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Abstract

Whether or not system is unitary can be seen from the way it, if perturbed, relaxes
back to equilibrium. The relaxation of semiclassical black hole can be described in
terms of correlation function which exponentially decays with time. In the momen-
tum space it is represented by infinite set of complex poles to be identified with
the quasi-normal modes. This behavior is in sharp contrast to the relaxation in
unitary theory in finite volume: correlation function of the perturbation in this
case is quasi-periodic function of time and, in general, is expected to show the
Poincaré recurrences. In this paper we demonstrate how restore unitarity in the
BTZ black hole, the simplest example of eternal black hole in finite volume. We
start with reviewing the relaxation in the semiclassical BTZ black hole and how
this relaxation is mirrored in the boundary conformal field theory as suggested by
the AdS/CFT correspondence. We analyze the sum over SL(2,Z) images of the
BTZ space-time and suggest that it does not produce a quasi-periodic relaxation,
as one might have hoped, but results in correlation function which decays by power
law. We develop our earlier suggestion and consider a non-semiclassical deformation
of the BTZ space-time that has structure of wormhole connecting two asymptotic
regions semiclassically separated by horizon. The small deformation parameter λ
is supposed to have non-perturbative origin to capture the finite N behavior of the
boundary theory. The discrete spectrum of perturbation in the modified space-time
is computed and is shown to determine the expected unitary behavior: the corre-
sponding time evolution is quasi-periodic with hierarchy of large time scales ln 1/λ
and 1/λ interpreted respectively as the Heisenberg and Poincaré time scales in the
system.
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1 Introduction

That unitarity is violated in black hole was suggested by Hawking [1] following his re-
markable discovery that semiclassical black holes thermally radiate. This conclusion has
been debated (see [2], [3]) ever since. In spite of considerable effort made to resolve this
issue the black hole unitarity remains one of the most intriguing problems in physics.
String theory offers a unifying approach to the short distance phenomena including the
gravitational interaction that is based on intrinsically unitary quantum mechanical pic-
ture. This explains the long-standing belief that the unitarity problem can be resolved in
string theory. One of the most recent and most promising suggestions in this direction is
the AdS/CFT correspondence (see [4] for review and [5] for more recent developments)
which suggests that in certain limit string theory (or, semiclassically, supergravity theory)
on asymptotically AdS space-time can be equivalently described in terms of conformal
field theory (CFT) living on the boundary of the space-time. The boundary CFT is sup-
posed to be unitary and thus the correspondence should provide us with complete unitary
description of black holes semiclassically appearing as solutions to the supergravity theory.

Recently, Maldacena [6] made a proposal that unitarity restores if one takes into
account the topological diversity of gravitational instantons approaching asymptotically
same boundary manifold. This proposal was studied in [7] in the case of an analogous
problem in de Sitter space. It was further discussed in [8], [9], [10], [11], [12], [13]. It was
realized that the problem can be analyzed by studying the relaxation in black hole and
boundary theory after small perturbation (in the context of the AdS/CFT correspondence
the relaxation was first discussed in [14]). The appropriate quantity to look at is the
correlation function of the perturbation taken at two different moments of time: when
the perturbation was first applied and at a later time. Two types of relaxation were
identified [8]: oscillatory (or, in general, quasi-periodic) and the exponential decay. In
unitary theory in finite volume the correlation function is quasi-periodic and, in general,
is expected to show the so-called Poincaré recurrences, i.e. the initial value is approached
arbitrarily close in finite (although very large) period of time. In the case of black hole the
correlation function, however, is exponentially decaying so that the initial configuration is
never repeated. This temporal behavior is governed by infinite set of complex quasi-normal
modes [14], [8]. This is a clear manifestation of non-unitary nature of semiclassical black
hole. We stress that it is the presence of horizon that makes the spectrum of perturbation
continuous [8], [10] and shifts the poles to the complex region. In the case of unitary
theory in finite volume the spectrum is discrete and complex frequencies never appear.
Note, however, that finding a way to assign a discrete spectrum to black hole is not the end
of the story. The spectrum should be sufficiently non-trivial to generate the complex time
evolution: black hole is supposed to have very large Poincaré recurrence time estimated as
exponential in the entropy and also show exponential decay for intermediate time scales
during which the usual thermodynamic description would be accurate. Thus, say, simple
equidistant spectrum (like the one for a particle in a circle) would not work: the recurrence
time would be too short and the time evolution be strictly periodic like that of a clock.

