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Abstract

We study cosmological solutions in the dilatonic brane world models. The effective

four-dimensional equations on the brane are analyzed for the models with one positive

tension brane and two branes with tensions of opposite signs. Just as in the non-

dilatonic brane case, the conventional Friedmann equations of the four-dimensional

universe are reproduced to the leading order in matter energy density for the model with

one brane and the introduction of a radion potential is required in order to reproduce

the Friedmann equations with the correct sign for the model with two branes.
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Over the past couple of years, much attention has been paid to theories with ex-

tra dimensions [1, 2, 3, 4, 5, 6], as such theories open up the possibility of solving

the hierarchy problem in particle physics and make the string scale and the extra di-

mensions accessible to the future accelerators. Such theories assume that fields of the

Standard Model are confined to a three-brane embedded in higher-dimensional space-

time, whereas gravity can propagate in the bulk. In the scenario proposed by Randall

and Sundrum (RS) [4, 5, 6], four-dimensional gravity with a negligible correction is re-

produced even with an infinitely large extra dimension, since the gravity is effectively

localized on the brane.

Lots of effort has been made to understand cosmology in brane models. Initially,

it was observed [7] that brane models (with vanishing bulk cosmological constant Λ

and brane tension σ) have non-conventional cosmological solutions where the Hubble

parameter H is proportional to the energy density ̺ of matter on the brane, whereas

in standard conventional cosmology H ∝ ̺. This problem was resolved [8, 9, 10, 11]

by considering the RS brane world model, i.e. by setting Λ and σ to be nonzero. By

assuming that ̺ ≪ σ, one reproduces the conventional cosmology to the leading order

in ̺ for the RS model with one brane and an infinitely large extra dimension (called

the RS2 model). However, for the RS model with two branes (called the RS1 model),

the cosmological solution on the visible brane (the TeV brane) has the wrong-signed

Friedmann equations. Furthermore, the matter energy densities ̺ and ̺∗ on the invis-

ible and the visible branes are correlated to have the opposite signs, which leads to the

unphysical result that the matter energy density on either of the branes has to be neg-

ative. As was speculated in Refs. [12, 7, 8] and later explicitly shown in Ref. [13] (see

also Ref. [14] for the brane world cosmology with a radion stabilizing potential), such

undesirable results are resolved by including a radion stabilizing potential [15, 12, 16].

In the limit of very heavy radion mass, one of the equations of motion which correlated

the energy densities on the two branes disappears and the standard cosmology is repro-

duced. Another approach to resolve the problem of the brane cosmology emphasized in

Ref. [7] was proposed in Refs. [17, 18], where it is shown that the standard Friedmann

equations can be reproduced (without any approximation) by introducing the nonzero

extra-spatial component of the bulk energy-momentum tensor (even without the bulk

cosmological constant and the brane tension). Such nonzero bulk energy-momentum

tensor component acts to stabilize the radius of the extra spatial dimension even in

the absence of the second brane.

It was found out [19, 20] that the RS type brane world scenario can be extended

to the dilatonic branes, since gravity can also be localized on the dilatonic branes

when the warp factor decreases, for which case the tension of the brane is positive.

Dilatonic domain walls appear in string theories quite often when (intersecting) branes

in ten or eleven dimensions are compactified. It is the purpose of this note to study
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cosmological solutions in the dilatonic brane world. (The previous works on the brane

world cosmology with the bulk dilatonic or Brans-Dicke scalar can be found in Refs.

[21, 22, 23, 24].)

We consider the following action:

S =
∫

d5x
√

−ĝ

[

1

2κ2
5

R− 4

3
∂Mφ∂Mφ− e−2αφΛ

]

+
∫

d4x
√−g

[

Lmat − σe−αφ0

]

, (1)

where σ is the tension of the brane located at y = 0, φ0 ≡ φ|y=0, and Lmat is the

Lagrangian density for all the matter confined on the three-brane.

