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The QED effective Lagrangian in the presence of an ar-
bitrary constant electromagnetic background field at finite
temperature is derived in the imaginary-time formalism to
one-loop order. The boundary conditions in imaginary time
reduce the set of gauge transformations of the background
field, which allows for a further gauge invariant and puts re-
strictions on the choice of gauge. The additional invariant
enters the effective action by a topological mechanism and
can be identified with a chemical potential; it is furthermore
related to Debye screening. In concordance with the real-time
formalism, we do not find a thermal correction to Schwinger’s
pair-production formula. The calculation is performed on a
maximally Lorentz covariant and gauge invariant stage.

12.20.Ds, 11.10.Wx

I. INTRODUCTION

The construction of an effective action for quantum
electrodynamics (QED) in the presence of various ex-
ternal conditions has been a challenge since the early
days of the theory. The study of generalizations of
the Heisenberg-Euler Lagrangian that include finite-
temperature effects has been initiated by Dittrich [1],
who considered the case of a constant external magnetic
field at finite temperature using the imaginary time for-
malism. An extension of this work to the case of arbitrary
constant electromagnetic fields turned out to be qualita-
tively more substantial than naively expected. Employ-
ing the real-time formalism, this situation was investi-
gated by Cox, Hellman and Yildiz [2], and Loewe and
Rojas [3]. A more comprehensive study of the problem
has been performed by Elmfors and Skagerstam [4], who
corrected the preceding findings and additionally intro-
duced a chemical potential. An attempt employing the
imaginary-time formalism was made by Ganguly, Kaw
and Parikh [5] for the case of an external electric field.
Recently, the finite-temperature effective action for elec-
tromagnetic fields was studied by Shovkovy [8] in the
worldline approach, where finite temperature is also in-
troduced via an imaginary-time formalism.
This paper is devoted to the derivation of the effec-

tive action of arbitrary constant electromagnetic fields

∗Email address: holger.gies@uni-tuebingen.de

at finite temperature in the imaginary-time formalism.
Similarly to the above-mentioned papers, our approach
is based on Schwinger’s proper-time formalism [9] and
refers to the one-loop level. By assigning a 4-velocity
vector to the motion of the observer with respect to the
heat bath, a manifest covariant notation is obtained [10]
which enables us to formulate the problem in terms of
gauge invariant and covariant quantities.
However, gauge transformations of the finite-tempera-

ture generating functional are a priori restricted to peri-
odic gauge functions Λp in order to leave the boundary
conditions of the functional integral over the fluctuating
field invariant. This requires a more careful choice of
gauge for the background field than at zero temperature,
since the reduced class of gauge transformations allows
for more physical information to be carried in the explicit
form of the gauge potential. The additional information
can be associated with a chemical potential.
Apart from subtleties with the correct choice of gauge,

we largely agree with the findings of the “real-time”
investigations [4]. We finally comment on the appar-
ent controversy in the literature concerning the (non-
)vanishing of the imaginary part of the thermal effec-
tive action that is related to pair production [2]- [7]. In
concordance with the findings of the real-time calcula-
tions, we do not find a thermal contribution to the pair-
production rate to this order of calculation.
It is, of course, obligatory to point out that the im-

plications of the present calculation may not be im-
mediately interpretable, since the presence of an elec-
tric field violates the thermal equilibrium assumption
of the imaginary-time formalism. In particular, a con-
stant electric field transfers energy to thermally fluctu-
ating charged particles. On a formal level, it is not clear
whether the periodicity in imaginary time can be identi-
fied with the physical temperature of the heat bath. How-
ever, there are field configurations allowing for thermal
equilibrium, e.g., a shallow potential well as suggested
in [4], for which the constant field approximation can be
applicable.
Moreover, the knowledge of the effective action given

below depending on the complete set of invariants of an
electromagnetic field including an additional Lorentz vec-
tor (temperature times heat-bath velocity), might be use-
ful even in the limit of vanishing electric fields.
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II. IMAGINARY-TIME FORMALISM

The one-loop effective action of QED is characterized
by the fact that the fluctuating charged fermions which
couple to the external field to all orders have been in-
tegrated out. In this way, finite temperature is intro-
duced via the imaginary-time formalism by postulating
anti-periodic boundary conditions for these fluctuating
fermions in the direction of imaginary time with period
β = 1

T
.

