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The running QCD coupling in the pre-asymptotic region
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We study deviations from the perturbative asymptotic behaviour in the running QCD coupling by analysing
non-perturbative measurements of αs(p) at low momenta (p ≈ 2 GeV) as obtained from the lattice three-gluon
vertex. Our exploratory study provides some evidence for power corrections to the perturbative running propor-
tional to 1/p2.

1. INTRODUCTION

The standard procedure to parametrise non-
perturbative QCD effects in terms of power cor-
rections to perturbative results is based on the
Operator Product Expansion (OPE). In this
framework, the powers involved in the expansion
are uniquely fixed by the symmetries and the di-
mension of the relevant operator product. The
above picture has recently been challenged [1–
3], when it was pointed out that power correc-
tions which are not a priori expected from OPE
may in fact appear in physical observables. Such
terms may arise from (UV-subleading) power cor-
rections to αs(p), corresponding to non-analytical
contributions to the β-function. Clearly, the ex-
istence of OPE-independent power corrections, if
demonstrated, would have a major impact on our
understanding of non-perturbative QCD effects
and would affect QCD predictions for several pro-

cesses. For example, Λ
2

p2 contributions may be rel-

evant for the analysis of τ decays [4,1].
It would be highly desirable to develop a the-

oretical framework where the occurrence of these
effects is demonstrated and estimates are ob-
tained from first principles QCD calculations.
The results in [5,3] can be considered as a first
step in this direction: some evidence for an unex-

pected Λ
2

Q2 contribution to the gluon condensate
was found by means of lattice calculations.

The aim of the present work is to test a method
to detect the presence of power corrections in the
running QCD coupling. Non-perturbative lattice
estimates of the coupling at low momenta are
compared with perturbative formulae. The final
goal is to investigate the conjecture that OPE-
independent power corrections to physical observ-
ables are linked to power terms in the running
coupling. Although at this stage our work is ex-
ploratory in nature and further simulations will
be required to obtain a conclusive answer, our
analysis provides some preliminary evidence for
power corrections to αs(p) for a particular defini-
tion of the coupling.
The paper is organised as follows: in Section 2

we briefly review some theoretical arguments in
support of power corrections to αs(p), illustrat-

ing the special role that may be played by Λ
2

p2

terms. In Section 3 we analyse the lattice data
and present some preliminary evidence for power
corrections. Finally, in Section 4 we draw our
conclusions.

2. WHY POWER CORRECTIONS?

Power corrections to αs(p) can be shown to
arise naturally in many physical schemes [6,7].
Such corrections cannot be excluded a priori in
any renormalisation scheme. Clearly, the non-
perturbative nature of such effects makes it very
hard to assess their dependence on the renormal-
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isation scheme. A term of order Λ2/p2 is a strong
candidate for a power correction to αs(p). To see
why, consider the interaction of two heavy quarks
in the static limit and in the one-gluon-exchange
approximation (for a more detailed discussion see
[8]). The static potential V (r) can be written as

V (r) ∝ αs

∫

d3p
expi~p·~r

|~p|2
. (1)

If one inserts in the above formula a running cou-
pling of the form αs(p

2) ≈ Λ2/p2, this results in
a linearly confining potential. Similarly, consider
the “force” definition of the running coupling:

αqq̄(Q) =
3

4
r2

dV

dr
(Q =

1

r
), (2)

where again V (r) represents the static interquark
potential. A linear confinement term in V (r) gen-
erates a 1/Q2 contribution to the coupling, whose
order of magnitude is given by the string tension.
This can be interpreted as a clue for the existence

of a Λ
2

p2 contribution, providing an estimate for
its expected order of magnitude, at least in one
(physically sound) scheme. Finally, power correc-
tions to αs(p) also emerge if one assumes that the
singularities appearing in the perturbative formu-
lae for the running coupling are “removed” by
non-perturbative effects [9].

