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Abstract

We show that it is possible to construct a consistent model describing a current-
carrying cosmic string endowed with torsion. The torsion contribution to the gravitational
force and geodesics of a test-particle moving around the SCCS are analyzed. In particular,
we point out two interesting astrophysical phenomena in which the higher magnitude
force we derived may play a critical role: the dynamics of compact objects orbiting the
torsioned SCCS and accretion of matter onto it. The deficit angle associated to the
SCCS can be obtained and compared with data from the Cosmic Background Explorer
(COBE) satellite. We also derived a value for the torsion contribution to matter density
fluctuations in the early Universe.
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1 Introduction

Cosmic strings have exact solutions [1] which represent topological defects that may have been
formed during phase transitions in the realm of the Early Universe [2]. The GUT defects carry
a large energy density and hence are of interest in Cosmology as potential sources for primordial
density perturbations. These fluctuations would leave their imprint in the cosmic microwave
background radiation (CMBR); a prediction not ruled out by COBE satellite observations
yet[3], and hence would act as seeds for structure formation and thus as builders of the largest-
scale structures in the Universe[4], such as the very high redshift superclusters of galaxies as for
instance the great wall. They may also help to explain the most energetic events in the Universe
such as the cosmological gamma-ray bursts (GRBs)[5], ultra high energy cosmic rays (UHECRs)
and very high energy neutrinos[4] and gravitational-wave bursts and backgrounds[6]. All these
are issues deserving continuous investigation by many physicists nowadays [7].

Witten [8] has shown that the cosmic strings may possess superconducting properties and
may behave like bosonic (see Ref.[[9]] and references therein) or fermionic strings[10]. In other
communications it was supposed that the relevant superconductivity is generated during or
very soon after the primary phase transition in which the string is formed. Cartan torsion
has been connected previously with ordinary cosmic strings [11, 12] and also spinning cosmic
strings [13] from quite distinct point of views.

In this work we consider the study case of bosonic SCCSs in Riemann-Cartan space-time
with coupling terms in the potential. One should regard such an extension as a first step of
a comprehensive study of cosmic string models in the context of theories including torsion
[14]. We aim at dealing with most realistic models which demand supersymmetry, an essential
ingredient of grand-unification theories, string theory, etc. Thus, we ought to combine both
gravitational and spin degrees of freedom in the same formalism, and thus torsion is required.

The main-stream of this paper is as follows: we explored the physics of torsion coupling
to cosmic strings in section II. An external solution for the SCCS metric in this scenario in
presented in section III, while in section IV we derive the corresponding one for the internal
structure of the SCCS by using the weak-field approximation. Two applications are provided.
One focusing on the deviation of a particle moving near a torsion string. It is shown that such
a high intensity of the gravitational force from the screwed SCCS (when compared with the
one generated by a current-carrying string) may have important effects on the dynamics of
compact objects orbiting around it, and also on matter being accreted by the string itself. The
second one exploits the possibility that the temperature fluctuations in the cosmic microwave
background radiation could have been, at least partially, generated after the SCCSs having
interacted with it. We obtain a neat expression for the deficit angle in this context and a
comparison is done with data from COBE satellite. We end this paper with a short summary
of the picture here suggested.
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2 Torsion coupling to cosmic strings

Here we construct a consistent framework for the torsion field pervading a cosmic string and
define the vortex configuration for this problem. We choose here to analyse the simplest case
where the torsion appears. In this line of reasoning, it is possible to describe torsion as a
gradient-like field [16]

S λ
µν =

1

2
[δλµ∂νΛ− δλν∂µΛ], (2.1)

being the Λ field the source of torsion in the string that have only r-dependence.
The action representing the SCCS in a space-time with torsion can be written as:

S =
∫

d4x
√
g
[

1

16πG
R({}) + α1∇µS

µ + α2SµνkS
µνk + α3SµνkS

µkν + α4SµS
µ

]

+ Sm, (2.2)

where R({}) is the curvature scalar of the Riemannian theory and Sm is the matter action that
describes the superconducting cosmic string (to be specified below). Here α1, α2, α3 and α4 are
coupling arbitrary constants with α1 connected with the torsion gradient term ∇µS

µ. Where
∇µ is a Riemannian covariant derivative which drops out from the action because it is a term
involving a total derivative. Sµνk and Sµ are SO(1, 3) irreducible components of the torsion.
For this extended Riemann-Cartan space (see Ref.[[17]] for a review), the affine connection can
be written in terms of gµν and Sα = ∂αΛ as

Γ α
λν = {αλν}+ Sαgλν − Sλδ

α
ν (2.3)

so that Sµ is the only piece that contributes to torsion, which here is the escalar derivative
defined by Eq.(2.1).