Regarding the complete generating functional of QED,
the external field is treated as a background field [15]. To
maintain invariance of the fermionic integral under gauge
transformations of the background field, it is important
to restrict the gauge functions Λ(x) to be β-periodic in
imaginary time1,

{

Λp

}

: Λp(x
µ + iβuµ) = Λp(x

µ), (1)

where uµ denotes the 4-velocity vector of the heat bath.
Although the QED action as well as the integration mea-
sure are invariant under arbitrary gauge transformations
Λ(x) of the background field, the anti-periodic boundary
conditions will be modified if Λ(x) 6∈

{

Λp

}

; in particular

ψ(0) = −ψ(β) → ψ(0) = −eie(Λ(β)−Λ(0))ψ(β). At zero
temperature, the fermion determinant can only depend
on the field strength Fµν that arises from the background
field; the explicit form of Aµ is subject to arbitrary gauge
transformations. In contrast, the restricted class of gauge
transformations Λp at finite temperature allows for fur-
ther gauge invariant quantities of the type

Āu(x) =
1

β

β
∫

0

dτ Au(x
µ + iτuµ), Au := Aµuµ, (2)

where x denotes the components of xµ orthogonal to uµ.
Already at this stage, one might suspect that the phys-
ical meaning of Āu is related to a chemical potential µ
which would enter the QED action by adding µγµuµ to
the Dirac operator: Π/ = (−i∂/− eA/) → (−i∂/− eA/+ µu/).
In the following, we will further establish this relation
between Āu and µ and especially demonstrate that the
appearance of Āu in the effective action is of topologi-
cal origin. Instead of employing the functional integral
formalism, we will closely follow Schwinger’s proper-time
formalism, which provides for a detailed study of gauge
invariance.
We therefore begin with the fermionic Green’s function

in an external electromagnetic field at zero temperature
satisfying the differential equation

1In principle, one could additionally allow for an integer mul-
tiple of 2π/e on the right-hand side of Eq. (1). But, since such
a term does not contribute to the present situation, we will
simply omit it in the following.

[(γµΠµ) +m]G(x, x′|A) = δ(x− x′), (3)

with Πµ = −i∂µ − eAµ. Following Schwinger [9], we can
solve Eq.(3) formally on an operator level (G(x, x′|A) =
〈x|G[A]|x′〉):

G[A] = (m− γΠ) i

∞
∫

0

ds e−im2s ei(γΠ)2s. (4)

Convergence of this proper-time integral and the follow-
ing is ensured by the implicit prescription m2 → m2− iǫ.
The proper-time transition amplitude

K(x, x′; s|A) := 〈x| eis(γΠ)2 |x′〉 (5)

in the integrand of Eq.(4) also enters the proper-time
formula for the effective (unrenormalized) one-loop La-
grangian:

L1 = lim
x′→x

i

2
trγ

∞
∫

0

ds

s
e−ism2〈x| eis(γΠ)2 |x′〉. (6)

Introducing the scalar propagator

∆(x, x′|A) = i

∞
∫

0

ds e−im2sK(x, x′; s|A), (7)

which is related to the fermion’s Green’s function via
G[A] = (m − γΠ)∆[A], we implicitly find an equation
for K(x, x′; s|A) which is the Green’s function equation
for ∆(x, x′|A):

D[A] ∆(x, x′|A) := [m2 − (γΠ)2] ∆(x, x′|A) = δ(x− x′),

(8)

where D[A] abbreviates the differential operator. Ob-
viously, K(x, x′; s|A) as well as the Green’s functions
G(x, x′|A) and ∆(x, x′|A) are gauge dependent. For con-
stant electromagnetic fields, the solution for the transi-
tion amplitude K(x, x′; s|A) can most conveniently be
found in the Schwinger-Fock gauge that eliminates the
gauge potential in favor of the field strength:

Aµ
SF := −1

2
Fµν(x− x′)ν . (9)

The solution reads [11]

K(x, x′; s|ASF) =

∫

d4p

(2π)4
e−ip(x−x′)ei

e
2
σFse−Y (is)e−pX(is)p,

(10)

where σF := σµνF
µν , σµν = i

2 [γµ, γν ], and the quantities
Y and X additionally depend on the field strength,

Y (s) =
1

2
tr ln[cos(eFs)], X(s) =

tan(eFs)

eF
, (11)
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and we used matrix notation, e.g., Fµ
ν ≡ (F)µ

ν . By in-
sertion of Eq.(10) into Eqs.(7), (3) and (6), we obtain
the explicit representation for the scalar propagator, the
fermion’s Green’s function and the effective Lagrangian,
respectively, for constant external fields at zero temper-
ature (in the Schwinger-Fock gauge!).
To introduce finite temperature via the imaginary-time

formalism, one is tempted to replace the p0-integration in
Eq.(10) by a sum over Matsubara frequencies2. However,
this would lead to an incorrect, or at least incomplete re-
sult, since the gauge dependence of the Green’s functions
has to be taken into account.
As can be shown, the complete gauge dependence can

be treated multiplicatively by a holonomy factor. In par-
ticular, the transition amplitude in an arbitrary gauge is
related to the one in the Schwinger-Fock gauge by

K(x, x′; s|A) = Φ(x, x′|A)K(x, x′; s|ASF), (12)

where the holonomy factor reads:

Φ(x, x′|A) = exp



ie

x
∫

x′

dξµ

(

Aµ(ξ) +
1

2
Fµν(ξ − x′)ν

)



 .

