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ABSTRACT

We investigate the implications for neutrino mixing implied by the results of all

neutrino oscillation experiments and by the standard Big-Bang Nucleosynthesis

constraint on the number of light neutrinos.

Many experiments searching for neutrino oscillations have been done in the last

30 years using solar, atmospheric, reactor and accelerator neutrinos. The majority
of these experiments reported a negative result, but there are three positive indi-

cations in favor of neutrino oscillations coming from the results of solar neutrino
experiments1, of atmospheric neutrino experiments2 and of the LSND accelerator

ν̄µ → ν̄e experiment3.
Neutrino oscillations can occur only if neutrinos are massive particles, if their

masses are different and if neutrino mixing is realized in nature. In this case, the left-
handed flavor neutrino fields ναL (α = e, µ, τ) are superpositions of the left-handed

components νkL (k = 1, . . . , n) of the fields of neutrinos with definite masses mk:
ναL =

∑n
k=1Uαk νkL , where U is a unitary mixing matrix. The general expression for

the probability of να → νβ transitions in vacuum is

Pνα→νβ =

∣
∣
∣
∣
∣

n∑

k=1

Uβk exp

(

−i
∆m2

k1 L

2 p

)

U∗
αk

∣
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∣
∣
∣

2

, (1)
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where ∆m2
kj ≡ m2

k −m2
j , L is the distance between the neutrino source and detector

and p is the neutrino momentum.

The three experimental indications in favor of neutrino oscillations require the
existence of three different scales of neutrino mass-squared differences: ∆m2

sun ∼
10−5 eV2 (MSW) or ∆m2

sun ∼ 10−10 eV2 (vacuum oscillations), ∆m2
atm ∼ 5×10−3 eV2

and ∆m2
SBL ∼ 1 eV2, where ∆m2

SBL is the neutrino mass-squared difference relevant for

short-baseline (SBL) experiments, whose allowed range is determined by the positive

result of the LSND experiment.
Three independent mass-squared differences require at least four massive neu-

trinos. The number of active light flavor neutrinos is known to be three from the
measurement of the invisible width of the Z-boson, but there is no experimental up-

per bound for the number of massive neutrinos (the lower bound is three). In the
following we consider the simplest possibility of existence of four massive neutrinos.

In this case, in the flavor basis, besides the three light flavor neutrinos νe, νµ, ντ that
contribute to the invisible width of the Z-boson, there is a light sterile neutrino νs
that is a SU(2)L singlet and does not take part in standard weak interactions.

Two years ago we have shown4 that among all the possible four-neutrino mass

spectra only two are compatible with the results of all neutrino oscillation experi-
ments:

(A)

atm
︷ ︸︸ ︷
m1 < m2 ≪

sun
︷ ︸︸ ︷
m3 < m4

︸ ︷︷ ︸

SBL

and (B)

sun
︷ ︸︸ ︷
m1 < m2 ≪

atm
︷ ︸︸ ︷
m3 < m4

︸ ︷︷ ︸

SBL

. (2)

In these two schemes the four neutrino masses are divided in two pairs of close

masses separated by a gap of about 1 eV, which provides the mass-squared difference
∆m2

SBL = ∆m2
41 ≡ m2

4−m2
1 that is relevant for the oscillations observed in the LSND

experiment. In scheme A ∆m2
atm = ∆m2

21 ≡ m2
2−m2

1 is relevant for the explanation of
the atmospheric neutrino anomaly and ∆m2

sun = ∆m2
43 ≡ m2

4 −m2
3 is relevant for the

suppression of solar νe’s, whereas in scheme B ∆m2
atm = ∆m2

43 and ∆m2
sun = ∆m2

21.
Let us define the quantities cα, with α = e, µ, τ, s, in the schemes A and B as

(A) cα ≡
∑

k=1,2

|Uαk|2 , (B) cα ≡
∑

k=3,4

|Uαk|2 . (3)

Physically cα quantify the mixing of the flavor neutrino να with the two massive
neutrinos whose ∆m2 is relevant for the oscillations of atmospheric neutrinos (ν1, ν2
in scheme A and ν3, ν4 in scheme B).

