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Abstract

The evolution of the rotational inhomogeneities is investigated in the specific frame-

work of four-dimensional pre-big bang models. While minimal (dilaton-driven) scenarios

do not lead to rotational fluctuations, in the case of non-minimal (string-driven) mod-

els, fluid sources are present in the pre-big bang phase. The rotational modes of the

geometry, coupled to the divergenceless part of the velocity field, can then be amplified

depending upon the value of the barotropic index of the perfect fluids. In the light of

a possible production of rotational inhomogeneities, solutions describing the coupled

evolution of the dilaton field and of the fluid sources are scrutinized in both the string

and Einstein frames. In semi-realistic scenarios, where the curvature divergences are

regularized by means of a non-local dilaton potential, the rotational inhomogeneities

are amplified during the pre-big bang phase but they decay later on. Similar analyses

can also be performed when a contraction occurs directly in the string frame metric.

http://arxiv.org/abs/hep-th/0410094v3


1 Introduction

If a four-dimensional Friedmann–Robertson–Walker (FRW) Universe is expanding, the ro-

tational fluctuations of the geometry are not amplified. This statement is well known since

the early analyses of Lifshitz and Khalatnikov (see section 9 of Ref. [1]).

The results of Ref. [1] assume four important premises:

• the Universe is four-dimensional and it is described by a FRW line element;

• the matter sources driving the evolution of the geometry are perfect relativistic fluids

with barotropic equation of state;

• the Universe is always expanding;

• the connection between the evolution of the matter sources and the evolution of the

geometry is provided by general relativity.

If these four premises are rigorously verified the conclusions of Ref. [1] follow by studying

the evolution of the rotational inhomogeneities of the metric in a FRW background. The

rotational inhomogeneities of the metric are parametrized in terms of two divergenceless

vectors in three spatial dimensions, leading, overall, to four independent degrees of freedom

(see section 2 below for a more formal discussion). The rotational fluctuations of the

geometry are also coupled, through Einstein equations, to the divergenceless part of the

velocity field supported by the presence of a perfect barotropic fluid.

If some of the mentioned premises are not verified, there is the logical possibility that the

rotational inhomogeneities are amplified. For instance Grishchuk [2] analysed the situation

where the Universe is not filled by a perfect barotropic fluid. Indeed, in the model of Ref.

[2], the early stages of the life of the Universe are described by a medium characterized by

a non-vanishing torque force. The resulting rotational modes are, in this case, copiously

produced.

Looking at the hypotheses listed above, there could also be, in principle, other ways of

obtaining rotational modes of the geometry and of the velocity field in reasonable cosmologi-

cal scenarios. For instance, it could happen that the geometry is not purely four-dimensional

or that the dynamical equations connecting the evolution of the matter sources to that of

the geometry do not follow from general relativity but from some other non-Einsteinian

theory of gravity.

Indeed, if the geometry has more than four dimensions, the rotational degrees of freedom

are more numerous than in the four-dimensional case. Furthermore, depending on the
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specific theory, the evolution equations of the rotational degrees of freedom are qualitatively

different with respect to the four-dimensional case. This possible perspective was recently

invoked in [3], where the evolution of the vector modes of a five-dimensional theory have

been analysed in the context of a regular model of dynamical dimensional reduction.

Yet another way of amplifying dynamically rotational inhomogeneities would be to as-

sume that the Universe was not always expanding but that there have been long periods of

contraction. Different (unconventional) paradigms of the early Universe may realize, in one

way or another, this requirement. For instance, various incarnations of string cosmological

scenarios, such as the pre-big bang [4, 5, 6] and the ekpyrotic [7, 8, 9] paradigms, assume

that in the past history of the Universe a rather long contracting phase took place. To be

more specific, the pre-big bang dynamics is described by a phase of accelerated expansion in

the string1 frame but this evolution becomes, indeed, an accelerated contraction in the more

conventional Einstein frame [10, 11]. On the contrary, in some explicit realization of the

ekpyrotic scenarios, a slow contraction takes place already in the string frame description.

Concerning the issue raised in the previous paragraph, a relevant technical remark is in

order. The possibility of defining different frames is inherent to the non-Einsteinian nature

of the low-energy string effective action. It should be borne in mind that the first three of

the four assumptions mentioned at the beginning of this investigation are not independent

in the sense that the word contraction has a definite meaning only if the action of the

underlying theory is specified. Thus, provided the theory is not of Einstein-Hilbert type,

there is no surprise if the rotational modes are amplified in an expanding Universe.

There is an important physical distinction to be made when discussing the amplification

of fluctuations in a cosmological context. The amplification can be either adiabatic or super-

adiabatic. The adiabatic amplification implies the growth of the amplitude. The super-

adiabatic amplification implies that the evolution equations exibit an instability for a given

range of Fourier modes. If the vector modes are the ones of a four-dimensional Universe, the

equations of motion, as it will be shown, only allow the possibility of adiabatic amplification

(unless specific couplings to som medium with non-vanishing torque force are envisaged as in

Ref. [2]). If, however, we go to higher dimensions (for instance in 5 space-time dimensions),

1The string and Einstein frames are two different parametrizations of the action of the theory and are

connected by simple (local) field redefinitions involving the metric and the dilaton field. In particular, in

the string frame action (see section 2) the dilaton field is directly coupled to the Ricci scalar, while in the

Einstein frame action the dilaton is not directly coupled to the Einstein–Hilbert term (see section 3). Notice

that, as far as the description is concerned, both the Einstein and the string frames can be employed for

actual calculations and the results will be the same. However, at a practical level, there are cases where

one frame is more convenient than the other. Interesting arguments in favour of the string frame were put

forward since the centre of mass of fundamental test strings follows geodesics in the string and not in the

Einstein frame [12].
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there, one more physical vector mode appears; its evolution exhibits clearly the phenomenon

of super-adiabatic amplification [6].