(13)

Identical relations hold for the Green’s functions. Note
that the integrand is curl-free and hence the integral in
Eq.(13) is path-independent as long as the configuration
space is simply connected. Concerning the effective La-
grangian (6) at zero temperature, the holonomy factor
plays no role, since Φ(x, x′|A) → 1 in the coincidence
limit x→ x′. Consequently, the effective action is gauge
invariant.
The situation changes substantially at finite temper-

ature: since the imaginary time becomes compactified
according to the anti-periodic boundary conditions, the
configuration space is no longer simply connected. As a
consequence, the holonomy factor is only invariant under
continuous deformations of the integration path but can
pick up a winding number by closing the path via the
anti-periodic boundary.
The simplest way to establish anti-periodicity in imag-

inary time is to apply the method of image sources to the
Green’s function equation. Therefore, let x and x′ belong
to the same topological sector, i.e., there is a straight
path from x to x′ which does not cross the imaginary-
time boundaries. Then we define the reflection points of
x′ along the imaginary-time axis by (Fig.1)

x′n = x′ − iβnu. (14)

2For theories without gauge symmetries, of course, this pro-
cedure has been applied successfully in [12].

            imaginary time

x’

 x

x’n

β

FIG. 1. The positions of the different points x, x′ and x′

n

are exhibited. The dotted line represents an arbitrary path
from x′

n = x′ − iβnu to x. As a first step, this path is contin-
uously deformed in such a way that x′ becomes an element of
the path (dashed line). Secondly, the path from x′

n to x′ can
be deformed to a straight line (solid line), which gives rise to
Eq. (19).

Applying the image-source construction, e.g., to Eq.
(8), we obtain

∞
∑

n=−∞

(−1)nδ(x, x′n)=

∞
∑

n=−∞

(−1)nD[A] ∆(x, x′n|A)

= D[A] ∆T (x, x′|A), (15)

where uµ denotes the 4-velocity of the heat bath, the pe-
riodicity scale is set by the inverse temperature β, the
factor (−1)n stems from the anti-periodic boundary con-
ditions, and we have defined the thermal Green’s function

∆T (x, x′|A) =
∞
∑

n=−∞

(−1)n ∆(x, x′n|A). (16)

Transition to Fourier space and separation of the tem-
perature-dependent parts leads us to

∆T (x, x′|A) =
∫

d4p

(2π)4
e−ip(x−x′)∆(p)Φ(x, x′|A) (17)

×
∞
∑

n=−∞

(−1)n e−ip(iβnu)Φ(x′, x′n|A) e−in e
2
β(iuF(x−x′)).

The separation

Φ(x, x′n|A) = Φ(x, x′|A)Φ(x′, x′n|A) e−in e
2
β(iuF(x−x′))

(18)

was achieved by a continuous deformation of the integra-
tion path in such a way that, on the one hand, x′ becomes
an element of the path and, on the other hand, the path
of Φ(x, x′|A) lies entirely in the topological trivial sector.
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Concerning Φ(x′, x′n|A), we can deform the integra-
tion path to a straight line (SL) along the imaginary uµ-
direction:

Φ(x′, x′n|A) = exp









ie

x′

∫

x′
−iβnu

SL

dξµA
µ(ξ)









. (19)

As mentioned above, the exponent in Eq. (19) is an
invariant quantity under periodic gauge transformations
Λp but will depend on the explicit form of Aµ in a certain
manner. At this stage, it is important to point out that
the background field potential is not necessarily subject
to periodic boundary conditions, since it does not cor-
respond to thermalized particles; it is not an integration
variable even in the complete theory. To specify the form
of Aµ, more physical input is required: in the present
paper, we assume that the system under consideration is
homogeneous. Since the effective Lagrangian for a homo-
geneous system such as the constant field configuration
has to be independent of x, the coincidence limit x→ x′

of the thermal transition amplitude KT (x, x′; s|A) must
also be independent of x; the same requirement holds for
∆T (x, x′|A). With regard to Eq. (17), this is only sat-
isfied if Φ(x′, x′n|A) is independent of x′. Thereby, we
obtain the gauge condition

0 =

1
∫

0

dτ ∂µx′Au(x
′µ − iβnuµ + τ(iβnuµ)). (20)