When Lmat = 0, the equations of motion following from the action (1) admit the

following static three-brane solution [19]:

gMNdx
MdxN = W

[

−dt2 + (dx1)2 + (dx2)2 + (dx3)2
]

+ dy2,

φ =
1

α
ln(1−K|y|) + φ0, W = (1−K|y|)

16κ2
5

9α2 , (2)

where the coefficient K is determined by Λ in the following way:

K =
3α2

2
e−αφ0

√

3Λ

9α2 − 32κ2
5

, (3)

and φ0 is an arbitrary constant. The following fine-tuned value of σ in terms of Λ is

fixed by the boundary condition at y = 0:

σ = 8

√

3Λ

9α2 − 32κ2
5

. (4)

It was shown [19, 25, 20] that as long as σ takes positive value given by Eq. (4) (i.e.

the case with the Z2-symmetry and naked singularities on both sides of the brane)

there exists normalizable Kaluza-Klein zero mode for the bulk graviton. Thereby, the

RS type brane world scenario can be extended to the dilatonic domain wall case.

When Lmat 6= 0, even if σ takes the fine tuned value (4), the brane world becomes no

longer static, i.e. the brane world undergoes cosmological expansion. We are interested

in the cosmological model for which the principle of homogeneity and isotropy in the

three-dimensional space of the brane universe is satisfied. On the other hand, the

presence of the brane breaks the isometry along the extra spatial direction. The general

form of the metric Ansatz satisfying these requirements is

ĝMNdx
MdxN = −n2(t, y)dt2 + a2(t, y)γijdx

idxj + b2(t, y)dy2. (5)

Here, γij is the maximally symmetric three-dimensional metric given in the Cartesian

and spherical coordinates by

γijdx
idxj =

(

1 +
k

4
δmnx

mxn

)−2

δijdx
idxj =

dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2), (6)
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where k = −1, 0, 1 respectively for the three-dimensional space with the negative, zero

and positive spatial curvature.

By varying the action (1) with respect to ĝMN , one obtains the Einstein’s equations

GMN = κ2
5TMN , (7)

with the energy-momentum tensor given by

TMN = −4

3
ĝMN∂Pφ∂

Pφ+
8

3
∂Mφ∂Nφ− ĝMNe

−2αφΛ

−σ

b
e−αφδ(y)δµMδνNgµν +

1

b
δ(y)δµMδνNT

mat
µν , (8)

where Tmat
µν = − 2√

−g
δ(
√
−gLmat)
δgµν

is the energy-momentum tensor of the matter fields on

the three-brane. Since we wish to model the matter in the brane universe by a perfect

fluid, Tmat
µν in the comoving coordinates takes the following form:

Tmat µ
ν = diag(−̺, ℘, ℘, ℘), (9)

where ̺ and ℘ are the energy density and pressure of matter on the three-brane as

measure in the rest frame. So, the Einstein’s equations (7) take the following form:

3

n2

ȧ

a

(

ȧ

a
+

ḃ

b

)

− 3

b2

[

a′

a

(

a′

a
− b′

b

)

+
a′′

a

]

+
3k

a2
=

κ2
5

[

4

3
n−2φ̇2 +

4

3
b−2φ′ 2 + e−2αφΛ + (σe−αφ + ̺)

δ(y)

b

]

, (10)

1

b2

[

a′

a

(

2
n′

n
+

a′

a

)

− b′

b

(

n′

n
+ 2

a′

a

)

+ 2
a′′

a
+

n′′

n

]

+
1

n2

[

ȧ

a

(

2
ṅ

n
− ȧ

a

)

+
ḃ

b

(

ṅ

n
− 2

ȧ

a

)

− 2
ä

a
− b̈

b

]

− k

a2
=

κ2
5

[

4

3
n−2φ̇2 − 4

3
b−2φ′ 2 − e−2αφΛ+ (℘− σe−αφ)

δ(y)

b

]

, (11)

n′

n

ȧ

a
+

a′

a

ḃ

b
− ȧ′

a
=

8

9
κ2
5φ̇φ

′, (12)

3

b2
a′

a

(

a′

a
+

n′

n

)

− 3

n2

[

ȧ

a

(

ȧ

a
− ṅ

n

)

+
ä

a

]

− 3k

a2
= κ2

5

[

4

3
n−2φ̇2 +

4

3
b−2φ′ 2 − e−2αφΛ

]

,

(13)

where the overdot and the prime respectively denote derivatives w.r.t. t and y.
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With the assumption of homogeneity and isotropy on the brane world, the dilaton φ

does not depend on the spatial coordinates xi (i = 1, 2, 3) of the three-brane. So, the

equation of motion for the dilaton takes the following form:

8

3

1

n2

[

φ̈− φ̇

(

ṅ

n
− 3

ȧ

a
− ḃ

b

)]

− 8

3

1

b2

[

φ′′ + φ′
(

n′

n
+ 3

a′

a
− b′

b

)]

= 2αΛe−2αφ + ασe−αφ δ(y)

b
. (14)

We assume that a solution to the above equations of motion is continuous everywhere,

especially across y = 0, where the brane is located, in order to have a well-defined

geometry. However, its derivatives w.r.t. y are discontinuous at y = 0 due to the

δ-function like brane source there. The following boundary conditions on the first

derivatives of the metric components at y = 0 are obtained by integrating Eqs. (10)

and (11) over the infinitesimal interval around y = 0 w.r.t. y:

[a′]0
a0b0

= −κ2
5

3
(σe−αφ0 + ̺), (15)

[n′]0
n0b0

= −κ2
5

3
(σe−αφ0 − 3℘− 2̺), (16)

where the subscript 0 denotes quantities evaluated at y = 0, e.g. a0(t) ≡ a(t, 0),

and [F ]0 ≡ F (0+) − F (0−) denotes the jump of F (y) across y = 0. Similarly, from

the dilaton equation (14), one obtains the following boundary condition on the first

derivative of φ at y = 0:
[φ′]0
b0

= −3

8
ασe−αφ0. (17)

The effective four-dimensional equations of motion on the three-brane can be ob-

tained [7] by taking the jumps and the mean values of the above five-dimensional

equations of motion across y = 0 and then applying the boundary conditions (15-17)

on the first derivatives. Here, the mean value of a function F across y = 0 is defined

as ♯F ♯ ≡ [F (0+) + F (0−)]/2. In this paper, we consider solutions invariant under the

Z2 symmetry, y → −y, i.e. the solutions depending on y through |y|. Then, the mean

values of the first derivatives across y = 0 vanish. We also note that it is always possi-

ble to choose a gauge so that n0(t) ≡ n(t, 0) is constant without introducing the cross

term ĝ04. Making use of this fact, we scale the time coordinate t to be the cosmic time

for the brane universe, namely n0 = 1.

First, by taking the jump of the (0, 4)-component Einstein equation (12), one obtains

the following conservation of energy equation for the brane universe with the scale factor

a0:

˙̺ + 3(℘+ ̺)
ȧ0
a0

= 0. (18)
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So, despite the energy flow along the y-direction, as indicated in Eq. (12), the energy

conservation law in the brane universe takes the conventional form of the standard

four-dimensional universe. A consequence for this fact is that for the brane matter

satisfying the equation of state of the form ℘ = w̺ with a constant w, the dependence

of ̺ on a0 has the usual form ̺ ∝ a
−3(1+w)
0 .

Next, by taking the mean value of the (4, 4)-component Einstein equation (13) across

y = 0, one obtains the following Friedmann-type equation of the brane universe:

ȧ20
a20

+
ä0
a0

+
k

a20
=

κ4
5

36
(̺− 3℘)σe−αφ0 +

(

κ4
5

18
σ2 − κ2

5

64
α2σ2 +

κ2
5

3
Λ

)

e−2αφ0

−κ4
5

36
̺(̺+ 3℘)− 4

9
κ2
5φ̇

2
0. (19)

The ∼ e−2αφ0 term on the RHS vanishes when σ takes the fine-tuned value (4). When

σ is bigger [smaller] than the fine-tuned value, the effective cosmological constant term

behaving as ∼ e−2αφ0 is positive [negative]. However, unlike the non-dilatonic brane

world case, we have additional negative contribution (the last term on the RHS) to the

cosmological constant from the varying dilaton field with t. This can be understood

from Eq. (12), which indicates the flow of the dilaton energy along the y-direction.

The extremely small positive cosmological constant observed in our universe restricts

the dilaton to vary very slowly on the brane or to be stabilized due to some mecha-

nism. When σ does not take the fine-tuned value, the varying φ0 implies the varying

cosmological constant in the brane universe with t. If we assume ̺ ≪ σ, then to the

leading order in ̺ we have H2 ∝ ̺ as in conventional cosmology. However, unlike the

non-dilatonic brane world case, the coefficient of the ∼ ̺ term varies with t, if φ̇0 6= 0.