Then we may consider a theory of gravitation possessing torsion by writing that part of the
action SG stemming from the curvature scalar R as:

SG =
∫

d4x
√
g
[

1

16πG
R({})− α

2
∂µΛ∂

µΛ
]

, (2.4)

where the coupling constant α is related with α2, α3 and α4 and will be specified with the help
of COBE data.

We can study the SCCS considering the Abelian Higgs model with two scalar fields, φ and
Σ̃. In this case, the action for all matter fields turns out to be:

Sm =
∫

d4x
√
g[−1

2
Dµφ(D

µφ)∗− 1

2
DµΣ(D

µΣ)∗ − 1

4
FµνF

µν − 1

4
HµνH

µν −V (|φ|, |Σ|,Λ)], (2.5)

where DµΣ = (∂µ + ieAµ)Σ and Dµφ = (∂µ + iqCµ)φ are the covariant derivatives. The
reason why the gauge fields do not minimally couple to torsion is well discussed in the works

3



of references [18, 19]. The field strenghts are defined as usually as Fµν = ∂µAν − ∂νAµ and
Hµν = ∂µCν − ∂νCµ, with Aµ and Cν being the gauge fields.

The potential V (ϕ, σ,Λ) triggering the symmetry breaking can be fixed by:

V (ϕ, σ,Λ) =
λϕ
4
(ϕ2 − η2)2 + fϕσϕ

2σ2 +
λσ
4
σ4 − m2

σ

2
σ2 + l2σ2Λ2, (2.6)

where λϕ, λσ, fϕσ and l2 are coupling constants, and the boson mass being defined by mσ.
This action (Eq.2.2) has a U(1)′ × U(1) symmetry, where the U(1)′ group, associated with

the φ-field, is broken by the vacuum and gives rise to vortices of the Nielsen-Olesen[20]

φ = ϕ(r)eiθ, Cµ = 1
q
[P (r)− 1]δθµ, (2.7)

parametrized in cylindrical coordinates (t, r, θ, z), where r ≥ 0 and 0 ≤ θ < 2π. The boundary
conditions for the fields ϕ(r) and P (r) are the same as those of ordinary cosmic strings[20]:

ϕ(r) = η r → ∞ ϕ(r) = 0 r = 0 P (r) = 0 r → ∞ P (r) = 1 r = 0. (2.8)

The other U(1)- symmetry, that we associate to electromagnetism, acts on the Σ-field. This
symmetry is not broken by the vacuum; however, it is broken in the interior of the deffect. The
Σ-field in the string core, where it acquires an expectation value, is responsible for a bosonic
current being carried by the gauge field Aµ. The only non-vanishing components of the gauge
fields are Az(r) and At(r) and the current-carrier phase may be expressed as ζ(z, t) = ω1t−ω2z.
Notwithstanding, we focus only on the magnetic case [9]. Their configurations are defined as:

Σ = σ(r)eiζ(z,t), Aµ = 1
e
[A(r)− ∂ζ(z,t)

∂z
]δzµ, (2.9)

because of the rotational symmetry of the string itself. The fields responsible for the cosmic
string superconductivity have the following boundary conditions:

d
dr
σ(r) = 0 r = 0 σ(r) = 0 r → ∞ A(r) 6= 0 r → ∞ A(r) = 1 r = 0.