Condition (20) is satisfied if

Au ≡ Āu = const., (21)

which is the generic choice. Any other solution is gauge
equivalent to Eq. (21), Au → Au + ∂uΛp. Equation (20)
also fixes the choice for the spatial components A: since
Aµ should produce a constant electric field via

const. = E = ∇Au − ∂uA
(21)
= −∂uA,

the generic choice for A in the heat bath rest frame
(∂u=̂

∂
∂t
) reads

A = −Et+ a(x), (22)

whereby the function a(x) is defined by B =: ∇× a.
Again, other choices for A are given by its gauge trans-
forms with respect to Λp. Note that these gauge condi-
tions are different from those found in Ref. [4] employing
the real-time formalism.3

3In the real-time formalism, the A0-component of the gauge
field enters the propagators as well as the effective action via

Taking these considerations into account, the holon-
omy factor (19) eventually yields

Φ(x′, x′n|A) = exp
[

ie(iβn)Āu

]

. (23)

With the aid of a Poisson resummation, we obtain for
the sum in Eq.(17):

∞
∑

n=−∞

(−1)n e−ip(iβnu)Φ(x′, x′n|A) e−in e
2
β(iuF(x−x′)) (24)

= 2πiT
∞
∑

n=−∞

δ
(

pu−e(Ā−ASF)u + iπT (2n+ 1)
)

,

with pu = uµpµ, and ASFu = − 1
2uµF

µν(x−x′)ν . Insert-
ing Eq.(24) into (17) leads us to the final expression for
∆T (x, x′|A). Similarly, the thermal transition amplitude
KT (x, x′; s|A) as well as the thermal fermion’s Green’s
function can be derived. Note that these objects contain
temperature-dependent contributions as well as the zero-
temperature part. The question of gauge dependence of
the thermal fermionic Green’s function in a purely mag-
netic background has also been addressed in [13].
We observe that the Matsubara prescription finally

reads
∫

dpu
2π

f(p2u) → iT

∞
∑

n=−∞

f
(

−
(

πT (2n+ 1 + i
π

e(Ā−ASF)u
T

)
)2
)

.

(25)

The explicit appearance of ASFu hints at the fact that
this modified Matsubara prescription will be applied to
an object which has been calculated in the Schwinger-
Fock gauge. Equation (25) finally states that it is a
gauge field-shifted momentum in uµ-direction, (p−e(A−
ASF))u, which is replaced by Matsubara frequencies in-
stead of the canonical momentum. This implies a depen-
dence of the Green’s functions and the transition ampli-
tude on the gauge field invariant Āu even in the coinci-
dence limit x′ → x (note that ASF → 0 for x′ → x). As
a consequence, the effective Lagrangian will be invariant
under periodic gauge transformations Λp but not under
arbitrary gauge transformations Λ. Of course, this was
expected from our initial considerations. The physical
role of Āu will be elucidated at the end of section IV.

the thermal distribution function that is given as an exter-
nal condition. Hence, there is no intrinsic criterion for an
appropriate choice of Aµ, and one has to rely on other argu-
ments. E.g., in Ref. [4], it was argued that a gauge condition
of the form d

dt
Aµ = 0 is required for obtaining a clear separa-

tion of fermionic and electromagnetic energies. This implies
that the constant electric background field is produced by
a spatially non-constant A0, E = −∇A0, and has to be in-
terpreted as a spatially non-constant chemical potential (cf.
later). This demonstrates that different gauge choices which
are not gauge-equivalent with respect to {Λp} correspond to
different physical settings.
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III. COVARIANT FORMULATION

The imaginary-time formalism has often been criti-
cized because it exhibits the explicit non-covariant fea-
ture of leading to discrete energies but continuous mo-
menta for the quantized fields. In the present work, we
want to demonstrate that it is nevertheless possible to es-
tablish covariance at any stage of this calculation, since
the above-mentioned disproportion between energy and
momentum only appears in internal propagators, all of
which are integrated out. Manifest covariance is achieved
by constructing a reference frame that completely relies
on the covariant and gauge invariant building blocks of
the problem.
These building blocks in the present problem of con-

stant electromagnetic fields at finite temperature are the
field strength tensors, Fµν and ⋆Fµν = 1

2ǫ
µναβFαβ ; fur-

thermore, we encounter the heat-bath vector nµ [14] that
is on the one hand characterized by the value of its invari-
ant scalar product4, nµnµ = −T 2, where T denotes the
heat-bath temperature, and on the other hand related
to the heat-bath 4-velocity via the invariant parameter
T : nµ = T uµ. There are 10 independent components
in Fµν , ⋆Fµν , and nµ. The number of generators of the
Lorentz group is 6; hence we can transform 6 components
to zero, since there is no little group that leaves Fµν ,
⋆Fµν , and nµ invariant5. Therefore, we are left with four
Lorentz and gauge invariant scalars (or pseudo-scalars).
For reasons of convenience, we choose the following set:

a :=
(

√

F2 + G2 + F
)

