded Tevatron. It has been shown [11] that a detailed
measurement of the rapidity distributions of an inclusively produced gauge bosonW, Z or
γ, accompanied by a hard jet might provide an accurate determination of the gluon struc-
ture function. In principle, the same kind of information could also arise from Higgs+jet
production, but the expected statistics is very limited in this case. Since the theoretical
treatment of any (V+jet) production for (V = W, Z, γ, H) is very similar, we consider
below all these cases together.

Thus, if in a (V+jet) pair production, we restrict ourselves to measurements of the
pT and/or rapidity distributions of V , then we are only sensitive to the combinations of
subprocess cross sections1

dσ̂(qq̄ → V g)

dt̂
, (3)

and
dσ̂(gq(q̄) → V q(q̄))

dt̂
+

dσ̂(q(q̄)g → V q(q̄))

dt̂
, (4)

1For the moment we disregard contribution from photon fragmentation, to which we come back below.
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while for Higgs production we also get contributions from

dσ̂(gg → Hg)

dt̂
. (5)

These combinations of the subprocess cross sections lead to (V+jet) distributions which
are symmetrical with respect to the (V+jet) c.m. rapidity ȳ, as well as with respect to
cos θ∗, where θ∗ is the subprocess c.m. scattering angle.

We want to stress in this paper that in addition to these quantities, there exist a
contribution proportional to the combination

dσ̂(gq(q̄) → V q(q̄))

dt̂
− dσ̂(q(q̄)g → V q(q̄))

dt̂
, (6)

of the subprocess cross sections, which induces (V+jet) distributions which are anti-

symmetric with respect to ȳ, as well as with respect to cos θ∗. It turns out that these
distributions are directly sensitive to g(x) (in fact they are directly proportional to it)
and supply independent additional information, especially in the large x range, which to
our knowledge has not been used so far, certainly due to the lack of statistics in present
colliders. Of course, they also provide new information for the other parton distributions.
The aim of the present paper is to study these quantities. To achieve this goal we con-
struct for each (V+jet) final state, a forward-backward asymmetry with respect to cos θ∗,
which is thus a function of the subprocess energy squared ŝ ≡ M2, as well as an odd
function of the rapidity ȳ of the center of mass.

In calculating the aforementioned asymmetries for the V = W, Z, H cases, our
philosophy is to keep the leading QCD contribution for the (V+jet) final state, and
include the antenna pattern effect arising from the additional (V+jet+ soft gluon) final
state integrated in a suitable phase space region [12, 13], as a rough estimate of higher
order QCD corrections. It turns out that the exact size of this antenna phase space
region, is not very important for the considered asymmetries. For the (γ+jet) case,
we also include the photon fragmentation contribution, whose effect is again not very
important, provided that a sufficiently strong isolation cut is imposed on the produced
photon. Such an isolation is anyway desired, in order to increase the sensitivity of the
above asymmetry on the gluon distribution.

The content of the paper is the following. In Section 2, the formalism is presented
containing the definition of the forward-backward asymmetry for the V+jet production,
and including also discussions of the possible antenna pattern effects and the photon
fragmentation contribution. In Sect. 3 the sensitivity of the above asymmetry to the
gluon distribution is discussed, while the conclusions are given in Sect. 4. Finally the
subprocess cross sections and quark distributions for the various V cases, are given in the
Appendix.

2 Formalism
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2.1 The V+jet contribution.

The generic subprocess contributing to the pp → V jet ... (V = W, Z, γ, H) cross section
(apart from the photon fragmentation case discussed separately), is written as

a(p1) + b(p2) → V (p3) + c(p4) , (7)

where the momenta are indicated in parentheses and the masses of the partons (a, b, c)
are neglected. As usual ŝ = (p1 + p2)

2, t̂ = (p3 − p1)
2, û = (p3 − p2)

