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The dynamics with an infrared stable fixed point in the conformal window in QCD like theories
(with a relatively large number of fermion flavors) is studied. The dependence of masses of colorless
bound states on a bare fermion mass is described. In particular it is shown that in such dynamics,
glueballs are much lighter than bound states composed of fermions, if the value of the infrared fixed
point is not too large. This yields a clear signature for the conformal window, which in particular
can be useful for lattice computer simulations of these gauge theories.
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Recently, there has been considerable interest in the existence of a nontrivial conformal dynamics in 3+1 dimensional
non-supersymmetric vector like gauge theories, with a relatively large number of fermion flavors Nf [1–6]. The roots
of this problem go back to a work of Banks and Zaks [7] who were first to discuss the consequences of the existence of
an infrared-stable fixed point α = α∗ for Nf > N∗

f in vector-like gauge theories. The value N∗

f depends on the gauge

group: in the case of SU(3) gauge group, N∗

f = 8 in the two-loop approximation.

A new insight in this problem [1,2] has been, on the one hand, connected with using the results of the analysis of
the Schwinger-Dyson (SD) equations describing chiral symmetry breaking in QCD (for a review, see Refs. [8,9]) and,
on the other hand, with the discovery of the conformal window in N = 1 supersymmetric QCD [10].
In particular, Appelquist, Terning, and Wijewardhana [1] suggested that, in the case of the gauge group SU(Nc),

the critical value N cr
f ≃ 4Nc separates a phase with no confinement and chiral symmetry breaking (Nf > N cr

f ) and a

phase with confinement and with chiral symmetry breaking (Nf < N cr
f ). The basic point for this suggestion was the

observation that at Nf > N cr
f the value of the infrared fixed point α∗ is smaller than a critical value αcr ≃ 2Nc

N2
c−1

π
3 ,

presumably needed to generate the chiral condensate [8,9].
The authors of Ref. [1] considered only the case when the running coupling constant α(µ) is less than the fixed

point α∗. In this case the dynamics is asymptotically free (at short distances) both at Nf < N cr
f and N cr

f < Nf <

N∗∗

f ≡ 11Nc

2 .

Yamawaki and the author [2] analysed the dynamics in the whole (α,Nf ) plane and suggested the (α,Nf )-phase
diagram of the SU(Nc) theory (see Fig. 1 below).1. In particular, it was pointed out that one can get an interesting
non-asymptotically free dynamics when the bare coupling constant α(0) is larger than α∗, though not very large.
The dynamics with α(0) > α∗ admits a continuum limit and is interesting in itself. Also, its better understanding

can be important for establishing the conformal window in lattice computer simulations of the SU(Nc) theory with
such large values of Nf . In order to illustrate this, let us consider the following example. For Nc = 3 and Nf = 16,
the value of the infrared fixed point α∗ is small: α∗ ≃0.04 (see below). To reach the asymptotically free phase, one
needs to take the bare coupling α(0) less than this value of α∗. However, because of large finite size effects, the lattice
computer simulations of the SU(3) theory with such a small α(0) would be unreliable. Therefore, in this case, it is
necessary to consider the dynamics with α(µ) > α∗.
One of the goals of this paper is establishing a clear signature of the existence of the infrared fixed point α∗,

which would be useful for lattice computer simulations. The signature we will suggest is the spectrum of low energy
excitations in the presence of a bare fermion mass. In particular, we will show that in this case, unlike the familiar
QCD with a small Nf (Nf=2 or 3), glueballs are much lighter than bound states composed of fermions, if the value
of the infrared fixed point is not too large. Another characteristic point is a strong (and simple) dependence of the
masses of all the colorless bound states on the bare fermion mass, even if the latter is tiny.
We begin by recalling the basic facts concerning the two-loop β function in an SU(Nc) theory. The β function is

β = −bα2 − cα3 (1)

with [11]

1This phase diagram is essentially different from the original Banks-Zaks diagram [7]. For details, see Sec.VII in Ref. [2]
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b =
1

6π
(11Nc − 2Nf), (2a)

c =
1

24π2
(34N2

c − 10NcNf − 3
N2

c − 1

Nc
Nf ). (2b)

While these two coefficients are invariant under change of a renormalization scheme, the higher-order coefficients are
scheme dependent. Actually, there is a renormalization scheme in which the two-loop β function is (perturbatively)
exact [12]. We will use such a renormalization scheme.
If b > 0 (Nf < N∗∗

f ≡ 11Nc

2 ) and c < 0, the β function has a zero, corresponding to a infrared-stable fixed point, at

α = α∗ = −
b

c
. (3)

When Nf is close to N∗∗

f , the value of α∗ is small. For example, from Eqs.(2a), (2b), and (3), one gets α∗ ≃ 0.04,
0.14, 0.28, and 0.47 for Nc=3 and Nf=16, 15, 14, and 13, respectively.