(2.10)
Let us consider a SCCS in a cylindrical coordinate system (t, r, θ, z), so that r ≥ 0 and

0 ≤ θ < 2π with the metric defined in these coordinates as:

ds2 = e2(γ−ψ)(−dt2 + dr2) + β2e−2ψdθ2 + e2ψdz2, (2.11)

where γ, ψ and β depend only on r. We can write Einstein-Cartan equations in the quasi-
Einsteinian form:

Gµ
ν({}) = 8πG(2αgµα∂αΛ∂νΛ− αδµν g

αβ∂αΛ∂βΛ + T µν ) = 8πGT̃ µν (2.12)
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where ({}) stands for Riemannian geometric objects, δµν and T µν correspond to the identity
and energy-momentum tensors, respectively. T̃ µν tensor corresponds to an eneregy-momentum
tensor containing the torsion field.

We have seen that the dependence upon torsion is represented, in the quasi-Einstenian form,
by the Λ-field that has an equation of motion given by Eq.(2.18) below, whose solution shall
be addressed subsequently.

The SCCS energy-momentum tensor is defined by T µ(scs)ν =
2√
g
δSm
δgµν

, which yields:

T tscs t = −1
2

{

e2(ψ−γ)[ϕ′2 + σ′2] + e2ψ

β2 ϕ
2P 2 + e−2ψσ2A2+

+ e2(2ψ−γ)

β2 (P
′

q
)2 + e−2γ(A

′

e
)2 + 2V (ϕ, σ,Λ)

} (2.13)

T rscs r =
1
2

{

e2(ψ−γ)[ϕ′2 + σ′2]− e2ψ

β2 ϕ
2P 2 − e−2ψσ2A2+

+ e2(ψ−γ)

β2 (P
′

q
)2 + e−2γ(A

′

e
)2 − 2V (ϕ, σ,Λ)}

} (2.14)

T θscs θ = −1
2

{

e2(ψ−γ)[ϕ′2 + σ′2]− e2ψ

β2 ϕ
2P 2 + e−2ψσ2A2+

− e2(ψ−γ)

β2 (P
′

q
)2 + e−2γ(A

′

e
)2 + 2V (ϕ, σ,Λ)

} (2.15)

T zscs z = −1
2

{

e2(ψ−γ)[ϕ′2 + σ′2] + e2ψ

β2 ϕ
2P 2 − e−2ψσ2A2+

+ e2(ψ−γ)

β2 (P
′

q
)2 − e−2γ(A

′

e
)2 + 2V (ϕ, σ,Λ)

}

.
(2.16)

In these expressions Eqs.(2.13-2.16) only the usual fields of the string are present. The
Euler-Lagrange equations result from the variation of the Eq.(2.2) together with the conditions
for the Nielsen-Olesen [20] vortex Eqs.(2.7-2.9), and yield:

ϕ′′ + 1
r
ϕ′ + ϕP 2

r2
− ϕ[λϕ(ϕ

2 − η2) + 2fϕσσ
2] = 0

σ′′ + 1
r
σ′ + σ[A2 + (fϕσϕ

2 + λσσ
2 −m2

σ + l2Λ2)] = 0
P ′′ − 1

r
P ′ − q2ϕ2P = 0, A′′ + 1

r
A′ + e2σ2A = 0,

(2.17)

while the torsion wave equation is given by:

✷gΛ =
l2

α
σ2Λ. (2.18)

Above, a prime denotes differentiation with respect to the radial coordinate r. The general
solution for the SCCS will be found in the weak-field approximation together with junction
conditions for the external metric.

3 The external solution

Now, we proceed to solve the previous set of equations for an observer outside the SCCS
stressed by torsion, focusing on the external metric which satifies the constraint r0 ≤ r ≤ ∞.
The external contribution to the energy-momentum of the string reads
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T µ
ν =

1

4
gµαgβρFαβFνρ − δµν g

σαgβρFσβFαρ. (3.1)

This tensor is the external energy-momentum tensor of a SCCS with no torsion. If we
observe the asymptotic conditions, Eq.(2.8) and Eq.(2.10), we see that the only field that does
not vanish is the Aµ-field that is responsible for carrying off the string the effects of the current
on it. The torsion contribution to the external energy-momentum tensor is given by

T µ
νtors

= 2αgµα∂αΛ∂νΛ− αδµν g
αβ∂αΛ∂βΛ. (3.2)

For this configuration, the energy-momentum tensor displays the following symmetry prop-
erties:

T t
t = −T r

r = T θ
θ = −T z

z . (3.3)

Then, the only one component of Λ in Eq.(2.18) to be solved is the r−dependent function
Λ(r). The solution reads:

Λ(r) = λ ln(r/r0). (3.4)

The vacuum solution of Eqs.(2.12) are found from the symmetries (3.3). Hence the solutions
of β(r) and γ(r) are given by

β = Br, γ = m2 ln r/r0. (3.5)

To find the ψ-solution, we can use the condition:

R = 2Λ′2e2(ψ−γ). (3.6)

This condition is different from the usual one[9] because the scalar curvature R does not
vanish, and opposedly it is linked to the torsion-field Λ. Then, this condition has the same
form as the one for a SCCS in a scalar-tensor theory [15]. By making use of solutions (3.4),
(3.5), we find:

ψ = n ln (r/r0)− ln
(r/r0)

2n + k

(1 + k)
. (3.7)

Thus we see that from the solutions of the SCCS Eqs.(3.5,3.7), there exists a relationship
between the parameters n, λ and m given by n2 = λ2 +m2.

With the above results, we find that the external metric for the SCCS takes the form:

ds2 =
(

r

r0

)−2n

W 2(r)

[

(

r

r0

)2m2

(−dt2 + dr2) +B2r2dθ2
]

+
(

r

r0

)2n 1

W 2(r)
dz2, (3.8)
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with W (r) = [(r/r0)
2n + k]/[1 + k].

The external solution alone does not provide a complete description of the physical situation.
We proceed hereafter to find the junction conditions to the internal metric in order to obtain
an appropriate accounting for the nature of the source and its effects on the surrounding space-
time.

4 SCCS solution: The weak-field approximation

Nowlet us find the Einstein-Cartan solutions for a SCCS by considering the weak-field approx-
imation. Thus, the space-time metric may be expanded in terms of a small parameter ε about
the values g(0)µν = diag(−1, 1, 1, 1), then:

gµν = g(0)µν + εhµν , T̃µν = T̃(0)µν + εT̃(1)µν . (4.1)

The T̃
(0)µν tensor corresponds to the energy-momentum tensor in a space-time with no

curvarture. However, torsion is embeeded. T̃
(1)µν represents the part of the energy-momentum

tensor containing curvature and torsion. Next we proceed to define some important quantities
useful for the analysis to come.

The energy-momentum density and tension of the thin SCCS are given by:

U = −2π
∫ r0

0
T̃ t

(0)t
rdr; T = −2π

∫ r0

0
T̃ z

(0)z
rdr (4.2)

The remaining components follows as

X = −2π
∫ r0

0
T̃ r

(0)r
rdr; Y = −2π

∫ r0

0
T̃ θ

(0)θ
rdr. (4.3)

The energy conservation in the weak-field approximation, reduces to

r
dT̃ r

(0)r

dr
= (T̃ θ

(0)θ
− T̃ r

(0)r
), (4.4)

where T̃
(0)µν represents the trace of the energy-momentum tensor with tprsion.

For computing the overall metric, we use the Einstein-Cartan in the quasi-Einsteinian
Eq.(2.12), where it gets the form Gµν({}) = 8πGT̃ µν

(0)
in the weak-field approximation, with

the tensor T̃
(0)µν (being first order in G) containing torsion. After integration we have:

∫ r0

0
rdr(T̃ θ

(0)θ
+ T̃ r

(0)r
) = r20T̃

r

(0)r
(r0) = r20

[

A′2(r0)

2e2
+
α

2
Λ′2(r0)

]

. (4.5)

To find the internal energy-momentum tensor, it is more convenient to use Cartesian
coordinates[9]. For this purpose we proceed to calculate the cross-section integrals of T̃ x

(0)x

and T̃ y
(0)y

that in cartesian coordinates reads
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T̃ x
(0)x