2. We also define
τ = ŝ/s, where s is the LHC (or Tevatron) c.m. energy-squared. The rapidity ȳ of
the c.m. of the (V+jet) subprocess determines the momentum fractions of the incoming
partons through

xa =
√
τeȳ , xb =

√
τe−ȳ , (8)

while the scattering angle in the c.m. of the same subprocess satisfies2

cos θ∗ =
û− t̂

û+ t̂
. (9)

The (V+jet) production cross section in pp collisions is given by

dσ(pp → V jet)

dτdȳd cos θ∗
=

ŝ−m2
V

2

{
g(xa, Q

2)g(xb, Q
2)
dσ̂(gg → V g)

dt̂

+Σ̃V (xa, xb)
dσ̂(qq̄′ → V g)

dt̂

+
1

2

[
g(xa, Q

2)ΣV (xb) + ΣV (xa)g(xb, Q
2)
] [dσ̂(gq → V q)

dt̂
+
dσ̂(qg → V q)

dt̂

]

+
1

2

[
g(xa, Q

2)ΣV (xb)− ΣV (xa)g(xb, Q
2)
] [dσ̂(gq → V q)

dt̂
− dσ̂(qg → V q)

dt̂

]}
, (10)

where (8, 9) should be used. In (10), Q ≃ pT/2 is the usually preferred factorization
scale of the distribution functions which mimic the next to leading order corrections. The
ΣV , Σ̃V terms describe combinations of quark (antiquark) distributions weighted by the
quark electromagnetic or weak charge, while dσ̂ denote the correspondingly normalized
subprocess cross sections, for the various V = H, W, Z, γ cases. These are given in
the Appendix for a pp Collider, while for the pp̄ Tevatron they should be modified in an
obvious way.

The last two terms of eq.(10) have been constructed by combining the corresponding
gluon×quark and the quark×gluon contributions in a symmetrical and an antisymmetrical
parts. It is important to note that the last term in (10) is antisymmetric with respect
to ȳ or cos θ∗ for the Tevatron or LHC Colliders, while all other terms are symmetric
in both these variables. This last term will therefore be washed out if we integrate over
ȳ, as it always happens whenever we only look at the rapidity and/or pT distribution

2For a collection of relevant kinematical formulae see e.g. Appendix A3 in [14].
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of a single V or jet. It will also be washed out, in case we cannot discriminate V from
the accompanying jet, and therefore also in dijet production. Particularly for the dijet
case, we note that so long we cannot discriminate between a gluon and a quark jet, the
cos θ∗-antisymmetric term in (10) vanishes identically, and only the symmetric part of
(10) contributes. For studying therefore the last term in (10), which is the main purpose
of the present paper, the two high pT objects in the final state should be distinguishable,
as e.g. in the case a W, Z or γ production, accompanied by a high pT jet.

We next turn to the corrections to the various terms in (10), arising from soft gluon
emission in the antenna approximation, and from photon fragmentation in case V = γ.

2.2 Adding the antenna pattern contribution.

The hadronic antenna patterns in V = W, Z, γ + jet production have been shown
to provide a valuable diagnostic tool for probing the nature of the underlying parton
subprocess. They could also provide a good tool for distinguishing between conventional
QCD and new physics production [15] (large ET jet events in hadronic collisions, or
large anomalous Q2 events at HERA). Here the philosophy is different: in order to make
our treatment more realistic, we add to the leading order calculation of the V+jet cross
section, the contribution from the soft gluon emission. Thus, for each subprocess like in
(7), we consider the corresponding subprocess

a(p1) + b(p2) → V (p3) + c(p4) + g(k) . (11)

The soft gluon emission in such subprocesses is controlled by the basic antenna pattern
distribution [12]

[ij] =
pi · pj

pi · k pj · k
, (12)

which should be adequate for the description of gluonic minijets with energies k0 much
smaller than those of the hard jets [13].