The value of α∗ becomes equal to αcr = 2Nc

N2
c−1

π
3 at Nf close to Nf ≃ 4Nc. And the fixed point disappears at the

value Nf = N∗

f , when the coefficient c becomes positive (N∗

f is N∗

f ≃ 8.05 for Nc=3).

The β function (1) leads to the following solution for the running coupling:

b log

(

q

µ

)

=
1

α(q)
−

1

α(µ)
−

1

α∗
log

(

α(q)(α(µ) − α∗)

α(µ)(α(q) − α∗)

)

. (4)

We emphasize that this solution is valid both for α(µ) < α∗ and α(µ) > α∗.
Let us first consider the case with α(µ) < α∗. It is convenient to introduce the parameter [1]

Λ ≡ µ exp

[

−
1

bα∗
log

(

α∗ − α(µ)

α(µ)

)

−
1

bα(µ)

]

. (5)

Then, Eqs. (4) and (5) imply that

1

α(q)
= b log

( q

Λ

)

+
1

α∗
log

(

α(q)

α∗ − α(q)

)

. (6)

Taking q = Λ, we find that

α∗

1 + e−1
≃ 0.73α∗ < α(Λ) < α∗. (7)

One may think that Λ plays here the same role as ΛQCD in the confinement phase. However, as we will see, its
physical meaning is somewhat different.
Eq. (6) implies that

α(q) ≃
1

b log q
Λ

(8)

for q >> Λ (the usual behavior in asymptotically free theories), and

α(q) ≃
α∗

1 + e−1( q
Λ )

bα∗
(9)

for q << Λ, governed by the infrared fixed point α∗.
Let us turn to a less familiar case with α(µ) > α∗. One still can use Eq.(4). Introduce now the parameter Λ̃ as

Λ̃ ≡ µ exp

[

−
1

bα∗
log

(

α(µ) − α∗

α(q)

)

−
1

bα(µ)

]

(10)

(compare with Eq.(5)). Then, Eqs.(4) and (10) imply

1

α(q)
= b log

q

Λ̃
+

1

α∗
log

(

α(q)

α(q)− α∗

)

. (11)

2



What is the meaning of Λ̃? It is a Landau pole at which α(q)|q=Λ̃ = ∞. Indeed, taking q = Λ̃ in Eq.(11), one gets

1

α(Λ̃)
=

1

α∗
log

α(Λ̃)

α(Λ̃)− α∗

. (12)

The only solution of this equation is α(Λ̃) = ∞.
The presence of the Landau pole implies that the dynamics is not asymptotically free. To get a more insight in

this dynamics, let us introduce an ultraviolet cutoff M with the bare coupling constant α(0) ≡ α(q)|q=M . Now all
momenta q satisfy q ≤ M .
Eq.(11) implies that at finite α(0) = α(M), the cutoff M is less than Λ̃, with α(Λ̃) = ∞. Therefore the Landau pole

is unreachable in the theory with cutoff M and with α(0) < ∞. Still one can of course use Λ̃ (10) for a convenient
parametrization of the running coupling α(q) (see Eq.(11)). However, one should remember that momenta q satisfy

q ≤ M < Λ̃.
Eq.(11) implies that

α2(q) ≃
α∗

2b log Λ̃
q

(13)

for α(q) >> α∗, and

α(q) ≃
α∗

1− e−1( q

Λ̃
)bα∗

(14)

when α(q) is close to α∗, i.e. when α(q) − α∗ << α∗. Thus, now α(q) approaches the fixed poin α∗ from above
(compare with Eq.(9)). And, in general, Eq.(11) implies that α(q) monotonically decrease with q, from α(q) = α(0)

at q = M to α(q) = α∗ at q = 0.
Does a meaningfull continuum limit exist in this case? The answer is of course ”yes”. As it follows from Eq.(11),

when M (and therefore Λ̃) gose to infinity, and the bare coupling α(0) > α∗ is arbitrary but fixed, α(q) is equal to the
fixed value, α(q) = α∗, for all q < ∞. Therefore it is a non-trivial conformal field theory.
Sor far we considered the solution for α(q) connected with the perturbative (and perturbatively exact in the ’t Hooft

renormalization scheme [12]) β function (1). However, unlike ultraviolet stable fixed points, defining dynamics at high
momenta, infrared-stable fixed points (defining dynamics at low momenta) are very sensitive to nonperturbative
dynamics leading to the generation of particle masses. For example, if fermions acquire a dynamical mass, they
decouple from the infrared dynamics, and therefore the perturbative infrared fixed point (3) will disappear.
The phase diagram in the (α(0), Nf )-plane in this theory was suggested in Ref. [2]. It is shown in Fig. 1. The

left-hand portion of the curve in this figure coincides with the line of the infrared-stable fixed points α∗(Nf ) in Eq.(3).