= c[ϕ′2 + σ′2 +
(

A′

e

)2
+ αΛ′2] + sϕ

2P 2

r2
+ 1

2

(

P ′

qr

)2 − 1
2
σ2A2 − 2V

T̃ y
(0)y

= s[ϕ′2 + σ′2 +
(

A′

e

)2
+ αΛ′2] + cϕ

2P 2

r2
+ 1

2

(

P ′

qr

)2 − 1
2
σ2A2 − 2V,

(4.6)

where c = cos2 θ − 1
2
and s = sin2 θ − 1

2
. This way we found:

∫

rdrdθT̃ x
(0)x

=
∫

rdrdθT̃ y
(0)y

= π
∫

rdr[

(

P ′

qr

)2

− σ2A2 − V ] = −W. (4.7)

Using the fact that T̃ r
(0)r

+ T̃ θ
(0)θ

= T̃ x
(0)x

+ T̃ y
(0)y

, then we have:

X + Y = 2W = −2πr20

[

A′2(r0)

e2
+ αΛ′2(r0)

]

, (4.8)

which can be computed by integration of Eq.(2.17)

A′(r) =
eJ√
2πr

, J =
√
2πe

∫ r0

0
rdrσ2A, (4.9)

where J is the current density. Thus, the torsion density can be computed by integration of
Eq.(2.18)

Λ′ =
S√
2παr

, S =
√
2πl2

∫ r0

0
rdrσ2Λ, (4.10)

where S is the torsion density. With these considerations we found the string structure. Then,
we obtain

W = − 1

2π

(

J2 + νS2
)

. (4.11)

with ν = 1/α.
In addition, we can assume that the string is infinitely thin so that its stress-energy tensor

is given by

T̃ µνstring = diag[U,−W,−W,−T ]δ(x)δ(y). (4.12)

It worths to note that definitions for both string energy U and tension T , as in equations
(4.2), already incorporate information on the torsion.

By virtue of the presence of the external current we use the form Eq.(4.12) for the string
energy-momentum tensor as well as Eq.(3.1) and Eq.(3.2) for the external energy-momentum
tensor in linearized solution to zeroth order in G. In the sense of distributions we have,
∇2ln(r/r0) = 2πδ(x)δ(y), ∇2(ln(r/r0))

2 = 2/r2 and ∇2(r2∂i∂jln(r/r0)) = 4∂i∂jln(r/r0).
The energy-momentum tensor of the string source T̃(0)µν , in Cartesian coordinates, possesses

no curvature, which is the well-known result [9, 15], but does have torsion which produces the
following energy-momentun tensor
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T̃(0)tt = Uδ(x)δ(y) + (J2+νS2)
4π

∇2
(

ln r
r0

)2
,

T̃(0)zz = −Tδ(x)δ(y) + (J2−νS2)
4π

∇2
(

ln r
r0

)2
,

T̃(0)ij = (J2 + ρS2)δijδ(x)δ(y)− (J2+νS2)
2π

∂i∂jln(r/r0),

(4.13)

where the trace is given by T̃(0) = −(U + T − J2 − νS2)δ(x)δ(y)− νS2

2π
∇2

(

ln r
r0

)2
.

Now let us find the matching conditions to the external solution. For this purpose, we shall
use the linearized Einstein-Cartan equation in the form

∇hµν = −16πG(T̃(0)µν −
1

2
g
(0)µν T̃(0)). (4.14)

The internal solution to equation (4.14) with source yields:

htt = −4G[J2(ln(r/r0))
2 + (U − T + J2 + νS2) ln(r/r0)]

hzz = −4G[J2 ln(r/r0))
2 + (U − T − J2 − νS2) ln(r/r0)]

hij = −2G(J2 + νS2)r2∂i∂j ln(r/r0)− 4Gδij

[

(U + T + J2 + νS2) ln(r/r0)) + S2
(

ln r
r0

)2
]

.

(4.15)
This corresponds to the solution in Cartesian coordinates. We note that the torsion appears

explicitly in the transverse components of the metric. To analyse the solution for the junction
condition to the external metric let us transform it back into cylindrical coordinates.