The contribution from the (V+jet + soft gluon) production cross section in pp colli-
sions is then given by (compare (10))

k0
dσ(pp → V jet)

dτdȳd cos θ∗d3k
=

3αs(ŝ−m2
V )

8π2
·

{
g(xa, Q

2)g(xb, Q
2) ([12] + [14] + [24])

dσ̂(gg → V g)

dt̂

+ Σ̃V (xa, xb)

(
[14] + [24]− [12]

9

)
dσ̂(qq̄′ → V g)

dt̂

+
1

2

[
g(xa, Q

2)ΣV (xb) + ΣV (xa)g(xb, Q
2)
]
·

[(
[12] + [14]− [24]

9

)
dσ̂(gq → V q)

dt̂
+

(
[12] + [24]− [14]

9

)
dσ̂(qg → V q)

dt̂

]

+
1

2

[
g(xa, Q

2)ΣV (xb)− ΣV (xa)g(xb, Q
2)
]
·

5



[(
[12] + [14]− [24]

9

)
dσ̂(gq → V q)

dt̂
−

(
[12] + [24]− [14]

9

)
dσ̂(qg → V q)

dt̂

]}
.(13)

Neglecting all parton masses, except mV , we use the notation pµ1 =
√
ŝ/2(1, 0, 0, 1),

pµ2 =
√
ŝ/2(1, 0, 0,−1) for the description of the momenta of the incoming partons a, b in

their c.m. (compare (11)), and the notation

pµV = pµ3 = (EV T cosh y∗V , pT , 0, EV T sinh y∗V ) , (14)

pµ4 = pT (cosh η
∗
c , − 1, 0, sinh η∗c ) , (15)

kµ = kT (cosh(η
∗
c + δη), cos(δϕ), sin(δϕ), sinh(η∗c + δη)) , (16)

for the final state particles in the same frame [13]. Here EV T =
√
m2

V + p2T gives the
transverse energy of V , and (y∗V , η∗c ) denote the rapidities of (V, c) in the (a, b)-c.m.
frame. The final gluon is taken to be soft, which means

ΛQCD ≪ k0 ≪
√
ŝ/2, EV T cosh y∗V , pT cosh η∗c . (17)

Note from (15, 16), that to the extent that δη , δϕ are small, the rapidity and azimuthal
angle of the minijet generated by the soft gluon are close to those of the hard jet generated
by parton c; compare (11).

In terms of these variables the antenna pattern coefficients in (12) may be expressed
as

[12] =
2

k2
T

, (18)

[14] =
eδη

k2
T [cosh(δη) + cos(δϕ)]

, , (19)

[24] =
e−δη

k2
T [cosh(δη) + cos(δϕ)]

, (20)

while the phase space of the soft gluon is determined by

d3k

k0
= kTdkT dδη dδϕ . (21)

Defining δR ≡
√

δη2 + δϕ2, we choose to integrate the antenna activity contained in
(13) in the region

δR1 ≤ δR ≤ δR2 , (22)

kTmin ≤ kT ≤ kTmax . (23)

Adding then (10) and the result of integrating (13) we get

dσ(pp → V jet)

dτdȳd cos θ∗
=

ŝ−m2
V

2

{
g(xa, Q

2)g(xb, Q
2)Igg

dσ̂(gg → V g)

dt̂

6



+ Σ̃V (xa, xb)Iqq̄
dσ̂(qq̄′ → V g)

dt̂

+
1

2

[
g(xa, Q

2)ΣV (xb) + ΣV (xa)g(xb, Q
2)
]
Igq

[
dσ̂(gq → V q)

dt̂
+
dσ̂(qg → V q)

dt̂

]

+
1

2

[
g(xa, Q

2)ΣV (xb)− ΣV (xa)g(xb, Q
2)
]
Igq

[
dσ̂(gq → V q)

dt̂
− dσ̂(qg → V q)

dt̂

]}
,(24)

where the antenna contribution is contained in the parameters

Igg = 1 +
3αs

2π2
ln

(
kTmax

kTmin

)[
π(δR2

2 − δR2
1) + ξ(δR2, δR1)

]
, (25)