1
2

,

b :=
(

√

F2 + G2 −F
)

1
2

,

c :=
1

T 2

(

nαF
αµ

)(

nβF
β
µ

)

≡
(

uαF
αµ

)(

uβF
β
µ

)

,

T =
√

−nµnµ. (26)

The secular invariants a, b are related to the solutions to
the secular equation of Fµν ; e.g., the standard invariants
can be expressed in terms of a and b according to

F =
1

4
FµνFµν =

1

2

(

B
2 −E

2
)

≡ 1

2

(

a2 − b2),

|G| =
∣

∣

∣

∣

1

4
⋆FµνFµν

∣

∣

∣

∣

= | −E ·B| ≡ ab. (27)

Without loss of generality, we confine ourselves to the
case of G > 0 (or E ·B < 0) and drop the absolute value

4 We employ the metric g=diag(-1,1,1,1).
5For pure EM fields, the dimension of the little group would

be 2, since boosts along and rotation around the field direction
in a system where E- and B-fields are parallel leave the fields
invariant.

notation. E.g., in a system where B is anti-parallel to E,
we find: a = |B| and b = |E|. Note that c is positive-
definite, since nµ is a time-like vector; e.g., in the rest
frame of the heat bath, we find c = E

2. It is obvious
that any gauge invariant Lorentz scalar appearing in the
problem is expressible in terms of this set of invariants
(26). In the following, we are going to introduce a con-
venient coordinate system in which even the components
of any Lorentz vector or tensor of the problem can be
expressed in terms of these invariants. We define the
vierbein eAµ which mediates between the given system
labelled by µ, ν, . . . = 0, 1, 2, 3 and the desired system
labelled by the (Lorentz) indices A,B, . . . = 0, 1, 2, 3 by:

e0
µ := uµ,

e1
µ :=

uαF
αµ

√
c

,

e2
µ :=

1√
d

(

uαFαβF
βµ − c e0

µ
)

,

e3
µ := ǫαβγµ e0α e1β e2γ , (28)

where the quantity d abbreviates the combination of in-
variants

d := 2Fc− G2 + c2. (29)

The vierbein satisfies the identity

eAµ eB
µ = gAB ≡ diag(−1, 1, 1, 1), (30)

where gAB ∼ gAB denotes the metric which raises and
lowers capital indices. By a direct computation, we can
transform the field strength tensors and the heat-bath
vector:

nA := gABeB
µ nµ = (T, 0, 0, 0),

FAB := eAµF
µνeBν =









0
√
c 0 0

−√
c 0

√

d/c 0

0 −
√

d/c 0 −G/√c
0 0 G/√c 0









,

⋆FAB := eAµ
⋆FµνeBν=









0 −G/√c 0
√

d/c
G/√c 0 0 0
0 0 0 −√

c

−
√

d/c 0
√
c 0









.

(31)

So indeed, the components of these tensors are com-
pletely expressed in terms of invariants. Hence, any
tensor algebraic manipulation involving the objects from
Eq.(31) can immediately be performed on the level of
gauge and Lorentz invariants.
It is worthwhile to point out at this stage that a duality

transformation of the type E → B and B → −E does not
only imply an interchange of a and b (and a sign flip for G)
but also demands for c→ c+2F = c+a2−b2. Hence, it is
not sufficient in the finite-temperature case to perform a
calculation for magnetic fields and then draw an analogy
for electric fields by replacing B → −iE – in contrast to
a zero-temperature calculation.
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IV. EFFECTIVE ACTION

From Eq.(6), we can read off the definition of the ef-
fective Lagrangian at finite temperature:

L1+1T=
i

2
trγ

∞
∫

0

ds

s
e−ism2

KT (s|A), (32)

where the superscript implies that L1+1T consists of the
zero-temperature as well as the finite-temperature one-
loop part: L1+1T = L1 + L1T . The thermal transition
amplitude in the integrand is simply obtained by apply-
ing the modified Matsubara prescription (25) to the zero-
temperature transition amplitude, Eqs.(10)-(12), in the
coincidence limit:

KT (s;A) = iT
∞
∑

n=−∞

∫

V

d3p

(2π)3
ei

e
2
σFse−Y (is)e−pX(is)p

∣

∣

∣

∣

∣

,

pu=eĀu−iπT (2n+1)