The probability of να → νβ transitions (β 6= α) and the survival probability of να
in SBL experiments are given by5

Pνα→νβ = Aα;β sin2 ∆m2
SBLL

4p
, Pνα→να = 1−Bα;α sin2 ∆m2

SBLL

4p
, (4)



with the oscillation amplitudes

Aα;β = 4

∣
∣
∣
∣
∣

∑

k

Uβk U
∗
αk

∣
∣
∣
∣
∣

2

, Bα;α = 4cα (1− cα) , (5)

where the index k runs over the values 1, 2 or 3, 4. The probabilities (4) have the

same form as the corresponding probabilities in the case of two-neutrino mixing,
Pνα→νβ = sin2(2θ) sin2(∆m2L/4p) and Pνα→να = 1 − sin2(2θ) sin2(∆m2L/4p), which

have been used by all experimental collaborations for the analysis of the data in order
to get information on the parameters sin2(2θ) and ∆m2 (θ and ∆m2 are, respectively,

the mixing angle and the mass-squared difference in the case of two-neutrino mixing).
Therefore, we can use the results of their analyses in order to get information on the

corresponding parameters Aα;β, Bα;α and ∆m2
SBL.

The results of all neutrino oscillation experiments are compatible with the schemes

A and B only if4

ce ≤ a0e and cµ ≥ 1− a0µ , (6)

where

a0α ≡ 1

2

(

1−
√

1− B0
α;α

)

(α = e, µ) (7)

and B0
α;α is the upper bound for the amplitude of

(−)

να→
(−)

να oscillations obtained from
the exclusion plots of SBL reactor and accelerator disappearance experiments. Hence,

the quantities a0e and a0µ depend on ∆m2. The exclusion curves obtained in the Bugey
reactor experiment and in the CDHS and CCFR accelerator experiments6 imply that

both a0e and a0µ are small7: a0e . 4× 10−2 and a0µ . 2× 10−1 for any value of ∆m2 in
the range 0.3 . ∆m2 . 103 eV2.

The smallness of ce in both schemes A and B is a consequence of the solar neutrino
problem4. It implies that the electron neutrino has a small mixing with the neutri-

nos whose mass-squared difference is responsible for the oscillations of atmospheric
neutrinos (ν1, ν2 in scheme A and ν3, ν4 in scheme B). Therefore, the transition prob-

ability of electron neutrinos and antineutrinos into other states in atmospheric and

long-baseline (LBL) experiments is suppressed. Indeed, it can be shown8 that the
transition probabilities of electron neutrinos and antineutrinos into all other states

and the probability of
(−)

νµ→
(−)

νe transitions in vacuum are bounded by

1− P
(LBL)

(−)
νe→

(−)
νe

≤ a0e
(
2− a0e

)
(8)

P
(LBL)

(−)
νµ→

(−)
νe
≤ min

(

a0e
(
2− a0e

)
, a0e +

1

4
A0

µ;e

)

(9)

where A0
µ;e is the upper bound for the amplitude of

(−)

νµ→
(−)

νe transitions measured in

SBL experiments with accelerator neutrinos.
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The two schemes A and B have identical implications for neutrino oscillation ex-
periments, but very different implications for neutrinoless double-β decay experiments

and for tritium β-decay experiments. Indeed, in scheme A

|〈m〉| ≤ m4 and m(3H) ≃ m4 , (10)

whereas in scheme B

|〈m〉| ≤ a0e m4 ≪ m4 and m(3H) ≪ m4 , (11)

where 〈m〉 = ∑4
i=1 U

2
ei mi is the effective Majorana mass that determines the matrix

element of neutrinoless double-β decay and m(3H) is the neutrino mass measured in

tritium β-decay experiments. Therefore, in scheme B |〈m〉| and m(3H) are smaller
than the expected sensitivity of the next generation of neutrinoless double-β decay and

tritium β-decay experiments. The observation of a positive signal in these experiments
would be an indication in favor of scheme A.