5 Matching Conditions

It is possible to find the matching conditions [22] to the external solution. In the case of a space-
time with torsion we can find the junction conditions using the fact that [{αµν}](+)

r=r0
= [{αµν}](−)

r=r0
,

and the metricity condition [∇ρgµν ]
+
r=r0

= [∇ρgµν ]
−
r=r0

= 0, to find the continuity conditions

[gµν ]
(−)
r=r0

= [gµν ]
(+)
r=r0

,

[∂gµν
∂xα

](+)
r=r0

+ 2[gαρK
ρ

(µν)]
(+)
r=r0

= [∂gµν
∂xα

](−)
r=r0

+ 2[gαρK
ρ

(µν)]
(−)
r=r0

(5.1)

where (−) represents the internal region and (+) corresponds the external region around r = r0.
In analysing the junction conditions we notice that the contortion contributions do not appear
neither in the internal nor in the external regions[22, 23].

To match our solution with the external metric we used the metric in cylindrical coordinates,
which is obtained from the coordinate transformations:

r2∂i∂jln(r/r0)dx
idxj = r2dθ2 − dr2, (5.2)

9



Unfortunately, for this goal we cannot use the metric the way it stands. Therefore, we have to
change the radial coordinate to ρ, using the constraint (symmetry) gρρ = −gtt, to have, to first
order in G, ρ = r[1 + a1 − a2 ln(r/r0)− a3(ln(r/r0)

2].
In this case we have a1 = G(4U + J2 + νS2), a2 = 4GU and a3 = −2G(J2 + νS2), which

corresponds to the magnetic configuration of the string fields[9]. The transformed metric yields:

gtt = −{1 + 4G[J2(ln(ρ/r0))
2 + (U − T + J2 + νS2) ln(ρ/r0)]} = −gρρ

gzz = {1− 4G[(J2 + νS2)(ln(ρ/r0))
2 + (U − T + J2 − νS2) ln(ρ/r0)]}

gθθ = ρ2{1− 8G(U + (J2+ρS2)
2

) + 4G(U − T − J2 − ρS2) ln(ρ/r0)] + 4GJ2(ln(ρ/r0))
2}.

(5.3)
Now we can find the external parameters B, n and m as functions of the source structure.

If we consider the junction of the equation (5.1), after the linearization, and using the limit
|n ln(ρ/r0)| << 1, we have:

n
(

1−k
1+k

)

= 2G (U − T − J2 − νS2)

B2 = 1− 8G
(

U + (J2+ρS2)
2

)

m2 = 4G(J2 + νS2).

(5.4)

and using the derivative of the expression Eq.(3.4) and the Eq.(4.10), we find

λ =
ν√
2π
S. (5.5)

This expression completes the derivation of the full metric components. In analysing the
metric of the SCCS with torsion we note that the contribution of torsion appears in the θθ-
metric component, which is important in astrophysical applications such as gravitational lensing
studies because this component is linked to the deficit angle. Next we present two preliminary
applications of the formalism here introduced assuming that such a kind of torsioned SCCSs
really exist. Firstly, we focus on the issue of the deviation of a particle moving near the string,
and later on we attempt to perform a comparative analysis of the observations performed by
the COBE satellite, with the effects this sort of string may produce on the CMBR, supposed
to interact with it as discussed in this paper.

6 Particle deflection near a torsion SCCS

We know that when the string possesses current there appear gravitational forces. We shall
consider the effect that torsion plays on the gravitational force generated by SCCS on a particle
moving around the defect, initially with no charge. We consider the particle speed |v| ≤ 1,
condition under which the geodesic equation becomes:

d2xi

dτ 2
+ Γitt = 0, (6.1)
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where i is the spatial coordinate and the connection can be written as Eq.(2.3)), in this manner
the gravitational force of the string (per unit length) gets the form

FG =
1

2
(∇htt −

S

ρ
), (6.2)

with gtt = −1 − htt in Eq.(5.3). We also note that the gravitational force is related to the htt
component that has no explicit dependence on the torsion. From the last equation, the force
the SCCS exerts on a test particle can be explicitly written as

FG = −1

ρ

[

2GJ2

(

1 +
(U − T + νS2)

J2
+ 2 ln(ρ/r0)

)

+ S

]

. (6.3)

A quick glance at the last equation allows us to understand the essential role torsion may in
the context of the present formalism. As we show below, this extra-term yields an amplification
of the total force a particle close to the SCCS will undergo.