Igq = 1 +
3αs

2π2
ln

(
kTmax

kTmin

)[
π(δR2

2 − δR2
1) +

4

9
ξ(δR2, δR1)

]
, (26)

Iqq̄ = 1 +
3αs

2π2
ln

(
kTmax

kTmin

)[
−π

9
(δR2

2 − δR2
1) + ξ(δR2, δR1)

]
, (27)

expressed in terms of the function3

ξ(δR2, δR1) =

∫ δR2

δR1

dδR δR

∫ 2π

0

dφ
cosh(δR cosφ)

cosh(δR cosφ) + cos(δR sin φ)
. (28)

A general comment is in order here. The quantitative predictions on the magnitude of
the colour flow are based on the hypothesis of Local Parton Hadron Duality [16], which
assumes that colour coherence effects survive the hadronization stage; an hypothesis well
confirmed by existing data [17].

2.3 Photon fragmentation contribution.

The result (24) should be adequate for the V = W, Z, H cases. For the γ+jet case though,
we should add the contribution from processes where the final state photon comes from
the fragmentation of a quark or gluon. Although such processes are formally of higher
order in QCD, they may occasionally turn out to be quite important, since the logarithmic
growth of the fragmentation function due to scaling violations, compensates one power of
αs [12]. The contribution from such fragmentation to the γ+jet cross section arises from
each partonic subprocess

a(p1) + b(p2) → c(p3) + d(p4) , (29)

in which the parton c fragments subsequently to a photon, through a fragmentation
described by the function Dγ

c (z, Q
2
f ), where z denotes the fraction of the c-momentum

3Notice that this result depends crucially on the fact that the antenna integration region (22, 23) is
chosen so that δϕ in (16) remains small, so that kµ never goes so close to p

µ

4
, to make the perturbative

treatment unreliable; compare (16, 15).
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carried by the photon. Following [10] we write the next to leading QCD order calculation
of the fragmentation contribution to pp → γ jet as

dσfrag(pp → γ jet)

dτdȳd cos θ∗
=

ŝ

2

∑

abcd

fa/p(xa, Q
2)fb/p(xb, Q

2) · dσ̂(ab → cd)

dt̂
·
∫ 1

zmin

dzDγ
c (z, Q

2
f ) , (30)

where fa/p(xa, Q
2) denotes the a-parton distribution function in a proton, at a scale Q ≃

pT/2.
∑

abcd refers to the summation over the full list of subprocesses, q(q̄) + q(q̄) →
q(q̄) + q(q̄), q(q̄) + g → q(q̄) + g, qq̄ → gg, gg → qq̄. The expressions for the subprocess
cross sections can be found in [18, 12].

In (30), Qf denotes the scale of the fragmentation function which, according to the
next to leading order calculation in [10], is determined by

Qf =
pγTR

cosh ηγ
, (31)

where ηγ is the photon rapidity in the laboratory frame, and pγT its transverse momentum.

In (31), R =
√
(δη)2 + (δϕ)2 denotes the size of the isolation cone around the photon

produced from the c-fragmentation, within which the hadronic energy Ehad is constrained
to be smaller than some max(Ehad), which in turn determines also zmin in (30) through

zmin = 1− max(Ehad)

Ec

. (32)

The smaller max(Ehad) is chosen, the more isolated the photon becomes, which in
turn means a smaller photon fragmentation contribution to the cross sections. In the
calculations below we use R = 0.7 and max(Ehad) ≃ 4 GeV [20] in (31, 30), which means
constraining the photon to be quite isolated. Using then standard leading order expres-
sions for the various partonic cross sections in (30) [12], and the photon fragmentation fit
[21]

zDγ
q (z, Q

2
f ) =

α

2π

[
e2q

2.21− 1.28z + 1.29z2

1− 1.63 ln(1− z)
z0.049

+0.002(1− z)2z−1.54

]
ln(Q2

f/Λ
2
QCD) , (33)

zDγ
g (z, Q

2
f ) =

α

2π
0.0243(1− z)1.03z−0.97 ln(Q2

f/Λ
2
QCD) (34)