(33)

where V denotes the 3-space volume orthogonal to the
uµ-direction. We now perform the computation of
Eqs.(32) and (33) within the system that we established
in the previous section. With respect to the capital la-
bels, this volume is related to the components A,B, . . . =
1, 2, 3, whereas the components along the uµ-direction
correspond to the label A,B, . . . = 0. The X-matrix in
the exponent of Eq.(33) can now be written as

XAB
(11)
= i

[

tan eas

ea

(b2gAB − F 2
AB)

a2 + b2

+
tanh ebs

eb

(a2gAB + F 2
AB)

a2 + b2

]

, (34)

where F 2
AB = FA

CFCB. Incidentally, the identical equa-
tion also holds, of course, with the labels A,B replaced
by µ, ν, but then the components are not related to gauge
and Lorentz invariants. The only non-vanishing compo-
nents of the symmetric tensor XAB are the diagonal ele-
ments as well as X02 and X13. The Gaussian momentum
integration in Eq.(33) therefore results in

∫

V

d3p

(2π)3
e−pAXABpB

(35)

=
e
(X11X33−X2

13)
p20

X22

(4π)
3
2

(

(

X11X33 −X2
13

)

X22

)− 1
2

,

where we made use of the fact that −(X00X22 −X2
02) =

(X11X33 − X2
13). Substituting the modified Matsubara

frequencies p0 ≡ pu = eĀu − iπT (2n+ 1) into the expo-
nent of Eq.(35), the summation over n in Eq.(33) can be
reorganized according to the Poisson formula:

∞
∑

n=−∞

e−σ(n−z)2 =

∞
∑

n=−∞

(π

σ

)
1
2

e−
π2

σ
n2−2πi zn. (36)

In this case, we set z = − 1
2 − ieĀu

2πT and σ =
4π2T 2

X22

(

X11X33−X2
13

)

. At this point, we have to mention

that formula (36) is not valid for Re σ < 0, which would
lead to a divergent behavior of the sum. This will be
checked later on.
The Poisson resummation serves the purpose of sep-

arating the zero-temperature from the finite-tempera-
ture part, since the complete loop-momentum integra-
tion/summation in (33) now yields

iT
∞
∑

n=−∞

∫

V

d3p

(2π)3
e−pXp (37)

=
i

16π2

(

X11X33 −X2
13

)−1

×
[

1 + 2

∞
∑

n=1

(−1)ne
− X22

X11X33−X2
13

n2

4T2
cosh

eĀun

T

]

.

Keeping only the “1” in the last line leads to the standard
proper-time expression for the zero-temperature effective
action, while the sum represents the thermal correction.
Employing the standard results for the remaining terms
in Eqs.(32) and (33),

e−Y (is) (11)
=

(

cos eas cosh ebs
)−1

,

trγ e
ie
2
σFs = 4 cos eas cosh ebs,

and inserting the explicit representations of the XAB into
Eq. (37), we end up with the desired expression for the
one-loop contribution to the effective Lagrangian for con-
stant electromagnetic fields at finite temperature:

L1+1T= L1 + L1T ,

L1 =
1

8π2

∞
∫

0

ds

s3
e−im2s

[

eas cot eas ebs coth ebs (38)

−e
2(a2 − b2)s2

3
− 1

]

,

L1T =
1

4π2

∞
∫

0

ds

s3
e−im2s eas cot eas ebs coth ebs (39)

×
∞
∑

n=1

(−1)neih(s)
n2

4T2 cosh
eĀun

T
.

At the zero-temperature part L1, we subtracted the di-
vergent terms, which corresponds to a field strength and
charge renormalization. The function h(s) in the expo-
nent of L1T is obtained from

h(s) :=
iX22

X11X33 −X2
13

(40)

=
b2 − c

a2 + b2
ea cot eas+

a2 + c

a2 + b2
eb coth ebs.
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In the rest frame of the heat bath where c = E
2, we re-

cover the findings of Ref. [4] for h(s). Note that h(s) is
strictly real, so there are no apparent convergence prob-
lems in employing the Poisson resummation (36). How-
ever, it is not a straightforward exercise to obtain numer-
ical estimates for Eq. (39), due to the wildly oscillatory
behavior of the whole integrand, especially in the sum.
Let us for the moment remark that h(s) reduces to 1

s
in the limit of vanishing electric fields (the limit is most
conveniently taken for E and B (anti-)parallel). And as-
suming Āu = 0, we recover the findings of Ref. [1] for a
purely magnetic field at finite temperature. Furthermore,
the general form of Eq.(39) coincides with the representa-
tion found in the worldline approach [8] (in the heat-bath
rest frame), except for the dependence on the gauge po-
tential; the importance of the holonomy factor has been
overlooked in [8].
The physical interpretation of Āu can most easily be

illuminated in the limiting case of vanishing field invari-
ants, a, b, c = 0; under these circumstances we are able
to rotate the contour s → −is and an interchange of
integration and summation is permitted in Eq.(39):