Recently, Battefeld and Brandenberger [13] argued that vector modes of the geometry

can be produced in contracting models. To be more specific, the argument of [13] assumes

that the matter content of the Universe is only given by a perfect relativistic fluid and that

the theory is of Einstein-Hilbert type. If the matter content of the Universe would consist

only of a scalar field driving a contraction, the effective velocity field will be automatically

irrotational. This is exactly the situation of minimal pre-big bang models.

The authors of Ref. [13] did not consider any specific regular solution connecting, in

their framework, the contracting to the expanding phase. This remark has already been

introduced in [3] where it was, almost incidentally, argued that a complete study of string-

driven pre-big bang models should be performed in order to support the idea of amplification

of the rotational modes of the geometry. In this spirit, one of the sections of [3] dealt with a

simplified four-dimensional model whose analysis showed that vector modes of the geometry

may well be amplified but decay later on.

The motivation of the present paper is to present a plausible systematic analysis of the

possible production of rotational inhomogeneities in four-dimensional pre-big bang models.

String cosmological models incorporating the evolution of fluid sources are often qualified

string-driven since, in these cases, inflation can be obtained also by studying the evolution

of a gas of fundamental strings [14].

Before plunging into the analysis it is appropriate to mention some investigations di-

cussing rotational fluctuations in a perspective different from the one employed in the

present paper. In Ref. [15], Gödel solutions have been investigated in the low-energy

string effective action including string tension corrections. In these solutions the magnitude

of the vorticity vector is proportional to the inverse of the string tension. In [16, 17, 18]

where the evolution of the vorticity was studied in Friedmann-Robertson-Walker models.

The approach followed by these authors is to perturb around a spherically symmetric profile

of the geometry. The approach reported in the present investigation is connected with the

Bardeen formalism and it is then different from the one of Ref. [16, 17, 18] . The results of

the two approaches seem to be in agreement since in Ref. [16, 17, 18] is also found that the

rotation parameter depends upon an inverse power of the scale-factor . Finally, in [19] the

possible rôle of rotation was investigated in the context of Bianchi type-IX models.

It is also appropriate to mention some early (very interesting) references dealing with

stiff fluids in the early Universe. In [21] (and, partially also in [22]) one of the unusual

features of fluids stiffer than radiation was pointed out: the rotational velocity increases

as the Universe expands. A reprise of this theme appears to be Ref. [20] where similar
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considerations are discussed in the context of the so-called holographic cosmology.

The present study is organized as follows. In section 2 various (singular) solutions of

the low-energy string effective action will be investigated in the presence of perfect fluids

with barotropic equation of state. The evolution of the rotational inhomogeneities will

then be obtained. In section 3 the Einstein frame picture will be presented in the light

of the evolution of the rotational modes. Then, in section 4, non-singular models of pre-

big bang will be specifically discussed and the corresponding evolution of the rotational

inhomogeneities derived. Finally, section 5 contains some concluding (critical) remarks.

2 Pre-big bang and ekpyrotic initial conditions

Consider, to begin with, the low-energy string effective action in the presence of fluid sources

in four space-time dimensions:

S = − 1

λ2
s

∫

d4x
√
−Ge−ϕ[R+ (∂ϕ)2 +W (ϕ)] + Sm. (2.1)

In Eq. (2.1) λs is the string length scale and W (ϕ) is a (local) potential depending on the

four-dimansional dilaton field ϕ; the term Sm represents the contribution to the total action

coming from perfect barotropic fluids. The compact notation

(∂ϕ)2 = Gαβ∂αϕ∂βϕ, ∇2ϕ = Gαβ∇α∇βϕ = Gαβ(∂α∂βϕ− Γσ
αβ∂σϕ), (2.2)

will be also employed throughout this investigation. The possible coupling of the dilaton

field to the matter sources as well as the possible presence of an antisymmetric tensor field

have been neglected. As already stressed in the introduction, the action (2.1) has been

written in what is customarily defined as the string frame metric.

The functional derivation of (2.1) with respect to Gµν and ϕ leads to the well-known

equations:

Gµν +∇µ∇νϕ+
1

2
Gµν [(∂ϕ)

2 − 2∇2ϕ−W (ϕ)] = λ2
se

ϕTµν , (2.3)

R+ 2∇2ϕ− (∂ϕ)2 +W − ∂W

∂ϕ
= 0, (2.4)

∇µT
µν = 0, (2.5)

where Tµν is the energy-momentum tensor of the fluid sources and Gµν = Rµν − 1/2GµνR

the usual Einstein tensor.

Combining Eqs. (2.3) and (2.4) the following useful equation

Rµν +∇µ∇νϕ− 1

2

∂W

∂ϕ
Gµν = λ2

se
ϕTµν (2.6)
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can be obtained. In a spatially flat FRW geometry,

ds2 = Gµνdx
µdxν = dt2 − a2(t)d~x2, (2.7)

with homogeneous dilaton field ϕ = ϕ(t), the explicit form of the background equations

follows from the components of Eq. (2.3) (or (2.6)) and from Eqs. (2.4) and (2.5):

ϕ̇2 + 6H2 − 6Hϕ̇−W = 2λ2
sρe

ϕ, (2.8)

Ḣ = Hϕ̇− 3H2 − ∂W

∂ϕ
+ λ2

spe
ϕ, (2.9)

2ϕ̈− 6Ḣ − 12H2 − ϕ̇2 + 6Hϕ̇+W − ∂W

∂ϕ
= 0, (2.10)

ρ̇+ 3H(ρ+ p) = 0. (2.11)

In Eqs. (2.8)–(2.11) the overdot denotes the derivation with respect to the cosmic time

coordinate t, and ρ and p are the energy and pressure density of the perfect fluid whose

energy-momentum tensor has the standard form

Tµν = (p+ ρ)uµuν − pGµν . (2.12)

Since we shall assume that the fluid is barotropic, i.e. p = γρ, Eq. (2.11) gives, after direct

integration

ρ = ρ0a
−3(γ+1). (2.13)

In pre-big bang models the initial conditions are customarily set for t < 0. Indeed

we shall be looking for solutions of the system of Eqs. (2.8)–(2.11), which can then be

parametrized as

a(t) = (−τ)α, (2.14)

ϕ(t) = ϕ0 − β ln (−τ), (2.15)

ρ = ρ0(−τ)−3α(γ+1), (2.16)

where τ = t/t0 and where Eq. (2.16) follows by inserting Eq. (2.14) into Eq. (2.13).