(with Λ2
QCD = 0.04GeV 2), we calculate the photon fragmentation contribution to the

cross sections, which should be added to the cross section in (24). It turns out that for
all numerical applications presented below, dσfrag(pp → γ jet) from (30) is always less
than 10% of dσ(pp → γ jet) from (24).
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We are aware that our estimate of the fragmentation contribution is very approxima-
tive. Nevertheless there are two basic reasons to be convinced that we are not far from a
precise next to leading order calculation. Firstly, concerning photon fragmentation func-
tions, it has been shown in [22] that, in the large z domain we probe (z ≃ 1), the photon
fragmentation functions beyond leading order do not strongly deviate from the leading
log parametrization we have used. Secondly, with respect to the choice of the scale of the
fragmentation function and its relation to the isolation cone, we should admit that a fully
satisfactory treatment is lacking at present [23]. In the present work we simply followed
the results of [10].

2.4 The Asymmetry

The forward-backward asymmetry is defined as

AV (τ, ȳ) =

∫ 1−ǫ

0
d cos θ∗

[
dσ(pp→V jet)
dτdȳd cos θ∗

∣∣∣∣
θ∗

− dσ(pp→V jet)
dτdȳd cos θ∗

∣∣∣∣
π−θ∗

]

∫ 1−ǫ

0
d cos θ∗

[
dσ(pp→V jet)
dτdȳd cos θ∗

∣∣∣∣
θ∗

+ dσ(pp→V jet)
dτdȳd cos θ∗

∣∣∣∣
π−θ∗

] , (35)

where ǫ is a small positive number serving to exclude the angular region around the beam
direction, where the cross sections are not measurable, and the pertubative treatment
not applicable. The V production cross section appearing in (35) is given in (10), and
can be refined by including in it the gluon bremsstrahlung contribution at the antenna
approximation as indicated in (24), as well as the fragmentation contribution from (30)
for the photon case.

As it can be seen from (24, 30), the asymmetry AV (τ, ȳ) is always an antisymmetric
function of ȳ. For the V = W, Z, H cases, where (24) contributes (containing the leading
order and the soft gluon contributions inside the integrals Ii), it can be expressed as

AV (τ, ȳ) =

[g(xa)ΣV (xb)− ΣV (xa)g(xb)] IgqJ
V−
gq

[g(xa)ΣV (xb) + ΣV (xa)g(xb)] IgqJV+
gq + Σ̃V (xa, xb)Iqq̄JV

qq̄ + g(xa)g(xb)IggJV
gg

. (36)

The antenna pattern parameters appearing here, are given in (25-27), while those from
the various subprocess cross sections are written as

JV−
gq =

1

2

∫ 1−ǫ

0

d cos θ∗
[
dσ̂(gq → V q)

dt̂
− dσ̂(qg → V q)

dt̂

]
, (37)

JV+
gq =

1

2

∫ 1−ǫ

0

d cos θ∗
[
dσ̂(gq → V q)

dt̂
+
dσ̂(qg → V q)

dt̂

]
, (38)

JV
qq̄ =

∫ 1−ǫ

0

d cos θ∗
[
dσ̂(qq̄′ → V g)

dt̂

]
, (39)
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JV
gg =

∫ 1−ǫ

0

d cos θ∗
[
dσ̂(gg → V g)

dt̂

]
, (40)

where of course (40) is relevant only in the Higgs case. The ȳ-antisymmetry of AV is then
obvious on the basis of (8, 36). Its direct dependence on the gluon distribution g(x) is
also clear in (36).

It is possible to write a corresponding formula for the Aγ case, but this time the result
is more complicated, since the fragmentation contribution involves many subprocesses.