3. ANALYSIS AND RESULTS

We shall compare non-perturbative lattice data
for αs(p) with simple models where a power cor-
rection term is added to the perturbative formula
at a given order. The first problem is the possible
interplay between power corrections and our igno-
rance about higher orders of perturbation theory.
In particular, for the scheme that we will con-
sider, the three-loop coefficient of the β-function
is not known. Knowledge of such a coefficient
would allow a more reliable comparison of our es-
timates for the Λ parameter in our scheme with
lattice determinations of Λ in a different scheme,
for which the three-loop result is available [10].
In fact, although matching the Λ parameter be-
tween different schemes only requires a one-loop
computation, the reliability of such a comparison
rests on the assumption that the value of Λ in

each scheme is fairly stable with respect to the
inclusion of higher order terms in the definition
of Λ. In practice, when working at two- or three-
loop order, the value of Λ is still quite sensitive
to the order of the calculation. Even within such
limitations, we will argue that it is possible to es-
timate the impact of three-loop effects and that a
description with power corrections seems relevant
even at that order.

3.1. Choice of the coupling

We need to measure αs(p) at low momenta
(where power-like terms may be sizeable) and in
a relatively wide momentum range. For this pur-
pose, the best method is one where αs(p) can be
measured for several momentum values from a
single Monte Carlo data set. One suitable method
is the determination of the coupling from the
renormalised lattice three-gluon vertex function
[11,12]. By varying the renormalisation scale p,
one can determine αs(p) for different momenta
from a single simulation. Obviously the renor-
malisation scale must be chosen in a range such
that finite volume effects and discretisation errors
are both under control. The numerical results for
αs(p) used in this work were obtained by applying
such a method on a sample of 150 Monte Carlo
configurations on a 164 lattice at β = 6.0. The
calculation was performed in the Landau gauge.
For full details of the method we refer the reader
to Ref. [12], where such results were first pre-
sented. In order to detect violations of rotational
invariance, different combinations of lattice vec-
tors have sometimes been used for a fixed value
of p2, which accounts for the graphical “splitting”
of some data points.

3.2. Two-loop analysis

At the two-loop level, we consider the following
formula:

αs(p) =
1

b0 log(p2/Λ2

2l)
−

b1
b0

log(log(p2/Λ2
2l))

(b0 log(p2/Λ2

2l))
2

+ c2l
Λ2
2l

p2
(3)

By fitting the data to (3) we obtain two es-
timates for (Λ2l,c2l), namely (0.84(1),0.31(3))
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and (0.73(1),0.99(7)), with comparable values for
χ2

dof ≤ 1.8. The momentum range for the fit cor-
responds to p ∼ 1.8−3 GeV. We take the first set
of values as our best estimate of the parameters
as the corresponding value of Λ2l is close to what
is obtained from a “pure” two-loop fit, i.e. Λ2l is
stable with respect to the introduction of power
corrections. This choice will be supported also
by independent considerations at the three-loop
level. In summary, a two-loop description with
power corrections based on (3) fits well the data
in a consistent momentum range. Our best fit is
shown in Figure 1.
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Figure 1. The best fit to (3).

3.3. Three-loop analysis

A major obstacle for a three-loop analysis is
our ignorance of the first non-universal coefficient
b2 of the perturbative β-function. In order to
gain insight, we perform a two-parameter fit to
the “pure” three-loop formula, taking Λ3l and the
unknown coefficient b2 as the fitting parameters.
We call beff

2
the fit estimate for b2. We obtain

Λ3l = 0.72(1), beff
2

= 1.3(1), with χ2

dof ≈ 1.8
(see dashed curve in Fig. 2). The momentum
range where we obtain the best description of the

data is p ∼ 2−3 GeV. Our result for Λ3l provides
(via perturbative matching) an estimate for Λ

MS

which is in very good agreement with the estimate
in [10], which was obtained from the computa-
tion of the Λ parameter in a completely different
scheme. Although our estimate depends on the
extra parameter beff

2
, the agreement between the

two results is remarkable.
So far, the success of the “pure” three-loop fit

suggests that the power term in the two-loop for-
mula merely provides an effective description of
three-loop effects. However, it turns out that
there is room for a power correction even at the
three-loop level. To see this, we consider a three-
loop formula with a power correction:

αs(p) =
1

b0L
−

b1
b0

log(L)

(b0 L)2

+
1

(b0 L)3

(

beff
2

b0
+

b21
b2
0

(log2(L)− log(L) + 1)

)