L1T (Āu) = − 1

4π2

∞
∫

0

ds

s3
e−m2s

∞
∑

n=1

(−1)ne−
n2

4T2s cosh eĀun
T

= − 2

π2
m2T 2

∞
∑

n=1

(−1)n

n2
cosh eĀun

T
K2

(

m
T
n
)

= −2T

π2

∞
∑

n=1

(−1)n

n
cosh eĀun

T

∫

d3k

4π
e−

√
k2+m2

T
n

= T 2

∫

d3k

(2π)3

[

ln

(

1 + e−β(E+eĀu)

)

+ ln

(

1 + e−β(E−eĀu)

)

]

, (41)

where we introduced the particle energy for the e+e−-gas,
E :=

√
k2 +m2 ≡ |ku|, and two different representations

of the modified Bessel function K2 were taken advantage
of [16]. According to the relation

L1T (Āu) = T
lnZ(T, Āu)

V
,

we indeed find the general expression for the parti-
tion function Z of an ideal e+e−-gas in which the Āu-
field plays the role of a chemical potential. If we had
started the computation including a chemical poten-
tial, we would always have encountered the combina-
tion −eĀu − µ=̂eĀ0 − µ, which is therefore the only
physical quantity. In other words, we can identify eĀu

with a chemical potential during the complete calcula-
tion; hence, the additional information (compared to the
zero temperature case) which is required to define the
correct choice of the background gauge potential Aµ is
obtained from the value of the chemical potential of the

system under consideration. If one wants to perform a
gauge transformation beyond the class of periodic Λp,
one has to redefine the chemical potential to obtain the
same physical system.
The case of the effective Lagrangian of a constant mag-

netic field at non-zero chemical potential has been dis-
cussed in [17]. Based on the real-time formalism, a com-
prehensive study of this situation including finite tem-
perature can be found in [18] where also astrophysical
implications are discussed. The same physical situation
was investigated employing the imaginary-time formal-
ism in [19] where high- and low-temperature expansions
were approached in a more direct way. As is demon-
strated in these references, the zero-temperature limit of
Eq.(39) at a chemical potential obeying µ > m requires
careful study.
A detailed weak-field expansion of the effective La-

grangian at finite temperature and chemical potential
was performed in [20], relying on the “real-time” rep-
resentation of the effective action as given in [4].

V. DISCUSSION

Going beyond the constant field approximation, the ef-
fective Lagrangian in Eqs. (38) and (39) can be viewed as
the zeroth order of a gradient expansion of the one-loop
effective action which governs the dynamics of the back-
ground gauge field Aµ(x). An immediate physical con-
sequence of the fact that the Āu-field appears explicitly
in the Lagrangian is the well-known Debye screening of
electric fields. A weak-field expansion will take the form

L1T = − 1
2∂µĀu∂

µĀu +
m2

eff

2 (Āu)
2 + O(Ā4

u), where the
effective photon mass (inverse Debye screening length) is
given by

m2
eff(T ) =

∂2L1T

∂Ā2
u

∣

∣

∣

∣

∣

Āu=0

. (42)

Considering the zero-field limit for simplicity, we find

∂2L1T

∂Ā2
u

∣

∣

∣

∣

∣

Āu=0

= −2e2

π2
m2

∞
∑

n=1

(−1)nK2

(

m
T
n
)

, (43)

where K2 denotes a modified Bessel function. In the
high-temperature limit, T ≫ m, the sum can be ex-
panded, e.g., employing the techniques described in the
Appendix B of [21], leading to

∑∞
n=1(−1)nK2

(

m
T
n

)

≃
π2T 2

6m2 +O(1). We finally arrive at

m2
eff(T ) =

(eT )2

3
, (44)

which is the well-known result found in the literature.
The leading corrections to the Debye mass in the high-
density and high-temperature limit can be looked up in
the Erratum of Ref. [4].
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At last we turn to the question of whether Schwinger’s
famous formula for the pair-production probability ren-
ders finite-temperature corrections at one-loop order.
While no thermal contributions have been found to the
imaginary part of L1T in [2] or [4] within the real-time
formalism nor in [7] employing the functional Schrödinger
representation, an imaginary part seems to appear in the
imaginary-time formalism [5]. Besides, the latter result
had also been computed in the real-time formalism in [3].
Although our findings for the effective thermal La-

grangian Eq.(39) in the heat-bath rest frame formally
coincide with those found in [3] (up to numerical pre-
factors and an interchange of proper-time integration
and summation), we do not agree with their compu-
tation of the imaginary part, which follows the line of
the zero-temperature calculation. Various obstacles are
encountered when proceeding in this way for the finite-
temperature case: since the function h(s) in the expo-
nential of Eq.(39) reduces to

h(s) = eE coth eEs (45)

for a purely electric field, E = |E|, (i) a rotation of the
contour, s → −is, becomes useless due to the coth term
in the exponent of Eq.(39); (ii) each term in the sum of
Eq.(39) exhibits an essential singularity at the poles of
the coth term on the imaginary axis; the use of the rule
cot z → Pcot z+iπ

∑

z0
δ(z−z0) is therefore senseless (cf.