3 Sensitivity to the gluon distribution.

In principle the above asymmetries supply additional independent information on the
parton distributions, and should be used together with the other usual measurements
to constrain these distributions. Since these asymmetries are proportional to the gluon
distribution, we would like to explore here their usefulness for constraining g(x), assuming
that the quark distributions have already been precisely determined by other means. Thus
here, we are interested in using the above asymmetries for the various production processes
in order to improve our knowledge on the gluon distribution g(x), particularly in the large
x region, where most of the uncertainties lie. We proceed as follows.

We first want to see what uncertainty our present ignorance of the parton distributions
in general, and of the gluon distribution in particular, imply for the above asymmetry.
This is done by using the existing fits for the parton distributions [1, 2, 3], which provide
an estimate of the bands inside which the asymmetry may lie, for various values of the
V+jet invariant mass M =

√
ŝ and the rapidity ȳ of the V+jet pair. These bands are

given by the dotted lines in Figs.1, 2, 3, 4 for the W±, Z, γ and H production cases
respectively, while the full line determines the “averaged” asymmetry in each of these
cases. In all figures we use ǫ = 0.05 to cut the forward or backward V production, with
respect to the c.m. angle; but the results are not sensitive to the exact magnitude of this
value; (compare (35)).

In the figures we also include the antenna pattern contribution generated by a soft
gluon jet “close” to the hard jet generated by the parton c; compare (16, 22, 23). This is
integrated in the phase space region [13], [24]:

0.7 . δR . 1 , 70GeV . kT . 200GeV for LHC (41)

0.7 . δR . 1.3 , 10GeV . kT . 30GeV for Tevatron (
√
s = 2TeV ) . (42)

The effect of such antenna contributions is to increase the forward and backward cross
sections and the asymmetry by roughly 10%, in all cases.

For the γ production, we also include the fragmentation contribution from (30). It
turns out that for the strong photon isolation constrain imposed by max(Ehad) = 4GeV
(compare (30, 32), the fragmentation contribution to the forward or backward cross sec-
tions are at the 10% level. This photon fragmentation contribution tends to decrease the
asymmetry by roughly 10%.
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Thus, the bands in Figs.1-4, give an estimate of the present uncertainty on these
asymmetries, which is due to our present ignorance of the gluon distributions. To see what
can be achieved by LHC and/or the upgraded Tevatron, we indicate on the same figures
the uncertainties of a possible (future) measurement of these asymmetries, assumed to lie
on the “averaged” solid line. These uncertainties include the statistical ones implied by
the integrated luminosities (2 experiments with 3 years of running) of 600fb−1 and 12fb−1

for the LHC (
√
s = 14 TeV ) and the upgraded Tevatron (

√
s = 2 TeV ) respectively. For

W and Z, we only retain leptonic decay modes with branching fractions Br = 0.16 and
0.09, respectively. One should notice that the Z + jet final state is experimentally very
clean.

For γ and H we assume a detection efficiency of 0.8 and 0.01 respectively. However
γ + jet final state suffers from a background from neutral pions, which will limit the
accuracy of such a final state. The detection efficiency in the Higgs case is of course very
much dependent on the value of the Higgs mass which controls the value of the branching
ratios in γγ, WW ∗, ZZ∗ etc, and the value of 0.01 is only chosen for orientation.

In the illustrations given in Figs.1-4 we have computed the statistical uncertainties
taking bins of δȳ = ±0.02 (indicated by the horizontal lines in the figures) and δτ =
(±300 GeV · M)/s. Eq.(8) gives the relation between the kinematical domains (τ =
M2/s, ȳ) and (xa, xb). Note that reducing the size of the bins would make the domain
in (xa, xb) more restrictive, but it would simultaneously increase the statistical error.

To these statistical uncertainties we quadratically add the uncertainties implied by the
present knowledge of the quark distribution functions, estimated by their spread among
the various models. One should take into account that at LHC the lepton pseudorapidities
from weak gauge bosons decays will provide the key to measure the q, q̄ distribution
functions within an accuracy of ≃ 1% [11]. The resulting total uncertainties are indicated
by the vertical error bars at the central point of each bin.