Summarizing, the results of neutrino oscillation experiments indicate that only
the two four-neutrino schemes (2) are allowed and the electron neutrino has a very

small mixing with the two massive neutrinos that are responsible for the oscillations
of atmospheric neutrinos (ν1, ν2 in scheme A and ν3, ν4 in scheme B). Hence, the

two schemes have the form shown in Fig.1, where νe is associated with the two
massive neutrinos neutrinos that are responsible for the oscillations of solar neutrinos

(ν3, ν4 in scheme A and ν1, ν2 in scheme B), with which it has a large mixing,
whereas νµ is associated with the two massive neutrinos neutrinos that are responsible

for the oscillations of atmospheric neutrinos, with which the muon neutrino has a
large mixing. The results of neutrino oscillation experiments do not provide yet an

indication of where ντ and νs have to be placed in the two schemes represented in

Fig.1. We will show in the following that the standard Big-Bang Nucleosynthesis
constraint on the number of light neutrinos provide a stringent limit on the mixing

of the sterile neutrino with the two massive neutrinos that are responsible for the
oscillations of atmospheric neutrinos9,10.

It is well known that the observed abundance of primordial light elements is
predicted with an impressive degree of accuracy by the standard model of Big-Bang



Nucleosynthesis if the number Nν of light neutrinos (with mass much smaller than
1 MeV) in equilibrium at the neutrino decoupling temperature (Tdec ≃ 2MeV for νe
and Tdec ≃ 4MeV for νµ, ντ ) is not far from three11,12.

The value of Nν is especially crucial for the primordial abundance of 4He. This is

due to the fact that Nν determines the freeze-out temperature of the weak interaction
processes e++n ⇆ p+ ν̄e, νe+n ⇆ p+e− and n ⇆ p+e−+ ν̄e that maintain protons

and neutrons in equilibrium, i.e. the temperature at which the rate ΓW (T ) ≃ GFT
5

(GF is the Fermi constant) of these weak interaction processes becomes smaller than
the expansion rate of the universe

H(T ) ≡ Ṙ(T )

R(T )
=

√

8π3

90
g∗

T 2

MP
(12)

(MP is the Planck mass), where R(T ) is the cosmic scale factor and g∗ = 5.5 +

1.75Nν for me . T . mµ. If Nν = 3 the primordial mass fraction of 4He, YP ≡
mass density of 4He / total mass density, is YP ≃ 0.24, which agrees very well with

the observed value12 Y obs
P = 0.238± 0.002. Since YP is very sensitive to variations of

Nν , it is clear that the observed value of YP puts stringent constraints on the possible

deviation of Nν from the Standard Model value Nν = 3.
In the four-neutrino schemes (2) standard BBN gives a constraint on neutrino

mixing if the upper bound forNν is less than four. In this case the mixing of the sterile
neutrino is severely constrained because otherwise neutrino oscillations would bring

the sterile neutrino in equilibrium before neutrino decoupling, leading to Nν = 4. In

particular, we will show that standard BBN with Nν < 4 implies that cs is extremely
small.

The amount of sterile neutrinos present at nucleosynthesis can be calculated using
the differential equation13

dnνs

dT
= − 1

2HT

∑

α=e,µ,τ

〈Pνα→νs〉collΓνα (1− nνs) , (13)

where nνs is the number density of the sterile neutrino relative to the number density

of an active neutrino in equilibrium and Γνα are the collision rates of the active
neutrinos, including elastic and inelastic scattering14, Γνe = 4.0G2

FT
5 and Γνµ =

Γντ = 0.7 Γνe. The quantities 〈Pνα→νs〉coll are the probabilities of να → νs transitions
averaged over the collision time tcoll = 1/Γνα. Hence, also nνs has to be considered as

a quantity averaged over the collision time.