In this paper we study the eternal BTZ black hole [15] in three-dimensional AdS space.
We start with reviewing the relaxation in the black hole and in the thermal AdS and how
it is mirrored in the boundary CFT [8]. These two spaces are only two (dominating
semiclassically) members of much larger family of gravitational instantons approaching
asymptotically two-dimensional torus. The whole family includes the SL(2,Z) images of
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the BTZ black hole. These are that topologically distinct geometries which we are in-
structed to sum over in the AdS/CFT correspondence. We analyze whether the sum over
these images may actually produce a quasi-periodic result. We conclude that even though
one sums over exponentially decaying individual terms the sum decays much slower than
exponent, namely it decays by power law. The resulting correlation function is however
not quasi-periodic. It is in agreement with earlier analysis in [8], [10], [13]. This sug-
gests that we should look for solution to the unitarity problem within a nonsemiclassical
description of black hole.

We follow our earlier suggestion [9] and consider a nonsemiclassical deformation of
the BTZ space-time. The deformation parameter λ is supposed to have non-perturbative
origin, λ ∼ e1/4G, so that on the boundary side the deformation should account for finite
N behavior of the boundary theory. In the deformed metric horizon is replaced by throat
that connects two asymptotic regions separated by horizon in the semiclassical BTZ black
hole. The complete geometry resembles that of wormhole. Once horizon has been removed
the complex quasi-normal frequencies disappear and the spectrum becomes discrete and
real. We compute the spectrum and find that it has the form of the massive spectrum
with mass m proportional to λ. This spectrum appears to be universal since it relies
only on modification of the geometry in the near-horizon region. The spectrum naturally
incorporates hierarchy of two large time scales, namely ln 1/λ and 1/λ. The second time
scale is the largest in the system and describes the long time correlations. Moreover it has
the right value and can be naturally identified with the black hole Poincaré recurrence
time.

The paper is organized as follows. In section 2 we review the description of relax-
ation in the BTZ black hole and in boundary CFT and how this fits in the AdS/CFT
correspondence. This part is based on the paper [8]. In subsection 2.3.2 we analyze the
sum over SL(2,Z) family. In section 3 we introduce the nonsemiclassical modification of
the BTZ metric and explain how finite entropy originates in this metric. In section 4 we
apply the AdS/CFT rules and calculate the conformal anomaly in the boundary theory.
The anomaly occurs to be non-vanishing that we interprete as a manifestation of a (non-
perturbative) mass gap in the boundary theory. In section 5 we compute the spectrum
for scalar perturbation in the background of the modified BTZ metric and show that it
determines the quasi-periodic time evolution with two large time scales interpreted as the
Heisenberg and Poincaré time scales. We conclude in section 6.

2 Relaxation and the unitarity problem

The way how thermal system reacts on small pertubation and whether the subsequent time
evolution drives the system back to thermal equilibrium gives us important information
about the system and the nature of its thermal state. Two possible types of reaction
are known: the perturbation may exponentially decay so that the system relaxes back to
equilibrium shortly after the perturbation has been applied or the perturbation oscillates
showing quasi-periodic or even chaotic behavior. In the second case the full equilibrium
is never reached. The system always keeps information about the initial perturbation and
releases it from time to time reproducing the shape of initial perturbation. This behavior
is typical for unitary system in finite volume. General arguments show that time evolution
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of unitary system should show the so-called Poincaré recurrences although the recurrence
time may be extremely large, this time is estimated as eS where S is entropy of the system.
The information is thus never lost in finite volume – the clear manifestation of the unitary
evolution. The exponential decay may happen only in infinite volume or if the system is
in finite volume but is non-unitary. The obvious example of the latter is black hole whose
semiclassical behavior appears to violate unitarity.