Figs.1-4 show the kinematical domains where the measurement of the asymmetries
can provide useful constraints on g(x). In order to get informations on g(x) at large x,
one needs measurements at large M and ȳ; compare (8). The number of events is however
decreasing with M and ȳ. For LHC we see that asymmetries for W and γ production are
useful (i.e. at the percent level) for M . 1000 GeV and |ȳ| . 2, which means x values
up to x ≃ 0.3. The results for Z production are given in Fig.2. The expected sensitivity
to g(x) is weaker than in the W, γ cases and it can be useful only up to x ≃ 0.1. The
Higgs case is shown in Fig.4. One cannot expect an improvement on the determination
of g(x) from it, but it can contribute to consistency checks, particularly with respect to
excluding possible New Physics contributions.

For the upgraded Tevatron the lower energy (
√
s = 2TeV ) and the lower luminosity

forces us to restrict to M . 200GeV , for which we could reach useful information (at the
percent level) only for x . 0.1 and only from γ production (compare Fig.3), the W case
giving only consistency checks.
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4 Conclusions

In this paper we have shown that forward-backward asymmetries with respect to the
subprocess c.m. scattering angle in V+jet production at hadron colliders, are directly
proportional to the gluon distribution function g(x). We have then studied how measure-
ments of these asymmetries can improve our knowledge of this gluon distribution.

We have considered V+jet production at the upgraded Tevatron and at the LHC, for
the cases V = W±, Z, γ and H . In order to make our treatment more realistic, we have
added to the leading V+jet cross section, the contribution from the soft gluon emission in
the form of an antenna pattern distribution. In the case of the photon we have also added
the photon fragmentation contribution arising from the various subprocesses involving
two body scattering among quarks and gluons.

We have made an estimate of the accuracy at which these asymmetries can be mea-
sured at the upgraded Tevatron and at the LHC in several bins of V+jet invariant mass
and c.m. rapidity. Each bin corresponds to a certain domain in the fraction of momentum
x carried by the partons. We have given the kinematical domains where this accuracy
would allow a substantial improvement in the knowledge of the gluon distribution g(x).
More explicitly:

• At the upgraded Tevatron (
√
s = 2 TeV , with an integrated luminosity of 12 fb−1)

and using mainly the γ+jet process, one can expect to reach an accuracy of the
percent level up to about x ≃ 0.1.

• At LHC (
√
s = 14 TeV , with an integrated luminosity of 600 fb−1), mainly through

the γ+jet and W+jet processes (and at a weaker level the Z+jet one) one should
test g(x) at less than one percent up to x ≃ 0.3.

• A comparison of the results in the various modes, including the H+jet one (which
is by itself not accurate enough to severely constrain g(x)) should give consistency
checks and constrain possible non standard contributions. In this respect, the radi-
ation antenna pattern may also help.

The present study should just be taken as “a stone to be used for the construction
of the building”. Obviously the experimental information provided by these asymmetries
should be inserted in a global analysis involving all other observables and all parton
distributions. In this context it should be remembered that the information contained in
these asymmetries arises from subprocess-terms which are completely different from those
determining the present prompt photon [7, 8] and the dijet production cross sections at the
Tevatron [25]. The simple-minded analysis presented here was just aimed at showing the
peculiar role of these asymmetries for the purpose of determining the gluon distribution
function, provided - as it will be the case in future hadronic colliders - high statistics will
allow to take into account this forward backward asymmetry in a global analysis.
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Appendix: Parton expressions for V production at a pp Col-
lider.

For H production the relevant quark distribution to be used in (10, 24) are

ΣH(x) = Σ(x) =
∑

q

[
q(x,Q2) + q̄(x,Q2)

]
, (A.1)

Σ̃H(xa, xb) =
∑

q

[
q(xa, Q

2)q̄(xb, Q
2) + q̄(xa, Q

2)q(xb, Q
2)
]

, (A.2)

where the sum is over all light quark flavours. The subprocess cross sections can be found
in [19, 14]. Note that the gluon-gluon term in (10) contributes only for Higgs production,
and it should be ignored in the (W, Z, γ) cases below.