Consider now the case W (ϕ) = 0. Inserting Eqs. (2.14)–(2.16) into Eqs. (2.8)–(2.10)

the following set of relations between the parameters must be satisfied:

3α(γ + 1) + β = 2, (2.17)

β(2− β) + 6α(1 − 2α− β) = 0, (2.18)

and

ρ0 = e−ϕ0
β2 + 6α2 + 6αβ

2λ2
s

= e−ϕ0
β(α− 1) + 3α2

γλ2
s

. (2.19)
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The second equality in Eq. (2.19) is only required in the case γ 6= 0. In fact, in the case

γ = 0 Eqs. (2.17) and (2.18) imply α = 0 and β = 2. In this solution the scale factor and

the energy density are both constant while the dilaton evolves in time.

If β = 0, Eq. (2.15) implies that the dilaton is constant. According to Eq. (2.17):

α =
2

3(γ + 1)
. (2.20)

This is the standard FRW solution obtainable in a general relativistic context when fluid

sources are present.

Finally, if γ 6= 0, the full solution will be

a(t) = (−τ)
2γ

1+3γ2 ,

ϕ(t) = ϕ0 +
6γ − 2

1 + 3γ2
ln (−τ),

ρ(t) = ρ0(−τ)
− 6γ(γ+1)

1+3γ2 . (2.21)

The solution (2.21) describes an accelerated expansion ( ȧ > 0 and ä > 0) provided γ < 0.

In this case the solution (2.21) describes the initial, i.e. t → −∞, asymptotic state typical

of the string-driven pre-big bang scenario [11]. Conversely, if γ > 0 the solution contracts

(ȧ < 0 and ä < 0) in the string frame metric. This situation is reminiscent of the initial

asymptotic state of ekpyrotic scenarios.

If the dilaton is constant the solution, expressed by Eqs. (2.14) and (2.20), contracts

for all −1 < γ ≤ 1 and for t → −∞. Incidentally, notice that a particular subset of these

solutions (i.e. where γ = 1) is the one used in [13] to argue that rotational inhomogeneities

are amplified in pre-big bang models.

Of course, the evolution of the solutions described so far can only be applied for t < 0, i.e.

during the pre-big bang phase. What happens next is determined by the way the singularity

problem is addressed which we will do in section 4. For the moment the attention will be

concentrated on the evolution of the vector modes during the pre-big bang phase.

Defining, as usual, a conformal time coordinate η (related to the cosmic time as a(η)dη =

dt), the fluctuations of the metric (2.7) are

δG0i = −a2(η)Qi,

δGij = a2(η)(∂iWj + ∂jWi), (2.22)

with ∂iQ
i = ∂iW

i = 0. For infinitesimal coordinate transformations

xi → x̃i = xi + ζ i, (2.23)
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preserving the vector nature of the fluctuation (i.e. ∂iζ
i = 0 ), the two variables Qi and Wi

shall change according to the following transformation rules

Q̃i = Qi − ζ ′i, (2.24)

W̃i = Wi + ζi, (2.25)

where the prime denotes the derivation with respect to the conformal time coordinate η.

From Eqs. (2.24) and (2.25) it can be argued that the quantity W̃ ′
i+Q̃i is invariant under

infinitesimal coordinate transformations (2.23) preserving the vector nature of the fluctu-

ation. Such a quantity is the rotational generalization of the so-called Bardeen potentials

[23], which are customarily defined in the case of scalar fluctuations of the geometry.

With these specifications it is useful to perform calculations in a gauge. There are two

possible natural gauge choices. A first choice could be to set Q̃i = 0. In this case the gauge

function ζi is determined to be

ζi(η, ~x) =

∫ η

Qi(η
′, ~x)dη′ + Ci(~x). (2.26)

Since the gauge function is determined up to an arbitrary (space-dependent) constant,

this choice of gauge does not completely fix the coordinate system and this occurrence is

reminiscent of what happens in the synchronous coordinate system of scalar fluctuations

[23]. The gauge choice Q̃i = 0 was used, for instance, by the authors of Refs. [1] and [2].

Another equally useful choice is the one for which W̃i = 0. From Eq. (2.25) the gauge

function is determined as ζi = −Wi and the gauge freedom, in this case, is completely fixed.

Moreover, in this gauge, the gauge-invariant “Bardeen” potential coincides with Qi and the

only non-vanishing entry of the perturbed metric is δG0i. Using the fact that δG
0i = −Qi/a2

the Christoffel connections are, to first-order in the amplitude of the rotational fluctuations

of the geometry:

δΓ0
i0 = HQi, δΓk

ij = −HQkδij , δΓi
00 = Qi′ +HQi

δΓ0
ij = −1

2
(∂iQj + ∂jQi), δΓj

i0 =
1

2
(∂iQ

j − ∂jQi), (2.27)

where, as usual, H = (ln a)′. The first-order form of the Ricci tensors then becomes:

δR0i = (H′ + 2H2)Qi −
1

2
∇2Qi,

δRij = −1

2
[(∂iQj + ∂jQi)

′ + 2H(∂iQj + ∂jQi)]. (2.28)

Finally the first-order form of the Einstein tensors will be, in our gauge,

δG0i = −(2H′ +H2)Qi −
1

2
∇2Qi, δGij = δRij . (2.29)
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The evolution equations of the vector modes of the geometry can be obtained by con-

sistently perturbing, for instance, Eqs. (2.5) and (2.6). The first-order fluctuation of Eq.