2.1 Relaxation in black hole: quasi-normal modes

We consider (2+1)-dimensional BTZ black hole with metric given by

ds2 = − sinh2 y dt2 + dy2 + cosh2 y dφ2 , (2.1)

where for simplicity we consider non-rotating black hole and set the size of the horizon
r+ = L and AdS radius l = 1. The coordinate φ is periodic with period L so that the
boundary has topology of cylinder and L sets the finite size for the boundary system. L
is related to the mass of BTZ black hole as L =

√
MG. A bulk perturbation Φ(m,s) of

mass m and spin s should satisfy the quasi-normal boundary condition, i.e. it should be
in-going at the horizon and have vanishing flux at the infinity. The latter condition comes
from the fact that in the asymptotically AdS space-times the effective radial potential
is growing at infinity so that there can be no propagating modes as well as no leakage
of the energy through the boundary. The relevant radial equation takes the form of the
hypergeometric equation which is exactly solvable. The quasi-normal modes in general
fall into two sets [16, 17]

ω =
2π

L
l− 4πiTL(n+ h̄)

ω = −2π

L
l− 4πiTR(n+ h) , l ∈ Z , n ∈ N (2.2)

where the left- and right-temperatures TL = TR = 1/2π and (h, h̄) have the meaning of
the conformal weights of the dual operator O(h,h̄) corresponding to the bulk perturbation

Φ(m,s), with h+ h̄ = ∆(m), h− h̄ = s and ∆(m) is determined in terms of the mass m.
The appearance of complex modes (2.2) does not come as a surprise – the quasi-

normal boundary conditions are dissipative in nature, they say that the perturbation
once created should leave the region through all possible boundaries. Since no leakage
of energy happens through the spatial infinity all the dissipation goes through horizon.
For comparison, in the case of global anti-de Sitter space the horizon and respectively the
quasi-normal modes are absent. But, instead, one can define the normalizable modes by
imposing the Dirichlet condition at infinity as well as regularity in the origin. They form
a discrete set of real frequencies [18]

ω = 2πl/L+ 4π(n+ h)/L , l ∈ Z , n ∈ N (2.3)

where the size of the boundary is also set to be L as in the black hole case.
A simple way to understand why black hole is not characterized by a set of real

frequencies like (2.3) is to observe that the perturbation effectively propagates in the
infinite volume in the case of black hole. Indeed, near horizon the wave propagates freely
in the so-called optical metric defined as

ds2 = sinh2 y ds2opt . (2.4)
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The distance to horizon in this metric is measured in terms of coordinate z =
∫

dy/ sinh(y).
Obviously it diverges as y approaches horizon at y = 0. Thus, the perturbation sees
effectively infinite volume and thus can not be characterized by a discrete set of real
frequencies. We stress that it is the presence of horizon which creates this effective infinite
volume and eventually leads to appearance of the complex frequencies (2.2).

2.2 Relaxation in two-dimensional Conformal Field Theory

The thermal state of the black hole in the bulk corresponds to the thermal state on the
CFT side. In fact, the boundary CFT factorizes on left- and right-moving sectors with
temperature TL and TR respectively. The bulk perturbation corresponds to perturbing
the thermal field theory state with operator O(h,h̄). The further evolution of the system
is described by the so-called Linear Response Theory (see [19]). According to this theory
one has to look at the time evolution of the perturbation itself. More precisely, the
relevant information is contained in the retarded correlation function of the perturbation
at the moments t and t = 0 (when the perturbation has been first applied). Since
the perturbation is considered to be small the main evolution is still governed by the
unperturbed Hamiltonian acting on the thermal state so that the correlation function is
the thermal function at temperature T . Thus, the analysis boils down to the study of
the thermal 2-point function of certain conformal operators. Such a function should be
doubly periodic: with period 1/T in the direction of the Euclidean time and with period
L in the direction of the compact coordinate φ. This can be first calculated as a 2-point
function on the Euclidean torus and then analytically continued to the real time.