It separates two symmetric phases, S1 and S2, with α(0) < α∗ and α(0) > α ∗, respectively. Its lower end is Nf = N cr
f

(with N cr
f ≃ 4Nc if αcr ≃ 2Nc

N2
c−1

π
3 ): at N∗

f < Nf < N cr
f the infrared fixed point is washed out by generating a

dynamical fermion mass.
The horizontal, Nf = N cr

f , line describes a phase transition between the symmetric phase S1 and the phase with

confinement and chiral symmetry breaking. As it was suggested in Refs. [1,2], based on a similarity of this phase
transition with that in quenched QED4 [8,9,13] and in QED3 [14], there is the following scaling law for m2

dyn:

m2
dyn ∼ Λ2

cr exp



−
C

√

α∗(Nf )
αcr

− 1



 (15)

where the constant C is of order one and Λcr is a scale at which the running coupling is of order αcr.
It is a continuous phase transition with an essential singularity at Nf = N cr

f . The characteristic point of this
phase transition is that the critical line Nf = N cr

f separates phases with essentially different spectra of low energy

excitations [1,2] and the different structure of the equation for the divergence of the dilatation current (i.e. with
essentially different realizations of the conformal symmetry) [2]. It was called the conformal phase transition in Ref.
[2].
At present it is still unclear whether the phase transition on the line Nf = N cr

f is indeed a continuous phase

transition with an essential singularity or it is a first order phase transition [3,6]. However, anyway, the two properties
(the abrupt change of the spectrum of excitations and the different structure of the equation for the divergence of the
dilatation current in those two phases) have to take place.
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FIG. 1. The phase diagram in an SU(Nc) gauge model. The coupling constant g(0) =
√

4πα(0) and S and A denote symmetric
and asymmetric phases, respectively.

At last, the right-hand portion of the curve on the diagram occurs because at large enough values of the bare
coupling, spontaneous chiral symmetry breaking takes place for any number Nf of fermion flavors. This portion
describes a phase transition called a bulk phase transition in the literature, and it is presumably a first order phase
transiiton. 2 The vertical line ends above Nf=0 since in pure gluodynamics there is apparently no phase transition
between weak-coupling and strong-coupling phases.
Up to now we have considered the case of a chiral invariant action. But how will the dynamics change if a bare

fermion mass term is added in the action? This question is in particular relevant for lattice computer simulations: for
studying a chiral phase transition on a finite lattice, it is necessary to introduce a bare fermion mass. We will show
that adding even an arbitrary small bare fermion mass results in a dramatic changing the dynamics both in the S1

and S2 phases.
Recall that in the case of confinement SU(Nc) theories, with a small, Nf < N cr

f , number of fermion falvors, the

role of a bare fermion mass m(0) is minor if m(0) << ΛQCD (where ΛQCD is a confinement scale). The only relevant
consequence is that massless Nambu-Goldstone pseudoscalars get a small mass (the PCAC dynamics).
The reason for that is the fact that the scale ΛQCD, connected with a scale anomaly, decribes the breakdown of the

conformal symmetry connected both with perturbative and nonperturbative dynamics: the running coupling and the
formation of bound state. Certainly, a small bare mass m(0) << ΛQCD is irrelevant for the dynamics of those bound
states.
Now let us turn to the phase S1 and S2, with Nf > N cr

f . At finite Λ in S1 and Λ̃ in S2, there is still conformal
anomaly: because of the running of the effective coupling constant, the conformal symmetry is broken. It is restored
only if Λ → 0 in S1 and Λ̃ > M → ∞ in S2. However, the essential difference with respect to confinement theories is
that both Λ and Λ̃ have nothing with the dynamics forming bound states: since at Nf > N cr

f the effective coupling

is relatively weak, it is impossible to form bound states from massless fermions and gluons (recall that the S1 and S2

phases are chiral invariant).
Therefore the absence of a mass for fermions and gluons is a key point for not creating bound states in those

phases. The situation changes dramaticaly if a bare fermion mass is introduced: indeed, even weak gauge, Coulomb-