If torsion is present, even in the case the string has no current, an attractive gravitational
force appears. In the context of the SCCS torsion acts as a enhancer of the force a test particle
feels outside the string. In our summary, we discuss a bit further potential applications of this
new result to astrophysics and cosmology.

7 Angular deficit and COBE map

Recently many works [24, 25] have shown that the COBE data are compatible with Einstein-
Cartan gravity. In this section, we analyse the effects of a screwed superconducting cosmic string
on the primordial microwave background radiation using the COBE data. To this end, we need
to compute the angular deficit introduced by torsion. The hidden idea here is that the cosmic
large-scale density fluctuations could have had origin during the appearance of Cosmic String
defects or due to interaction with them during the late stages of the Universe’s evolution. The
torsion would modify properties of light and radiation interacting with a cosmic string pervaded
by screw dislocations in such a way that the density fluctuations induced might match those
ones measured by COBE[3]. The DMR (Differential Microwave Radiometer) instrument of
COBE has provided temperature sky maps leading to the rms sky variation where the beam
separation in the COBE experiment is θ1 − θ2 = 60o .

Each string that affects the photon beam induces a temperature variation [26, 27], of the
order of magnitude as δT

T
∼ δ ≤ 10−6(COBE), where δ is the angular deficit. If we consider the

metric Eqs.(5.3), projected into the space-time perpendicular to the string, i. e., dz = 0, then
we have:

ds2⊥ = (1− htt)[−dt2 + dr2 + (1− b)r2dθ2], (7.1)

with htt given by Eq.(5.3), and b calculated from junction conditions using β2 = (1− b)ρ2.
Then, in first order in G, the deficit angle gets:
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δ = bπ = 8πG{U +
J2(1 + ln(ρ/r0))

2
+

1

2
νS2(1− 2 ln(ρ/r0))}. (7.2)

We can interpret this angular deficit δ as being due to three different contributions: δs to
an ordinary cosmic string, δJ to the current and δ

tors
to the torsion field, respectively. In the

case of the ordinary cosmic string the angular deficit is given by δs = 8πGU , which in this
work corresponds to the case where both current J and torsion S vanish. In this situation[28],
it is demonstrated that cosmic string models are more consistent with the COBE data [29] for
a wider range of cosmological parameters than the standard CDM models, and the numerical
simulations have confirmed these predictions [30].

When the cosmic string carries current, we have used results of Ref.[31] for the current, that
is, a configuration with the maximum current J ∼ η, for η = 1016GeV as well-known for grand
unification theories. In such a case, we found δJ = 8πGJ2 ∼ 10−6 or less what is compatible
with COBE data. As it is easy to see, we neglected the logarithmic term because we consider
the experiment is being performed close to the string surroundings.

However, in the situation where the cosmic string is stressed by torsion, the issue is more
difficult because we have no idea about the energy density torsion puts in the Universe via
cosmic strings. Therefore, if a cosmic string actually formed (and it is a good mechanism
to generate density fluctuations that can be measured by COBE), then we can estimate the
density of torsion the string induces in the cosmic background. To this purpose we choose the
value ν ∼ 1038GeV 2 ∼ 1/G; in this case, we have the torsion energy density S ∼ 10−3 with
δtors = 8πGνS2. As one can check by substituting in the previous section, the inferred value
for S enlarges the intensity of the net force undergone by a test particle encircling the SCCS.

8 Summary

It is possible for torsion to have had a physically relevant role during the early stages of the
Universe’s evolution. Along these lines, torsion fields may be potential sources of dynamical
stresses which, when coupled to other fundamental fields (i. e., the gravitational field), might
have performed an important action during the phase transitions leading to formation of topo-
logical defects such as the SCCSs here we focused on. It therefore seems a crucial issue to
investigate basic models and scenarios involving cosmic defects within the torsion context. We
showed that in this picture there exists the possibility for SCCSs to effect the spectrum of
primordial density perturbations, whose imprints could be seen in the relic cosmic microwave
background radiation as observed by COBE.