+ c3l
Λ2
3l

p2
, (4)
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Figure 2. Fits to (4) (solid line) versus a pure
three-loop fit (dashed line).
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where L = log(p2/Λ2
3l) and beff

2
is again to

be determined from a fit. Fitting the data to
(4), we obtain Λ3l = 0.72(1), beff

2
= 1.0(1) and

c3 = 0.41(2), with χ2
dof ≈ 1.8, in a momen-

tum range 1.8GeV < p < 3GeV (see Fig. 2).
We note that the value for Λ3l is fully consistent
with the previous determination from the “pure”
three-loop description. The value for beff

2
is also

reasonably stable with respect to the previous de-
termination. By comparing results from fits to (3)
and (4), it emerges that

c2Λ
2

2l = 0.22(2)GeV2 ∼ c3Λ
2

3l = 0.21(2)GeV2.(5)

In other words, the power terms providing the
best fit to (3) and (4) are numerically the same,
so that there seems to be no interplay between
the indetermination connected to the perturba-
tive terms and the power correction term, within
the precision of our data. We take this fact as an
indication that a description in terms of power
corrections is still relevant at the three-loop level.
Notice that the numerical value of the power cor-
rection is comparable to the standard estimate for
the string tension.

One could object that at the two-loop level
we had chosen between two sets of values for
(Λ2l,c2l), and that our choice is crucial for the
validity of (5). An a posteriori justification for
our choice is obtained from the following test:
we plot a few values for αs(p) as generated by
the “pure” three-loop formula for Λ3l = 0.72 and
b2 = 1.0. Then, by fitting such points to the
“pure” two-loop formula, one gets Λ2l ≈ 0.84, i.e.
the value for which (5) holds. Again, the above
test seems to confirm that perturbative and non-
perturbative contributions do not mix in our for-
mulae when upgrading from a two-loop to a three-
loop description, thus suggesting that a genuine
Λ

2

p2 correction is present in the data.

4. CONCLUSIONS

We have discussed an exploratory investigation
of power corrections in the running QCD coupling
αs(p) by comparing non-perturbative lattice re-
sults with theoretical models. Some evidence was
found for 1/p2 corrections, whose size would be
consistent with what is suggested by simple argu-

ments from the static potential.
Our results need to be further tested by the

analysis of a larger data set and by a study of the
dependence of the fit coefficient on the ultraviolet
and infrared lattice cutoff. A very delicate issue
is the assessment of the scheme dependendence
of our results. In particular, we note that the
definition of the coupling that we adopted is a

priori gauge-dependent. This point will be the
focus of our future work.
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Liège au Sart Tilman” and acknowledges the par-
tial support of IISN. We thank C. Michael for
stimulating discussions.

REFERENCES

1. R. Akhoury and V.I. Zakharov, hep-
ph/9705318.

2. G.Grunberg, hep-ph/9705290,
hep-ph/9705460.

3. G Burgio, F. Di Renzo, G. Marchesini and E.
Onofri, Phys. Lett. 422B (1998) 219.

4. G. Altarelli, et al, Zeit. Phys. C68 (1995) 257.
5. G.P. Lepage and P. Mackenzie, Nucl. Phys.

Proc. Suppl. 20 (1991) 173.
6. Yu.L. Dokshitzer, G. Marchesini and B.R.

Webber, Nucl. Phys. B469 (1996) 93
7. S.J. Brodsky, G.P. Lepage and P.B. Macken-

zie, Phys. Rev. D 28 (1983) 228.
8. R. Akhoury and V.I. Zakharov, hep-

ph/9710487.
9. See, for example, P. Redmond, Phys. Rev. D

112 (1958) 1404.
10. S. Capitani et al, Nucl. Phys. Proc. Suppl. 63

(1998) 153.
11. C. Parrinello, Phys. Rev. D50 (1994) 4247.
12. B. Allés et al, Nucl. Phys. B502 (1997) 325

http://arxiv.org/abs/hep-ph/9705318
http://arxiv.org/abs/hep-ph/9705318
http://arxiv.org/abs/hep-ph/9705290
http://arxiv.org/abs/hep-ph/9705460
http://arxiv.org/abs/hep-ph/9710487
http://arxiv.org/abs/hep-ph/9710487