Equation (13) describes non-resonant and adiabatic resonant neutrino transitions
if tosc ≪ tcoll ≪ texp. The condition tosc ≪ tcoll means that neutrino oscillations have

to be fast relative to the collision time. The characteristic expansion time of the
universe texp is given by texp = 1/H where H is the Hubble parameter H ≡ Ṙ/R,

which is related to the temperature T by H = −Ṫ /T ≃ 0.7 (T/1MeV)2 s−1 (this
value can be obtained from Eq.(12) with me . T . mµ and Nν ≃ 3). The relation
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Γνe/H ≃ 1.2 (T/1MeV)3 shows that for temperatures larger than 2 MeV the collision

time is always much smaller than the expansion time13.
Since by definition Nν is the effective number of massless neutrino species at Tdec,

in order to get a constraint on the mixing of sterile neutrinos we need to calculate
the value of nνs at Tdec produced by neutrino oscillations. With the initial condition

nνs(Ti) = 0 (Ti ∼ 100 MeV), the integration of Eq.(13) gives16 nνs(Tdec) = 1 − e−F

with

F =

∫ Ti

Tdec

1

2HT

∑

α=e,µ,τ

〈Pνα→νs〉collΓναdT . (14)

Imposing the upper bound nνs(Tdec) ≤ δN ≡ Nν − 3 one obtains the condition
F ≤ | ln(1− δN)|.

For the calculation of F the averaged transition probabilities 〈Pνα→νs〉coll must be
evaluated and the effective potentials of neutrinos and antineutrinos due to coherent

forward scattering in the primordial plasma15,

Ve = −6.02GF p
T 4

M2
W

≡ V , Vµ,τ = ξV and Vs = 0 , (15)

must be taken into account (in the absence of a lepton asymmetry the effective po-

tentials of neutrinos and antineutrinos are equal). Here p is the neutrino momentum,

which we approximate with its temperature average 〈p〉 ≃ 3.15 T , GF is the Fermi
constant, MW is the mass of the W boson and ξ = cos2 θW/(2 + cos2 θW ) ≃ 0.28,

where θW is the weak mixing angle. The propagation of neutrinos and antineutrinos
is governed by the effective hamiltonian in the weak basis

HW = p +
1

2p
U diag

[

m2
1, m

2
2, m

2
3, m

2
4

]

U † + diag
[

V, ξV, ξV, 0
]

. (16)



It is convenient to subtract from HW the constant term p+m1/2p+ ξV , which does
not affect the relative evolution of the neutrino flavor states, in order to get

H ′
W =

1

2p
U diag

[

0,∆m2
21,∆m2

31,∆m2
41

]

U † + diag
[

(1− ξ)V, 0, 0,−ξV
]

. (17)

From this expression it is clear that the relative evolution of the flavor neutrino
states depends on the three mass-squared differences and not on the absolute scale

of the neutrino masses. The effective hamiltonian in the mass basis is given by
H ′

M = U † H ′
W U :

H ′
M =

1

2p
diag

[

0,∆m2
21,∆m2

31,∆m2
41

]

+ U † diag
[

(1− ξ)V, 0, 0,−ξV
]

U . (18)

In the mass basis the mixing has been transferred from the mass term to the potential

term. In order to calculate the evolution of the neutrino flavors it is necessary to
parameterize the 4 × 4 neutrino mixing matrix U . However, since the second and

third rows and the second and third columns of the diagonal potential matrix in

Eq.(18) are equal to zero, it is clear that the values of the second and third rows of
U , corresponding to νµ and ντ , are irrelevant and do not need to be parameterized.