We also showed that torsion has a non-negligible contribution to the geodesic equation ob-
tained from the contortion term. From a physical point of view, this contribution is responsible
for the appearance of a stronger attractive force acting on a test-particle. Using the COBE
data, we found that the torsion density contribution S is the order of ∼ 10−3. If we compute
the force strength, Eq.(6.3), in association with the above estimative and data coming from
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COBE observations, we can show that the torsion contribution to this force is 103 times big-
ger than the corresponding to a current-carrying string compared to the one induced by the
gravitational interaction itself.

This peculiar fact may have meaningful astrophysical and cosmological effects. Let us
imagine for a while a compact object (CO): a black hole or an exotic cosmic relic such as a boson,
strange mirror star, for instance, orbiting around the SCCS. Because the acceleration induced
on the radial component of its orbital motion is about one thousand stronger than in ordinary
cases, then, we can expect the changes it provokes in the quadrupole moment of the system
(SCCS + CO) to be enhanced by a large factor so that the gravitational wave (GW) signal
expected from the CO inspiraling onto the SCCS could be above the lower strain sensitivity
threshold of planned LIGO, VIRGO, GEO-600, etc. interferometric GW observatories, for
distances even as the Hubble radius. Moreover, this very strong force may also turn the SCCS
a potential source of hard X-ray and γ-ray transient emissions. These radiations can be emitted
by matter (primordial gas and/or dust clouds, or something else) accreting onto the SCCS as
the material gets closer and becomes heated due to the powerful tidal stripping. All these issues,
we plan to address to in a forthcoming work including the Sachs-Wolfe effect in space-time with
torsion [14].
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and Prof. V.B. Bezerra for helpful discussions on the subject of this paper. C.N Ferreira and
H.J. Mosquera Cuesta (CLAF) would like to thank (CNPq-Brasil) for financial support. We
also thank Centro Brasileiro de Pesquisas F́ısicas (CBPF) and the Abdus Salam ICTP-Trieste
for hospitality during the preparation this work. Garcia de Andrade thanks (FAPESP) and
(CNPq-Brasil) for financial support and Dr. Rudnei Ramos, Prof. I. Shapiro for important
suggestions concerning this work.

References

[1] A.Vilenkin, Phys. Rev. D 23,852 , (1981); W.A.Hiscock, Phys. Rev. D 31, 3288, (1985);
J.R.GottIII, Astrophys. Journal, 288, 422, (1985); D. Garfinkel, Phys. Rev. D 32 1323,
(1985).

[2] T.W. Kibble, J. of Phys. A9, 1387 (1976).

[3] G. F. Smoot, Lectures at D.Chalonge School on Large-Scale Structure of the Universe,
Erice, Dic 12-17 (1999).

[4] J. Magueijo and R.H. Brandenberger, astro-ph/0002030, (2000); T.W.B. Kibble, Phys.
Rep 67, 183, (1980).

13

http://arxiv.org/abs/astro-ph/0002030


[5] R. H. Brandenberger, A. T. Sornborger and M. Trodden, Phys. Rev. D., 48, 940 (1993);
V. Berezinshy, B. Hnatyk and A. Vilenkin, astro-ph/0001213 (2000).

[6] B.Allen and P.Casper, Phys. Rev D 51, 1546 (1995), gr-qc/9407023; Phys. Rev D 50,
2496 (1994), gr-qc/9405005.

[7] S.W.Hawking and S.F.Ross, gr-qc/9506020 (1995); Audretsch and A.Economou, Phys Rev
D 44,3774 (1991).

[8] E. Witten, Nucl.Phys. B249, 557 (1985).

[9] P. Peter and D. Puy, Phys. Rev. D, 48, 5546 (1993).

[10] S.C.Davis, hep-ph/9901417 , (1999); S.C.Davis et al., hep-ph/9912356 , (1999).

[11] H.H. Soleng, Gen. Rel. Grav. 24, 111, (1992).

[12] L.C.Garcia de Andrade, Mod.Phys.Lett. A13, 2227 (1998).

[13] P.S.Letelier, Class. and Quant. Grav.12, 471 (1995); P.S.Letelier, Class. and Quant. Grav.
12, 2224, (1995).

[14] H.J.Mosquera Cuesta and C.N.Ferreira, ”Cosmic Strings in Conformal Field Theory with
Torsion”, in preparation.
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