(2.6) will be

δRµν − δΓσ
µν∂σϕ− 1

2

∂W

∂ϕ
δGµν = λ2

sδTµν , (2.30)

while the first-order fluctuation of Eq. (2.5) implies

∂µδT
µν + δT ναΓ

µ
µα + δΓµ

µαT
να

+ δTαβΓν
αβ + T

αβ
δΓν

αβ = 0, (2.31)

where Γ
α
µν and T

αβ
denote, respectively, the background values of the connections and of

the energy-momentum tensor.

Recall now that Γ
0
ij = Hδij, Γ

0
00 = H and Γ

j
0i = Hδji ; using the results of Eqs. (2.27)

and (2.28), the (0i) and (ij) components of Eq. (2.30) lead to

∇2Qi = −2λ2
sa

2eϕ(p+ ρ)Vi, (2.32)

Q′
i = (ϕ′ − 2H)Qi. (2.33)

To obtain the precise form of Eq. (2.32), Eq. (2.9) has been used so as to eliminate a term

proportional to Qi. In Eq. (2.32), Vi is the divergenceless fluctuation of the velocity field,

which arises by perturbing to first-order the energy-momentum tensor of the fluid sources,

i.e.

δT0i = (p+ ρ)u0δui − pδG0i. (2.34)

Recalling now that u0 = a (as implied by Gµνuµuν = 1) and defining δui = aVi, Eq. (2.34)

leads to

δT0i = a2(p+ ρ)Vi + a2pQi, ∂iV i = 0. (2.35)

which is the explicit form used to derive Eq. (2.32).

Using the same conventions for the various perturbation variables, the spatial component

of Eq. (2.31) implies:

V ′
i + (1− 3γ)HVi = 0. (2.36)

In summary, the Fourier space version of Eqs. (2.32), (2.33) and (2.36) gives

k2Qi = 2λ2
sa

2(p+ ρ)eϕVi, (2.37)

Q′
i = (ϕ′ − 2H)Qi, (2.38)

V ′
i = (3γ − 1)HVi, (2.39)

where, to avoid confusion with the vector indices, the subscript k denoting the Fourier mode

of each variable has been suppressed.
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From Eq. (2.38) the rotational fluctuation of the geometry becomes

Qi = ci(k)
eϕ

a2
, (2.40)

where ci(k) is a (k-dependent) integration constant. Inserting Eq. (2.40) into Eq. (2.37)

the velocity field becomes

Vi =
k2ci(k)

2λ2
sa

4(p+ ρ)
. (2.41)

It is immediate to see that Eq. (2.41) is consistent with Eq. (2.39).

Thanks to the results obtained so far, it is now possible to discuss the evolution of the

rotational fluctuations in the various solutions presented earlier in this section.

Consider first the solution for γ = 0. As noted above, in this case a = a0 and ρ = ρ0

are both constants but ϕ = ϕ0 − 2 ln (−τ). Hence, Eqs. (2.40) and (2.41) imply:

Qi = eϕ0
ci(k)a0

τ2
,

Vi =
k2a20ci(k)

2λ2
sρ0

, (2.42)

showing that while Qi grows for τ → 0−, Vi stays constant. Furthermore, also (p+ρ)Vi, the

velocity contribution to the fluctuation of the energy-momentum tensor, is also constant.

Consider then the case when the dilaton field is constant (or even absent) and the only

matter sources are represented by a perfect barotropic fluid. Hence, recalling Eq. (2.20),

the evolution of the rotational modes is given by:

Qi ≃ ci(k)(−τ)
− 4

3(γ+1) ,

Vi ≃
k2ci(k)

2λ2
sρ0(1 + γ)

(−τ)
2(3γ−1)
3(γ+1) . (2.43)

Hence, in the case described by Eqs. (2.20) and (2.43) the scale factor contracts and Qi

increases for −1 < γ ≤ 1. Correspondingly, for τ → 0−, Vi decreases if 1/3 < γ ≤ 1 while

it increases for −1 < γ < 1/3. Note that the case γ = 1 corresponds to the one analysed

specifically by [13]. Furthermore, since in this class of solutions the dilaton is constant, the

string and Einstein frames coincide. The case γ = 1/3 is characteristic since Vi is constant

while Qi still increases.

It should be appreciated that in the case described by Eq. (2.43) the contribution of

the velocity field to the perturbed energy-momentum tensor of the sources becomes

(p+ ρ)Vi ≃ (−τ)
− 8

3(γ+1) , (2.44)

i.e. (p+ρ)Vi is sharply increasing for γ > 0 and for τ → 0−. Since |(p+ρ)Vi| should always

be bounded all along the pre-big bang phase, this solution clearly presents another problem.
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One possible conclusion would be to infer a general problem of the scenario. On the other

hand it is also possible to argue that this type of realization of pre-big bang dynamics is

definitely too naive because of the total absence of a dynamical dilaton field.

In fact, if more realistic string-driven solutions are considered, the situation changes.

Consider, indeed, the class of solutions described in Eq. (2.21). Inserting Eq. (2.21) into

Eqs. (2.40) and (2.41) the result will be

Qi = ci(k)e
ϕ0(−τ)

2(γ−1)

1+3γ2 , (2.45)

Vi =
k2ci(k)

2λ2
sρ0(1 + γ)

(−τ)
2γ(3γ−1)

1+3γ2 . (2.46)

As noticed after Eq. (2.21), in this class of solutions, γ < 0 implies a phase of accelerated

expansion for τ < 0. From Eq. (2.45) Qi increases for all −1 ≤ γ ≤ 1. From Eq. (2.46)

it can be also concluded that Vi decreases for γ < 0 and γ > 1/3 while it increases for

0 < γ < 1/3. Again, the case γ = 1/3 is special since Vi is constant there.

From Eq. (2.46) the contribution of the rotational fluctuation to the perturbed energy-

momentum tensor can be obtained:

(p+ ρ)Vi ≃ (−τ)
− 2γ

1+3γ2 , (2.47)

which decreases for γ < 0 while it increases for γ > 0.