2The fact that spontaneous chiral symmetry breaking takes place for any number of fermion flavors, if α(0) is large enough, is
valid at least for lattice theories with Kogut-Susskind fermions. Notice however that since the bulk phase transition is a lattice
artifact, the form of this portion of the curve can depend on the type of fermions used in simulations (for details, see Ref. [2]).
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like, interactions can easily produce bound states composed of massive constituents, as it happens, for example, in
QED, where electron-positron (positronium) bound states are present.
To be concrete, let us first consider the case when all fermions have the same bare mass m(0). It leads to a mass

function m(q2) ≡ B(q2)/A(q2) in the fermion propagator G(q) = (q̂A(q2)−B(q2))−1. The current fermion mass m is
given by the relation

m(q2)|q2=m2 = m. (16)

For the clearest exposition, let us consider a particular theory with a finite cutoff M and the bare coupling constant
α(0) = α(q)|q=M being not far away from the fixed point α∗. Then, the mass function is changing in the ”walking”
regime [15] with α(q2) ≃ α∗. It is

m(q2) ≃ m(0)

(

M

q

)γm

(17)

where the anomalous dimension γm ≃ 1− (1− α∗

αcr
)1/2 [8,9]. Eqs.(16) and (17) imply that

m ≃ m(0)

(

M

m(0)

)

γm
1+γm

. (18)

There are two main consequences of the presence of the bare mass:
(a) bound states, composed of fermions, occur in the spectrum of the theory. The mass of a n-body bound state is

M (n) ≃ nm;
(b) At momenta q < m, fermions and their bound states decouple. There is a pure SU(Nc) Yang-Mills theory with

confinement. Its spectrum contains glueballs.
To estimate glueball masses, notice that at momenta q < m, the running of the coupling is defined by the parameter

b̄ of the Yang-Mills theory,

b̄ =
11

6π
Nc. (19)

Therefore the glueball masses Mgl are of order

ΛYM ≃ m exp(−
1

b̄α∗

). (20)

For Nc = 3, we find from Eqs.(2a), (2b), and (19) that exp(− 1
b̄α∗

) is 6 × 10−7, 2 × 10−2, 10−1, and 3 × 10−1 for
Nf=16, 15, 14, and 13, respectively. Therefore at Nf=16, 15 and 14, the glueball masses are essentialy lighter than
the masses of the bound states composed of fermions. The situation is similar to that in confinement QCD with heavy
quarks, m >> ΛQCD. However, there is now a new important point: in the conformal window, any value of m(0)

(and therefore m) is ”heavy”: the fermion mass m sets a new scale in the theory, and the confinement scale ΛYM

(20) is less, and rather often much less, than this scale m.
This leads to a spectacular ”experimental” signature of the conformal window in lattice computer simulations:

glueball masses rapidly, as (m(0))
1

1+γm , decrease with the bare fermion mass m(0) for all values of m(0) less than cutoff
M .
Few comments are in order:
(1) The phases S1 and S2 have essentially the same long distance dynamics. They are distinguished only by their

dynamics at short distances: while the dynamics of the phase S1 is asymptotically free, that of the phase S2 is not. In
particular, when all fermions are massive (with the current mass m), the continuum limit M → ∞ of the S2-theory
is a non-asymptotically free confinement theory. Its spectrum includes colorless bound states composed of fermions
and gluons. For q < m the running coupling α(q) is the same as in pure SU(Nc) Yang-Mills theory, and for all q > m
α(q) is very close to α∗ (”walking”, actually, ”standing” dynamics). For those values Nf for which α∗ is small (as
Nf=16, 15 and 14 at Nc=3), glueballs are much lighter than the bound states composed of fermions. Notice that,
unlike the case with m = 0, there exists an S-matrix in this theory.

(2) In order to get the clearest exposition, we assumed such estimates as N cr
f ≃ 4Nc for N

cr
f and γm = 1−

√

1− α∗

αcr

for the anomalous dimension γm. While the latter should be reasonalbe for α∗ < αcr (and especially for α∗ << αcr)
[8,9], the former is based on the assumption that αcr ≃ 2Nc

N2
c−1

π
3 which, though seems reasonable, might be crude for

some values of Nc. It is clear however that the dynamical picture presented in this paper is essentially independent
of those assumptions.
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(3) So far we have considered the case when all fermions have the same bare mass m(0). The generalization to the
case when different fermions may have different bare masses is evident.
(4) Lattice computer simulations of the SU(3) theory with a relatively large number of Nf [16,17] indeed indicate on

the existence of a symmetric phase. However, the value of the critical number N cr
f is different in different simulations:

it varies from N cr
f = 6 [17] through N cr

f = 12 [16].
We hope that the signature of the conformal window suggested in this paper can be useful to settle this important

issue.
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