[3]); (iii) proper-time integration and summation must
not be interchanged. If they are, the imaginary parts
of the successive terms in the sum diverge exponentially,
as can be shown by evaluating the residues of the singu-
larities on the imaginary s-axis. Incidentally, we do not
agree with the imaginary part computed in [5], simply
because the expressions for the effective Lagrangians do
not coincide.
However, we can give an indirect argument for the van-

ishing of the imaginary part following Ref. [4]: due to
the formal resemblance between our result Eq.(39) and
the findings of Loewe and Rojas [3] for the effective La-
grangian (not for its imaginary part!), we can follow their
steps backwards and end up with the starting point of the
real-time formalism,

∂Γ1T

∂m
= −iTr

{

fF(ku, Āu)

(

1

Π/−m+ iǫ
− 1

Π/−m− iǫ

)}

,

(46)

where fF(ku, Āu) denotes a (real) thermal distribution
function for the fermions and Γ =

∫

d4xL1T . Obviously,
since the right-hand side is purely real, there is no imag-
inary part in the thermal contribution to the effective
one-loop action and hence no thermal correction to the
Schwinger pair-production formula to this order of cal-
culation.

VI. CONCLUSION

In the present work, we studied the derivation of the
effective QED action to one-loop order in presence of ar-
bitrary constant electromagnetic fields at finite tempera-
ture in the imaginary-time formalism. Although the final
expression for the effective action is well known and has
been studied extensively, especially in the real-time for-
malism [4], the problem as treated in the imaginary-time
formalism reveals some delicate features.
Gauge invariance of the classical action turns out to

be restricted to periodic gauge transformations Λp on
the quantum level in order to leave the boundary condi-
tions of the functional integral unaltered. This implies
the existence of further gauge invariant quantities be-
side the field strength which are constructed from the
background field Aµ. Additional information about the
system under consideration has to be employed to fix the
form of the gauge potential Aµ. In the present case, the
demand for homogeneity (constant fields and constant
chemical potential) gives rise to the additional gauge in-
variant quantity Āu.
The way in which Āu enters the effective action can

be viewed as a topological effect that arises from the
compactification of the finite-temperature configuration
space in imaginary time; the configuration space, namely,
loses its property of being simply connected and allows
for infinitely many topologically inequivalent paths to
connect two different points in space-time. Each path can
be classified by its winding number around the space-time
cylinder. The holonomy factor that carries the gauge
dependence of the Green’s function is sensitive to these
inequivalent paths, since it represents a mapping of the
paths in configuration space into the gauge group. A
Poisson resummation of the sum over the winding num-
ber leads to a sum over Matsubara frequencies shifted by
the Āu-field. The quantity eĀu indeed acts like a chem-
ical potential in the partition function and therefore can
be identified with µ.
The gauge non-invariance of the effective action under

non-periodic gauge transformations furthermore mani-
fests itself in giving a mass to the (integrated) time-like
gauge field component Āu, which is, of course, nothing
but the screening mass of the Debye mechanism.
As a second focus of this work, we introduced a cer-

tain coordinate frame related to the given Lorenz vectors
and tensors of the problem that allowed for a manifest
covariant computation in the sense of relativistic thermo-
dynamics. This procedure helped us to present the result
in terms of a complete set of Lorenz and gauge invariants.
As an immediate application of the final formula for

the effective Lagrangian, we discussed a possible thermal
contribution to the Schwinger pair-production formula.
In agreement with the results of the real-time formal-
ism, we do not find an imaginary part in the thermal
contribution to the effective Lagrangian to this order of
calculation. On a heuristic level, it appears plausible
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that a thermal contribution to pair production can arise
from higher loop graphs. E.g., the two-loop process con-
tains the mass operator (in the presence of an external
field), which can be associated with collective excitations
at finite temperature. These can be approximately taken
into account by replacing the fermion mass by an effec-
tive T or µ dependent mass [22]. However, since these
effective masses generally exceed the fermion mass, such
thermal contributions are expected to be of subdominant
importance.
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