Furthermore, since ce is small in both schemes A and B, it does not have any effect
on neutrino oscillations before BBN and the approximation ce = 0 is allowed. Hence,

the 4× 4 neutrino mixing matrix in scheme A can be partially parameterized as

U =







0 0 cos θ sin θ
· · · ·
· · · ·

sinϕ sinχ − sinϕ cosχ − cosϕ sin θ cosϕ cos θ







, (19)

with 0 ≤ ϕ ≤ π/2. The partial parameterization of the mixing matrix in scheme B
can be obtained from Eq.(19) with the exchanges 1 ⇆ 3 and 2 ⇆ 4 of the columns

of U . In this way cs = sin2 ϕ in both schemes A and B. The dots in Eq.(19) indicate
the elements of the mixing matrix belonging to the νµ and ντ rows (Uµi and Uτi

with i = 1, . . . , 4), which do not need to be parameterized. In Eq.(19) we have
parameterized only the elements of the mixing matrix belonging to the νe and νs
lines (Uei and Usi with i = 1, . . . , 4) in terms of the three mixing angles θ, χ, ϕ. It is
clear that this partial parameterization of the mixing matrix (with the approximation

Ue1 = Ue2 = 0) is much easier to manipulate than a complete parameterization, which

would require the introduction of 6 mixing angles and 3 complex phases.
Notice that no complex phase is needed for the partial parameterization of the

mixing matrix in Eq.(19), because the elements Uei and Usi with i = 1, . . . , 4 can
be chosen real. Indeed, the line Usi with i = 1, . . . , 4 and the element Ue4 can be

chosen real because all observable transition probabilities are invariant under the
phase transformation Uαj → eixα Uαj e

iyj , where xα and yj are arbitrary parameters.
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In order to show that also Ue3 can be chosen real, we multiply the unitarity relation
∑4

k=1 Uek U
∗
sk = 0 with U∗

e3 Us3. The imaginary part of the resulting relation gives

Im[Ue3 U
∗
s3 U

∗
e4 Us4] = Im[Ue1 U

∗
s1 U

∗
e3 Us3] + Im[Ue2 U

∗
s2 U

∗
e3 Us3] . (20)

In the approximation Ue1 = Ue2 = 0 the right-hand part of Eq.(20) vanishes. There-
fore, since Us3, Ue4, Us4 have been chosen to be real, also Ue3 must be real.

Since the mass-squared differences have a hierarchical structure, ∆m2
43 ≪ ∆m2

21 ≪
∆m2

41 in scheme A and ∆m2
21 ≪ ∆m2

43 ≪ ∆m2
41 in scheme B, the effective hamilto-

nian H ′
M can be diagonalized approximately taking into account only one of the three

∆m2’s for different ranges of the temperature T . Then, it can be shown that9,10 the
condition F ≤ | ln(1− δN)| gives the bound

920

(
∆m2

SBL

1 eV2

)1/2

ds
√

1− ds + 33

(
∆m2

atm

10−2 eV2

)1/2
sin2 2χ√
1 + cos 2χ

c3/2s ≤ | ln(1− δN)| ,
(21)

with ds ≡ cs in scheme A and ds ≡ 1− cs in scheme B.

Both terms in the left-hand side of Eq.(21) are positive and must be small if
δN < 1. The SBL term, depending on ∆m2

SBL, is small if either cs is small or large,

but the atmospheric term, which depends on ∆m2
atm, is small only if cs is small.