2.2.1 Large L/Small T universality

In general the correlation function on torus can be rather complicated since its form is not
fixed by the conformal symmetry. The conformal symmetry however may help to deduce
the universal form of the 2-point function in two special cases: when size L of the system
is infinite (temperature T is kept finite) and when inverse temperature is infinite (the size
L is finite). The universal form of the (real time) 2-point function in the first case is

〈O(t, φ)O(0, 0)〉 = (πT )2(h+h̄)

(sinh πT (φ− t))2h(sinh πT (φ+ t))2h̄
(2.5)

which for large t decays exponentially as e−2πT (h+h̄)t. The information about the pertur-
bation is thus lost after characteristic time set by the inverse temperature. It is clear that
this happens because in infinite volume the information may dissipate to infinity. In the
second case correlator

〈O(t, φ)O(0, 0)〉 = (π/iL)2(h+h̄)

(sin π
L
(t+ φ))2h(sin π

L
(t− φ))2h̄

(2.6)

has the oscillatory behavior. Notice that the oscillatory behavior in the second case
should have been expected since the system lives on circle. Perturbation once created at
the moment t = 0 at point φ = 0 travels around the circle with the speed of light and
comes back to the same point at t = L. Thus, the information about the perturbation is
never lost. The correlation function (2.6) as function of time represents a series of singular
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peaks concentrated at t = ±φ + nL, n ∈ N. In fact, this behavior should be typical for
any system with unitary evolution in finite volume.

It is interesting to see what happens in the intermediate regime when both L and 1/T
are kept finite. In this case the behavior of the correlation functions is not universal, may
depend on the (self)interaction in the system and is known only in some cases.

2.2.2 Intermediate regime: (quasi-)periodicity and unitarity

As an example of a system in the intermediate regime when both L and T are kept fixed
we consider the free fermions for which the correlation function on the torus is known
explicitly (e.g. [20]). The real time correlation function is

〈ψ(w)ψ(0)〉ν =
θν(wT |iLT )∂zθ1(0|LT )
θν(0|iLT )θ1(wT |iLT )

, (2.7)

were w = i(t + φ) and ν characterizes the boundary conditions for ψ(w). For finite
temperature boundary conditions we have ν = 3, 4. Using the properties of θ-functions,
it is then easy to see that (2.7) is invariant under shifts w → w + 1/T and w → w + iL.
It is then obvious that the resulting real time correlator (2.7) is a periodic function of
t with period L. Zeros of the theta function θ1(wT |iLT ) are known [20] to lie at w =
m/T + inL, where m,n are arbitrary relative integers. Therefore, for real time t, the
correlation function (2.7) is a sequence of singular peaks located at (t + φ) = nL. Using
the standard representation [20] of the θ-functions, we also find that in the limit LT → ∞
the correlation function (2.7) approaches the left-moving part of (2.3) with h = 1/2 that
exponentially decays with time,

〈ψ(w)ψ(0)〉3(4) =
πT

4 sinh πT (t+ φ)
[1± 2e−πLT cosh 2πT (t+ φ) + ..] . (2.8)

In the opposite limit, when LT → 0, it approaches the oscillating function (2.6). A
natural question is how the asymptotic behavior (2.8) when size of the system is taken
to infinity can be consistent with the periodicity, t → t + L, of the correlation function
(2.7) at any finite L? In order to answer this question we have to observe that there
are two different time scales in the game. The first time scale is set by the inverse
temperature τ1 = 1/T and while the second time scale is associated with the size of the
system τ2 = L. When L is taken to infinity we have that τ2 ≫ τ1. Now, when the time
t is of the order of τ1 but much less than τ2 the asymptotic expansion (2.8) takes place.
The corrections to the leading term are multiplied by the factor e−πLT and are small. The
2-point function thus is exponentially decaying in this regime. It seems that the system
has almost lost information about the initial perturbation (at t = 0). But it is not the
case: as time goes on and approaches the second time scale t ∼ τ2 the corrections to
the leading term in (2.8) become important and the system starts to collect its memory
about the initial perturbation. The information is completely recovered as t = τ2 and the
time-periodicity restores. This example is instructive. Provided the two scales τ1 and τ2
are widely separated, τ1 ≪ τ2, the system would seem to relax exponentially fast back to
thermal equilibrium for the moments of time t such that t ≫ τ1 but t ≪ τ2. Observing
the system during these t we would have concluded that the information about the initial
perturbation had been lost completely and that the system was showing a non-unitary
behavior. The unitarity however completely restores if we wait long enough until t gets
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close to the second time scale τ2. In general we should expect that unitary system in finite
volume is characterized by a set of periods so that its time evolution is quasi-periodic.