The analysis of the solution (2.21) is interesting since it means that the pre-big bang

initial conditions do not lead to a divergence in the perturbed energy-momentum tensor.

On the other hand, in the case of contracting initial conditions (i.e. γ > 0 for τ < 0),

|(p + ρ)Vi| is unbounded and possibly divergent in the limit τ → 0−.

Are the results obtained so far conclusive? In some sense yes since it has been shown

that, for some specific ranges of the barotropic index, different classes of solutions of the low-

energy string effective action seem to indicate that the rotational modes of the geometry and

of the fluid sources are led to increase. However, this conclusion cannot be definite unless

the whole evolution of the model is carefully specified. The pre-big bang initial conditions

must be analytically connected with an appropriate post-big bang solution where, ideally,

the dilaton is stabilized and the Universe expands in a decelerated way.

3 Einstein frame description

The analysis of the rotational inhomogeneities of the geometry and of the fluid sources has

been conducted, up to now, in the so-called string frame, where the action takes the form
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(2.1). In this section we are going to complement the results of section 2 by mentioning

the main aspects of the Einstein frame analysis. This task is simplified by the observation

that the dilaton only contributes to the evolution of the homogeneous background. The

dilaton fluctuations, on the contrary, do not affect the evolution equation of the rotational

inhomogeneities. This aspect can be appreciated by considering a well-known analogy

between a perfect relativistic fluid with stiff equation of state (i.e. p = ρ) and a scalar field

with negligible potential. This analogy also implies that the peculiar velocity field must be

identified with the spatial derivative of the dilaton fluctuations. Notice, however, that when

rotational inhomogeneities are included the analogy with the stiff fluid breaks down. While

a perfect fluid with stiff equation of state can support a divergenceless velocity field, the

“velocity” associated with the scalar degree of freedom is always proportional to ∂iδϕ, δϕ

being the dilaton fluctuation. It is then clear that the divergenceless part of the generalized

velocity field is always vanishing.

With these necessary specifications, the Einstein frame background solutions can be

obtained from the string frame solutions by means of the following local field redefinitions:

G̃µν = e−ϕGµν , (3.1)

T̃ ν
µ = e2ϕT ν

µ , (3.2)

while the dilaton does not change in the transformation between the two frames. The

quantities with tilde refer to the Einstein frame while the quantities without tilde refer to

the string frame.

From Eqs. (3.1) and (3.2) it easily follows that

ã = e−ϕ/2a, (3.3)

ρ̃ = e2ϕρ, (3.4)

p̃ = e2ϕp. (3.5)

Since, as discussed above, the dilaton fluctuations do not contribute to the evolution equa-

tions of the vector modes of the geometry, from the evolution equations of the fluctuations

in the string frame, i.e. Eqs. (2.37) and (2.38), the Einstein frame equations can be ob-

tained by identifying the perturbation variables through Eqs. (3.1) and (3.2). In formulae

we will have

δG̃µν = e−ϕδGµν , (3.6)

δT̃ ν
µ = e2ϕδT ν

µ . (3.7)

Recall now that δG̃0i = −ã2Q̃i and δT̃ 0
i = (p̃+ ρ̃)Ṽi. Hence, it follows from Eqs. (3.6) and

(3.7) that

Ṽi = Vi, Q̃i = Qi. (3.8)
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Inserting the result of Eqs. (3.3)–(3.5) and (3.8) into Eqs. (2.37)–(2.39) the evolution

equations of the rotational fluctuations can be easily written, in the Einstein frame, as

k2Q̃i = (p̃+ ρ̃)ã2Ṽi, (3.9)

Q̃′
i + 2H̃Q̃i = 0, (3.10)

Ṽ ′
i = (3γ − 1)

(

H̃ +
ϕ′

2

)

Ṽi, (3.11)

where H̃ = ã′/ã; units of 2λ2
s = 1 have been used in Eqs. (3.9)–(3.11). An important point

concerning the derivation of these equations is that the conformal time coordinate η does

not change in the transition from the string to the Einstein frame while the cosmic time

coordinate does change as

dtE = e−ϕ/2dts. (3.12)

Using Eqs. (3.12) and (3.3) and recalling the definition of the conformal time coordinate

in the two frames (i.e. ã(ηE)dηE = dtE and a(ηs)dηs = dts) it can be easily shown, as

anticipated, that ηE = ηs.

The presence of the dilaton field in Eq. (3.11) seems to make the whole system incom-

patible. This is not the case since, by virtue of the transformation rules (3.2) and (3.4),(3.5),

the dilaton will appear explicitly in the covariant conservation equation of the background

sources, which is, in the Einstein frame:

ρ̃′ + 3H(ρ̃+ p̃) +
ϕ′

2
(3ρ̃− p̃) = 0. (3.13)

Equation (3.13) can be directly obtained from Eq. (2.11), whose explicit form, in the

conformal time parametrization is

ρ′ + 3H(ρ+ p) = 0. (3.14)

Inserting Eqs. (3.4) and (3.5) into Eq. (3.14), Eq. (3.13) is immediately obtained since,

from Eq. (3.3), H = H̃ + ϕ′/2.

Thus, from Eq. (3.9) and (3.10):

Q̃i =
c̃i(k)

ã2
, (3.15)

Ṽi =
k2c̃i(k)

ã4(ρ̃+ p̃)
≡ k2c̃i(k)

(γ + 1)
ã3γ−1eϕ(3γ−1)/2. (3.16)

The second equality in Eq. (3.16) follows by replacing ρ̃ with the result of the direct

integration of Eq. (3.13). Equations (3.15) and (3.16) are the ones obtained in [13] in the

rather specific case of constant dilaton field.