Indeed, if cs is close to one we have (Uµ1, Uµ2) ∼ (cosχ, sinχ) in scheme A and

(Uµ3, Uµ4) ∼ (cosχ, sinχ) in scheme B. This means that, in order to accommodate
the atmospheric neutrino anomaly, sin2 2χ cannot be small. This is in contradiction

with the inequality (21) and we conclude that the bound (21) implies that cs is small.
Since cs is small only non-resonant transitions of active into sterile neutrinos due

to ∆m2
SBL are possible in scheme A, as illustrated in Fig.2 where we have plotted

the effective squared masses (obtained from a numerical diagonalization of the hamil-

tonian (16)) as functions of T 6 (νe does not have resonant transitions into νµ or ντ
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because we have chosen ce = 0). Hence, the conditions for the validity of Eq.(13) are
satisfied and the SBL term in Eq.(21) gives the bound

cs ≤ 1.1× 10−3

(
∆m2

SBL

1 eV2

)−1/2

| ln(1− δN)| . (22)

On the other hand, since cs is small, a resonance occurs in scheme B at the tempera-

ture Tres = 16(∆m2
SBL/1 eV

2)1/6|1−2cs|1/6 MeV, as illustrated in Fig.3. The condition
δN < 1 implies that this resonance must not be passed adiabatically. In this case the

conditions for the validity of Eq.(13) are not fulfilled and the SBL term of Eq.(21)
does not apply. Using an appropriate formula17 for the calculation of the amount

of sterile neutrinos produced at the resonance through non-adiabatic transitions one

can show10 that the BBN bound on cs in scheme B is given by

cs ≤ 1.1× 10−5

(
∆m2

SBL

1 eV2

)−1/2

| ln(1− δN)| . (23)

Figure 4 shows the values of the bounds (22) and (23) obtained from the LSND3

lower bound ∆m2
SBL & 0.27 eV2 for 0.2 ≤ δN < 1. One can see that standard BBN

implies that cs is extremely small. Therefore, νs is mainly mixed with the two mas-
sive neutrinos that contribute to solar neutrino oscillations (ν3 and ν4 in scheme A

and ν1 and ν2 in scheme B) and the unitarity of the mixing matrix implies that ντ
is mainly mixed with the two massive neutrinos that contribute to the oscillations of
atmospheric neutrinos. Adding this information to the two schemes depicted in Fig.1

we obtain the schemes shown in Fig.6. These schemes have the following testable im-
plications for solar, atmospheric, long-baseline and short-baseline neutrino oscillation

experiments:

• The solar neutrino problem is due to νe → νs oscillations. This prediction will

be checked by future solar neutrino experiments that can measure the ratio of
neutral-current and charged-current events18.

• The atmospheric neutrino anomaly is due to νµ → ντ oscillations. This prediction
will be checked by LBL experiments.



• νµ → ντ and νe → νs oscillations are strongly suppressed in SBL experiments.
With the approximation cs ≃ 0, for the amplitude of νµ → ντ oscillations we have

the upper bound Aµ;τ ≤ (a0e)
2, that is shown in Fig.5 (solid curve) together with a

recent exclusion curve obtained in the CHORUS experiment (dash-dotted curve)

and the final sensitivity of the CHORUS and NOMAD experiments (dash-dot-
dotted curve)19.

If these prediction will be falsified by future experiments it could mean that some

of the indications given by the results of neutrino oscillations experiments are wrong
and neither of the two four neutrino schemes A and B is realized in nature, or that

Big-Bang Nucleosynthesis occurs with a non-standard mechanism20.
In conclusion, we would like to emphasize that if the analysis presented here is

correct and one of the two four neutrino schemes depicted in Fig.6 is realized in
nature, at the zeroth-order in the expansion over the small quantities ce and cs the

4 × 4 neutrino mixing matrix has an extremely simple structure in which the νe, νs
and νµ, ντ sectors are decoupled. For example, in scheme A

U ≃







0 0 cos θ sin θ
cos γ sin γ 0 0
− sin γ cos γ 0 0

0 0 − sin θ cos θ







, (24)

where θ and γ are, respectively, the two-generation mixing angles relevant in solar and
atmospheric neutrino oscillations. Therefore, the oscillations of solar and atmospheric

neutrinos are independent and the two-generation analyses of solar and atmospheric
neutrino oscillations yield correct information on the mixing of four-neutrinos.
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