For W production (W ≡ W+ +W−)

ΣW (x) = Σ(x) , (A.3)

Σ̃W (xa, xb) = d(xa, Q
2)ū(xb, Q

2) + ū(xa, Q
2)d(xb, Q

2) + d̄(xa, Q
2)u(xb, Q

2)

+ u(xa, Q
2)d̄(xb, Q

2) + [u → c , d → s] , (A.4)

provided we neglect the CKM matrix elements Vtd, Vts. The corresponding subprocess
cross sections, to leading order in QCD, are

dσ̂(qq̄′ → Wg)

dt̂
=

αs

√
2GFM

2
W

4ŝ2
8

9

t̂2 + û2 + 2M2
W ŝ

t̂û
, (A.5)

dσ̂(gq → Wq′)

dt̂
=

αs

√
2GFM

2
W

4ŝ2
1

3

ŝ2 + û2 + 2M2
W t̂

−ŝû
, (A.6)

dσ̂(qg → Wq′)

dt̂
=

αs

√
2GFM

2
W

4ŝ2
1

3

ŝ2 + t̂2 + 2M2
W û

−ŝt̂
. (A.7)

Correspondingly, for Z production

ΣZ(x) =
∑

q

(g2Lq + g2Rq)
[
q(x,Q2) + q̄(x,Q2)

]
, (A.8)

Σ̃Z(xa, xb) =
∑

q

(g2Lq + g2Rq)
[
q(xa, Q

2)q̄(xb, Q
2) + q̄(xa, Q

2)q(xb, Q
2)
]

, (A.9)

where the Z-couplings to the L and R quarks gLq = t
(3)
q − eqs

2
W and gRq = −eqs

2
W ,

are absorbed to the definition of the ΣZ , Σ̃Z distributions. In this normalization, the
corresponding subprocess cross sections are given by (A.5-A.7), after replacing MW →
MZ .

Finally for γ production we have

Σγ(x) =
∑

q

e2q
[
q(x,Q2) + q̄(x,Q2)

]
, (A.10)
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Σ̃γ(xa, xb) =
∑

q

e2q
[
q(xa, Q

2)q̄(xb, Q
2) + q̄(xa, Q

2)q(xb, Q
2)
]

. (A.11)

Since the square of the quark charge e2q has been inserted in the definition (A.10, A.11),
it is removed from the subprocess cross sections, which is thus written to leading QCD
order as

dσ̂(qq̄ → γg)

dt̂
=

παsα

ŝ2
8

9

t̂2 + û2

t̂û
, (A.12)

dσ̂(gq → γq)

dt̂
=

παsα

ŝ2
1

3

ŝ2 + û2

−ŝû
, (A.13)

dσ̂(qg → γq)

dt̂
=

παsα

ŝ2
1

3

ŝ2 + t̂2

−ŝt̂
. (A.14)
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Figure 1: Asymmetry for W+jet production with invariant mass M , as a function of
the pair rapidity ȳ, for LHC (a,b,c) and the upgraded Tevatron (d). The band between
the two dotted lines is due to the present uncertainty on the gluon distribution function.
The solid line is the center of the band. The error bar shows the accuracy at which the
asymmetry can be measured for each indicated bin (dashed lines) taking into account
statistical errors and uncertainties on quark distribution functions.
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Figure 2: Asymmetry for Z+jet production with invariant mass M , as a function of the
pair rapidity ȳ, for LHC (a,b,c) and the upgraded Tevatron (d). Same caption as in Fig.1.
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Figure 3: Asymmetry for γ+jet production with invariant mass M , as a function of the
pair rapidity ȳ, for LHC (a,b,c) and the upgraded Tevatron (d). Same caption as in Fig.1.
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Figure 4: Asymmetry for H+jet production with invariant mass M , as a function of the
pair rapidity ȳ, for LHC (a,b). Same caption as in Fig.1.
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