12



Finally the Einstein-frame version of the solutions with generic barotropic index reported

in Eqs. (2.21) are

ã ≃
(

− η

η0

)− γ−1

3γ2−2γ+1
,

ϕ = ϕ̃ ≃ ϕ0 +
2(3γ − 1)

3γ2 − 2γ + 1
ln

(

− η

η0

)

,

ρ̃ ≃
(

− η

η0

)

6γ(1−γ)−4

3γ2−2γ+1
, (3.17)

where the normalization constants have been dropped and only the relevant time dependence

reported.

Let us now compare the evolution of the vector modes of the geometry in the case of the

solution given in Eq. (2.21) which is written in the cosmic time coordinate, i.e. τ = t/t0.

This solution can be translated in the conformal time parametrization by recalling that

a(η)dη = dt. Applying the mentioned differential relation we find

(−τ) ≃ (−η)
3γ2+1

1+3γ2−2γ . (3.18)

From Eqs. (2.45) and (2.46) we can then derive the evolution of the vector modes in the

string frame and in the conformal time coordinate, i.e.

Qi ≃ (−η)
2(γ−1)

3γ2−2γ+1 ,

Vi ≃ (−η)
2γ(3γ−1)

3γ2−2γ+1 . (3.19)

Equation (3.19), we repeat, gives the solution in the string frame.

Now, let us compute the same evolution in the Einstein frame. Equations (3.17) are the

Einstein frame version of Eqs. (2.21). The evolution of the vector modes in the Einstein

frame is then obtained by inserting Eqs. (3.19) into Eqs. (3.15) and (3.16). Comparing the

obtained expressions with Eq. (3.19), we do obtain that

Ṽi = Vi, Q̃i = Qi. (3.20)

This is exactly the result anticipated, on a general ground, in Eq. (3.8). This means that,

even if in the two frames the evolution of the scale factors is different, the evolution of

the fluctuations will be the same in the two frames. The rationale for this result is that

the transformation of the background solution is compensated by the transformation of the

evolution equations leading, as expected, to the complete equivalence of the two approaches.

Notice also, as a final remark, that the complete equivalence is also a consequence of the

fact that, unlike the cosmic time coordinate, the conformal time coordinate is invariant

when passing from String to Einstein frame (and viceversa). This property has been swiftly

re-derived below Eq. (3.12) and is well known.
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4 Decaying rotational inhomogeneities

In order to assess the phenomenological relevance of the present exercise as well as of

related ideas [13], it is important to discuss what the fate of the rotational inhomogeneities

is. It should be understood to what extent the rotational modes of the geometry will

persist during the post-big bang evolution. A closely related issue would be to check if the

rotational modes of the geometry and of the sources may diverge around the time of the

transition between pre- and post-big bang.

In the presence of a dynamical dilaton field, it is possible to find completely regular

solutions describing the transition from the pre- to the post-big bang evolution. These

solutions may well include fluid sources and can be obtained when the dilaton potential is

a function of e−ϕ, defined as

e−ϕ(x) =
1

λ3
s

∫

d4y
√

−G(y)e−ϕ(y)
√

(∂ϕ)2yδ(ϕ(x) − ϕ(y)). (4.1)

These solutions were explored through various steps [24, 25] (see also [11]).

In [26] it has been shown that a generally covariant action can be written for these

models. The evolution of the scalar and tensor modes of the geometry has been discussed

in detail and it has been concluded that the evolution of these inhomogeneities is completely

regular all along the different stages of the model [27]. In [28] it was demonstrated that

back-reaction effects of massless particles can naturally induce a hot phase dominated by

radiation with a stabilized dilaton field (see also [29] for some earlier attempts to stabilize

the dilaton in a radiation-dominated post-big bang evolution).

In this section we are going to discuss the evolution of the rotational modes in the

framework of the same regularization scheme as introduced in [26, 27]. Consider indeed the

action [26]

S = − 1

2λ2
s

d4x
√
−Ge−ϕ[R+ (∂ϕ)2 + V ] + Sm, (4.2)

where V ≡ V (e−ϕ).

Following the results of Refs. [6, 26] the relevant equations of motion can be written as

Gµν +∇µ∇νϕ+
1

2
Gµν [(∂ϕ)

2 − 2∇2ϕ− V ]− 1

2
e−ϕ

√

(∂ϕ)2γµνI1 = eϕλ2
sTµν , (4.3)

∇µT
µν = 0, (4.4)

where

I1 =
1

λ3
s

∫

d4y(
√
−GV ′)yδ(ϕ(x) − ϕ(y)), (4.5)

and

γµν = Gµν −
∂µϕ∂νϕ

(∂ϕ)2
. (4.6)
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In Eq. (4.5) V ′ = ∂V/∂(e−ϕ). In the homogeneous limit the evolution equations of the

geometry are found to be [26, 27]

ϕ̇
2 − 3H2 − V = 2λ2

se
ϕρ (4.7)

Ḣ = Hϕ̇+ λ2
se

ϕp, (4.8)

2ϕ̈− ϕ̇
2 − 3H2 + V − ∂V

∂ϕ
= 0, (4.9)

ρ̇+ 3Hp = 0. (4.10)

Notice that, in the homogeneous limit, from Eq. (4.21), e−ϕ = e−ϕa3, where we have

absorbed into ϕ the dimensionless constant − ln (
∫

d3y/λ3
s ) associated with the (finite) co-

moving spatial volume. In Eqs. (4.7)–(4.10) the reduced energy and pressure densities

ρ = a3ρ, p = a3p (4.11)

have been defined.