The Λ = 0 case corresponds to cosmology in the self-tuning brane world [26, 27]. In this

case, the four-dimensional effective cosmological constant term (∼ e−2αφ0) is nonzero

for a general value of α, as was previously observed [25, 28] in the four-dimensional ef-

fective action. This cosmological constant term vanishes when α2 = 32κ2
5/9. Contrary

to the result in Ref. [28], this nonzero cosmological constant cannot be cancelled by

introducing another brane with the fine-tuned tension, since the RHS of Eq. (19) gen-

erally does not receive contribution from another brane at different y. This difference

may be attributed to the fact that the Friedmann-like equation (19) contains infor-

mation local in the y-direction (i.e. only from y = 0), whereas the four-dimensional

effective action contains contribution from all the possible values of y. Note, so far, we

have not assumed the radius b of the extra dimension to be constant.

We now discuss an approximate solution to the equations of motion. We assume the

radius of the extra space to be stable, i.e. b = b0 = const, even in the absence of a

stabilizing potential. We assume that the brane matter satisfies the equation of state

of the form ℘ = w̺ with a constant w. The generalization of the static brane solution
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(2) can be parameterized as

a(t, y) = a0(t)
[

1 + A(t)|y|+ A2(t)y
2 + · · ·

]

8κ
2

5

9α2

,

n(t, y) =
[

1 +N(t)|y|+N2(t)y
2 + · · ·

]

8κ
2

5

9α2

,

φ(t, y) =
1

α
ln
[

1 + Φ(t)|y|+ Φ2(t)y
2 + · · ·

]

+ φ0(t). (20)

The coefficients of the |y| terms can be determined by applying the boundary conditions

(15-17) on the first derivatives. The resulting expressions are

A = −Kb0 −
3α2

16
̺b0, N = −Kb0 +

3α2

16
(3w + 2)̺b0, Φ = −Kb0. (21)

Note, in the presence of matter fields on the brane, K = 3α2

16
e−αφ0σ changes with time,

since φ0 = φ(t, 0) is in general a function of t. So, the time dependence of the above

coefficients comes not only from ̺(t) but also from K. Of course, when there are

no matter fields and σ takes the fine-tuned value (4), K is a constant and the above

inflationary brane solution reduces to the static brane solution (2). The linear order (in

|y|) part of the above non-static brane solution (20) suggests the following approximate

solution, valid for any y, to the first order in ̺:

a(t, y) ≈ a0(t)(1−Kb0|y|)
8κ

2

5

9α2 [1 + ̺(t)f(t, y)],

n(t, y) ≈ (1−Kb0|y|)
8κ

2

5

9α2 [1 + ̺(t)g(t, y)],

φ(t, y) ≈ 1

α
ln(1−Kb0|y|) + φ0(t), (22)

where

f(t, y) = − 3α2

32K

[

(1−Kb0|y|)−
16κ

2

5

9α2 − 1

]

,

g(t, y) =
3α2(3w + 2)

32K

[

(1−Kb0|y|)−
16κ

2

5

9α2 − 1

]

. (23)

This approximate solution reduces to the one obtained in Ref. [13] in the non-dilatonic

limit α → 0.

Just like the RS1 model [4], one can introduce another brane at some fixed distance

from the original brane. We put this second brane at y = 1/2. We denote the energy

density and pressure of the matter fields on the brane at y = 1/2 as ̺∗ and ℘∗. The

tension of the brane at y = 1/2 is denoted as σ∗. Then, the equations of motion (10-14)

have additional δ-function terms ∼ δ(y−1/2) associated with the additional brane and

brane matter at y = 1/2. The metric components and the dilaton satisfy additional

6



boundary conditions of the form (15-17) at y = 1/2 but with the respective quantities

corresponding to those at y = 1/2. Just as in the non-dilatonic brane case in the

previous works [8, 9] and as was pointed out [7] to be a generic topological constraint

for a model with compact extra dimension and two branes, the requirement of the

stable radius (i.e. b0 = const) without a stabilizing potential restricts ̺ and ̺∗ to be

related to one another in the following way:

̺∗ = −W1/2̺, (24)

whereW1/2 ≡ (1−Kb0/2)
16κ

2

5

9α2 with time-dependentK = 3α2

16
e−αφ0(t)σ (thereby, the ratio

̺∗/̺ in general changes with time). [This constraint is understood [13] as a fine-tuning

of the matter energy densities on the two branes required to maintain the constant

radius b of the extra dimension even in the absence of the stabilizing potential.] As a

consequence, we have unphysical result that the matter energy density on either of the

branes has to be negative. Since σ∗ < 0, the Friedmann equations on the second brane

has the opposite sign from those of the conventional cosmology. These problems can

be resolved by introducing a radion potential U(b), which stabilizes the radius b of the

extra dimension, as was explicitly shown in Ref. [13]. The energy momentum tensor

(8) receives the following additional contribution from the radion potential:

T rad
00 = −n2U(b), T rad

ij = a2U(b)γij , T rad
44 = b2 [U(b) + bU ′(b)] . (25)

Assuming that the radion mass mrad is very heavy and the radion potential is approx-

imated to U(b) ≈ M5
b

(

b−b0
b0

)2
(with M5

b ∝ mrad assumed to be the largest mass scale

of the theory) near its minimum, one has b = b0 from the (4,4)-component Einstein’s

equation without constraining the matter energy densities on the two branes. Then,

the remaining components of the Einstein’s equations averaged over the bulk (by in-

tegrating w.r.t. y) lead to the conventional Friedmann equations. Note, however that

since we averaged the Einstein’s equations over y, the effective Friedmann equations

contain contributions from matter fields on both branes, unlike the cosmological solu-

tions of other related works and the solutions we discussed in the above, for which the

effective Friedmann equations are local in y.

Finally, we comment on the case in which the matter fields on the three-brane couple

to the dilaton field, i.e. the δLmat/δφ 6= 0 case. If we assume that there exists the

frame in which the matter fields decouple from the dilaton field (just like the Jordan

frame of the Brans-Dicke theory), namely the matter fields on the three-brane are

minimally coupled with respect to a Weyl rescaled metric g̃µν = Ω2(φ)gµν , then the

dilaton equation (14) is modified to

8

3

1

n2

[

φ̈− φ̇

(

ṅ

n
− 3

ȧ

a
− ḃ

b

)]

− 8

3

1

b2

[

φ′′ + φ′
(

n′

n
+ 3

a′

a
− b′

b

)]

7



= 2αΛe−2αφ + ασe−αφ δ(y)

b
+

1

Ω

dΩ

dφ
Tmat µ

µ

δ(y)

b
. (26)

So, the boundary condition (17) on the first derivative of φ at y = 0 is modified to

[φ′]0
b0

= −3

8
ασe−αφ0 − 3

8
(3℘− ̺)

1

Ω0

dΩ0

dφ0
, (27)

where Ω0 ≡ Ω(φ0). Note, the second term on the RHS vanishes for the radiation

dominated universe, for which ℘ = ̺/3. So, Eq. (19) is modified to

ȧ20
a20

+
ä0
a0

+
k

a20
=

(

κ4
5

36
− κ2

5

32
α

1

Ω0

dΩ0

dφ0

)

(̺− 3℘)σe−αφ0 +

(

κ4
5

18
σ2 − κ2

5

64
α2σ2

+
κ2
5

3
Λ

)

e−2αφ0 − κ4
5

36
̺(̺+ 3℘)− κ2

5

64
(3℘− ̺)2

1

Ω2
0

(

dΩ0

dφ0

)2

− 4

9
κ2
5φ̇

2
0. (28)

In the limit ̺ ≪ σ, the conventional Friedmann equations with H2 ∼ ̺ behavior are

reproduced to the leading order, however the coefficient is modified due to the coupling

of the matter fields to φ. On the positive tension brane, in order for the Friedmann

equations with the correct sign to be reproduced, α, φ0 and Ω0 are constrained to

satisfy αΩ−1
0 dΩ0/dφ0 < 8κ2

5/9. Particularly when Ω = eβφ with a constant β, this

constraint restricts the allowed values of α and β to satisfy αβ < 8κ2
5/9. The coupling

of the matter fields to φ also induces another subleading correction (the second to the

last term on the RHS) to the Friedmann equations.
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