The evolution equations of the vector modes of the geometry can be obtained, following

the same notation as in section 2, from

δGµν − δΓσ
µν∂σϕ+

1

2
δGµν [(∂ϕ)

2 − 2∇2ϕ− V ]− 1

2
e−ϕ

√

(∂ϕ)2δγµνI1 = λ2
sδTµν . (4.12)

The perturbed form of the covariant conservation equation is the same as the one reported in

Eq. (2.31). The fluctuations of I1 do not contribute to the vector fluctuations. Moreover, in

the gauge W̃i = 0, δγ0i = −a2Qi. Using now Eqs. (2.27) and (2.29), the evolution equations

of the vector modes can be written, in Fourier space, as:

Q′
i = (ϕ′ +H)Qi, (4.13)

k2Vi = 2λ2
s (ρ+ p)a2eϕ, (4.14)

V ′
i = (3γ − 1)HVi. (4.15)

Equations (4.8) and (4.9) can be written, in the case V = −V0e
2ϕ as

d

dt
(He−ϕ) =

γ

2
ρ, (4.16)

d

dt
(e−ϕϕ̇) = −ρ

2
. (4.17)

In order to obtain Eq. (4.17), Eq. (4.7) has been used to eliminate 3H2 from Eq. (4.9).

Notice also that, in Eqs. (4.16) and (4.17), the system of 2λ2
s = 1 units has been adopted.

Let us now define the new time coordinate as

dx

dt
= ρ

L

2
, (4.18)
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where L is a constant (dimensionful) parameter. Equations (4.16) and (4.17) can be inte-

grated once giving

H =
γ

L
xeϕ, (4.19)

ϕ̇ = −x

L
eϕ, (4.20)

having set to zero the integration constants.

Inserting Eqs. (4.19) and (4.20) into Eq. (4.7) we will obtain

eϕ =
ρL2

(1− 3γ2)x2 + V0L2
. (4.21)

Clearly eϕ is positive-definite and non-singular iff

c2 = V0L
2 > 0, b2 = 1− 3γ2 > 0. (4.22)

This means that the regular solutions obtained in this way will be defined for a reasonable

set of barotropic indices, namely |γ| < 1/
√
3. Inserting Eq. (4.21) into Eqs. (4.16) and

(4.17), and using the new time coordinate x as defined in Eq. (4.18), the full solution can

be written as

a(x) = (b2x2 + c2)
γ

b2 , (4.23)

ϕ(x) = ϕ0 −
1

b2
ln (b2x2 + c2), (4.24)

ρ = ρ0(b
2x2 + c2)−3γ2

b2 . (4.25)

Now that the explicit solution has been obtained in terms of x, the relation between x and

t can be found from Eq. (4.18) by direct insertion of Eq. (4.25), with the result

dx

dt
=

Lρ0
2

1

(b2x2 + c2)3
γ2

b2

. (4.26)

From Eq. (4.26) it also follows that

|bx| ≃ |bt|
b2

b2+6γ2 , (4.27)

for |x| → ∞ and t → ∞.

From Eqs. (2.37) and (2.38) the evolution of the vector modes easily follows, using Eqs.

(4.23)–(4.25):

Qi = ci(k)e
ϕ0(b2x2 + c2)

γ−1

b2 , (4.28)

Vi =
k2ci(k)

(1 + γ)ρ0
(b2x2 + c2)

γ(3γ−1)

b2 . (4.29)
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In order to understand the evolution of the vector modes it should be clear that since b2 > 0,

then |γ| < 1/
√
3. In this case the exponent appearing at the right-hand side of Eq. (4.28)

is always negative, so that Qi increases for x < 0 and decreases for x > 0, being regular for

x = 0. From Eq. (4.29) it can be argued that the velocity field is decreasing for x < 0 if

(and only if) −1/
√
3 < γ < 0 and 1/3 < γ < 1/

√
3. On the contrary, if 0 < γ < 1/3, Vi

increases for x < 0.

For x > 0, Vi increases for −1/
√
3 < γ < 0 and 1/3 < γ < 1/

√
3, while it decreases for

0 < γ < 1/3. The case γ = 1/3 leads to constant Vi.

From the example discussed so far, it seems that for −1/
√
3 < γ < 0 the rotational

modes of the sources decrease for x < 0 but increase for x > 0. This effect is a direct

consequence of the evolution of a(x) as reported in Eq. (4.23). Notice, indeed, that from

Eq. (4.23) and (4.27) a(t) describes an accelerated expansion for t < 0 and γ < 0, but it

is contracting for t > 0 and the same choice of γ. Analogously, if γ > 0, a(t) will contract

during the pre-big bang phase and it will expand in the post-big bang phase.

It does not seem realistic to have a contracting evolution in the post-big bang phase,

which should represent, in some general sense, the early phases of our present Universe

below the Planck/string energy scale.

A more realistic example can be formulated in the case of p = 0 and for the following

potential

V = −V0e
ϕ − V1e

4ϕ. (4.30)

Since p = 0 (and also, clearly, p = 0), Eq. (4.10) implies ρ = ρ0, i.e. that ρ is constant.

Thus, Eqs. (4.7)–(4.9) can be integrated to give

H =
1√
3

1
√

t2 + t20

,

ϕ̇ =
t

t2 + t20
, (4.31)

with V0 = ρ0 and t20 = e4ϕ0V1. In the case given by Eq. (4.31) the evolution of the rotational

inhomogeneities is given by

Vi =
k2ci(k)

ρ0
(t+

√

t2 + t20)
−1/

√
3,

Qi = eϕ0
(t+

√

t2 + t20)
1/

√
3

√

t2 + t20

. (4.32)

In this case, again, the rotational modes are regular. The variable Qi increases for t < 0

and decreases for t > 0, being regular for t = 0. The variable Vi is always decreasing.
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An even more realistic example will now be presented. In this case the evolution will

interpolate between a pre-big bang phase for t → −∞ and a radiation-dominated phase for

t → +∞. Consider, indeed, the case in which γ is a function of x, interpolating between

−1/3 (for x → −∞) and 1/3 (for x → +∞). Consider, in particular, the case

γ(x) =
1

3

x
√

x2 + x21

. (4.33)

Equations (4.16) and (4.17) can also be integrated, in the case of the γ(x) given in Eq.

(4.33), with a potential V = −V0e
2ϕ; the solution can be written as

a(x) = x+
√

x2 + x21,

ϕ = ϕ0 −
3

2
ln (x2 + x21),

ρ =
ρ0

√

x2 + x21

, (4.34)

with

V0L
2 = x21, ρ0L

2 =
2

3
eϕ0 . (4.35)

From Eq. (4.34) the evolution of the vector modes can be found to be

Vi =
3k2ci(k)

ρ0

x2 + x21

(x+
√

x2 + x21)(x+ 3
√

x2 + x21)
, (4.36)

Qi = ci(k)e
ϕ0

x+
√

x2 + x21

(x2 + x21)
3/2

(4.37)

In order to have a clear physical interpretation of the solution, we can notice that, in the

asymptotic regions, i.e. |t| → ∞,

−x ≃
√
−t, for t → −∞,

x ≃
√
t, for t → ∞. (4.38)

Then looking at the specific form of a(x) as reported in Eq. (4.34) it can be appreciated

that a(t) ≃ (−t)−1/2 (for t → −∞ ) and a(t) ≃ t1/2 (for t → +∞).

According to Eq. (4.36), the velocity field always decreases during the pre-big bang

epoch and also later on. Notice in fact that

Vi ≃
cik

2

ρ0
x2, for x → −∞,

Vi ≃
cik

2

ρ0
, for x → ∞. (4.39)

If we set initial pre-big bang initial conditions for x → −∞, Vi will then decrease and then

set to a constant value. From Eq. (4.37) the variable Qi increases for x < 0 but it decreases,

as anticipated, for x > 0.
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5 Concluding remarks

In this paper the evolution of the rotational inhomogeneities of the geometry and of the

fluid sources has been analysed in the framework of four-dimensional pre-big bang models,

in both the string and Einstein frames. The main results can be summarized as follow

• in the case of minimal (dilaton-driven models) the rotational inhomogeneities are

totally absent;

• if fluid sources are added during the pre-big bang phase, the solution of the sys-

tem shows that the rotational inhomogeneities can grow for negative values of the

barotropic index, while for positive values rotational inhomogeneities decay ;

• the fate of the vector modes has been analysed in various non-singular models, where

the evolution of the scalar and tensor modes of the geometry is well defined and

non-singular;

• if the evolution of the geometry and of the dilaton is regular, then, as expected, the

vector modes are never divergent;

• for realistic examples, where the Universe inflates during the pre-big bang epoch and

turns into radiation later on, the rotational inhomogeneities increase in the pre-big

bang, but swiftly decay later on.

• in this systematic study, all the known string cosmological solutions with fluid sources

in four space-time dimensions have been scrutinized.

19



References

[1] E. M. Lifshitz and I. M. Khalatnikov, Sov. Phys. Usp. 6, 495 (1964) [Usp. Fiz. Nauk.

80, 391 (1964)].

[2] L. P. Grishchuk, Phys. Rev. D 48, 5581 (1993).

[3] M. Giovannini, e-print Archive hep-th/0407124.

[4] G. Veneziano, Phys. Lett. B 265, 287 (1991).

[5] M. Gasperini and G. Veneziano, Phys. Rep. 373, 1 (2003).

[6] M. Giovannini, e-print Archive hep-th/0409251.

[7] J. Khouri, B. Ovrut, P. Steinhardt, and N. Turok, Phys. Rev. D 64, 123522 (2001).

[8] J. Khouri, B. Ovrut, N. Seiberg, P. Steinhardt, and N. Turok, Phys. Rev. D 65,

086007 (2002).

[9] J. Khouri, B. Ovrut, P. Steinhardt, and N. Turok, Phys. Rev. D 66, 046005 (2002);

S. Gratton, J. Khouri, P. Steinhardt, and N. Turok, Phys. Rev. D 69, 103505 (2004).

[10] M. Gasperini and G. Veneziano, Mod. Phys. Lett. A 8, 3701 (1999).

[11] M. Gasperini and G. Veneziano, Astropart. Phys. 1, 317 (1993).

[12] H. de Vega and N. G. Sanchez, Phys. Lett. B 197, 320 (1987);

N. Sanchez and G. Veneziano, Nucl. Phys. B 333, 253 (1990).

[13] T. Battefeld and R. Brandenberger, e-print Archive hep-th/0406180.

[14] M. Gasperini, N. Sanchez, and G. Veneziano, Nucl. Phys. B 354, 365 (1991); Int. J.

Mod. Phys. A 6, 3853 (1991).

[15] J. Barrow and M. Da̧browski, Phys. Rev D 58, 103502 (1998).

[16] C.-M. Chen, T. Harko, and M. Mak, Phys. Rev. D 63, 104013 (2001).

[17] C.-M. Chen, T. Harko, W. Kao, and M. Mak, Nucl. Phys. B 636, 159 (2002).

[18] C.-M. Chen, T. Harko, W. Kao, and M. Mak, JCAP 11, 005 (2003).

[19] Y. Obukhov, T. Chrobok, and M. Scherfner, Class. Quantum Grav. 20, 1103 (2003).

[20] T. J. Battefeld and D. A. Easson, arXiv:hep-th/0408154.

20



[21] J. Barrow, Mon. Not. R. Astr. Soc. 178, 625 (1977).

[22] J. Barrow, Mon. Not. R. Astr. Soc. 179, 47 (1977).

[23] J. Bardeen, Phys. Rev. D 22, 1882 (1980).

[24] K. Meissner and G. Veneziano, Mod. Phys. Lett A 6, 3396 (1991).

[25] M. Gasperini, J. Maharana, and G. Veneziano, Nucl. Phys. B 472, 349 (1996).

[26] M. Gasperini, M. Giovannini, and G. Veneziano, Phys. Lett. B 569, 113 (2003).

[27] M. Gasperini, M. Giovannini, and G. Veneziano, Nucl. Phys. B 694, 206 (2004).

[28] M. Giovannini, Class. Quant. Grav. 21, 4209 (2004).

[29] M. Gasperini, Mod. Phys. Lett. A 14, 1059 (1999).

21