2.3 CFT2 dual to AdS3

2.3.1 Correlation functions

As an example of a strongly coupled theory we consider the supersymmetric conformal
field theory dual to string theory on AdS3. This theory describes the low energy excitations
of a large number of D1- and D5-branes [4]. It can be interpreted as a gas of strings that
wind around a circle of length L with target space T 4. The individual strings can be
simply- or multiply wound such that the total winding number is k = c

6
, where c ≫ 1 is

the central charge. The parameter k plays the role of N in the usual terminology of large
N CFT.

According to the prescription (see [4]), each AdS space which asymptotically ap-
proaches the given two-dimensional manifold should contribute to the calculation, and
one thus has to sum over all such spaces. In the case of interest, the two-manifold is a
torus (τE , φ), and β = 1/T and L are the respective periods. There exist two obvious
AdS spaces which approach the torus asymptotically. The first is the BTZ black hole and
the second is the so-called thermal AdS space, corresponding to anti-de Sitter space filled
with thermal radiation. Both spaces can be represented (see [21]) as a quotient of three
dimensional hyperbolic space H3, with line element

ds2 =
l2

y2
(dzdz̄ + dy2) y > 0 . (2.9)

In both cases, the boundary of the three-dimensional space is a rectangular torus with
periods L and 1/T . Two configurations (thermal AdS and the BTZ black hole) are T-
dual to each other, and are obtained by the interchange of the coordinates τE ↔ φ and
L ↔ 1/T on the torus. In fact there is a whole SL(2,Z) family of spaces which are
quotients of the hyperbolic space.

In order to find correlation function of the dual conformal operators, one has to solve
the respective bulk field equations subject to Dirichlet boundary condition, substitute the
solution into the action and differentiate the action twice with respect to the boundary
value of the field. The boundary field thus plays the role of the source for the dual operator
O(h,h̄). This way one can obtain the boundary CFT correlation function for each member
of the family of asymptotically AdS spaces. The total correlation function is then given
by the sum over all SL(2,Z) family with appropriate weight. Let us however first consider
the contribution of only two terms [6]

〈O(t, φ)O(0, 0)〉 ≃ e−SBTZ〈O O′〉BTZ + e−SAdS〈O O′〉AdS , (2.10)

where SBTZ = −kπLT/2 and SAdS = −kπ/2LT are Euclidean action of the BTZ black hole
and thermal AdS3, respectively [22]. On the Euclidean torus 〈 〉BTZ and 〈 〉AdS are T-dual
to each other. Their exact form can be computed explicitly [24]. After the analytical
continuation τE = it, the BTZ contribution

〈O(t, φ)O(0, 0)〉BTZ =
∑

n

1

(sinh π
β
(φ− t+ nL))∆(sinh π

β
(t+ φ+ nL))∆

(2.11)
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exponentially decays with time. The result for the thermal AdS

〈O(t, φ)O(0, 0)〉AdS =
∑

n

1

(sin π
L
(t+ φ+ iβn))∆(sin π

L
(t− φ+ iβn))∆

(2.12)

is periodic in time with period L. It represents a periodic sequence of singular peaks at
t± φ = nL.

Thus, the total 2-point function (2.10) has two contributions: one is exponentially
decaying and another is oscillating. So that (2.10) is not a quasi-periodic function of time
t. This can be re-formulated in terms of the poles in the momentum representation of
2-point function (see [17] and [25]). The poles of 〈 〉BTZ are exactly the complex quasi-
normal modes (2.2) while that of 〈 〉AdS are the real normalizable modes (2.3). Depending
on the value of LT , one of the two terms in (2.10) dominates [22]. For high temperature
(LT is large) the BTZ is dominating, while at low temperature (LT is small) the thermal
AdS is dominant. The transition between the two regimes occurs at 1/T = L. In terms
of the gravitational physics, this corresponds to the Hawking-Page phase transition [26].
This is a sharp transition for large k, which is the case when the supergravity description
is valid. The Hawking-Page transition is thus a transition between oscillatory relaxation
at low temperature and exponential decay at high temperature [8].

Whether including sum over SL(2,Z) in (2.10) we can get a quasi-periodic result is
discussed in the next subsection.

2.3.2 Can sum over SL(2,Z) family produce quasi-periodic result?

In the AdS/CFT correspondence we are instructed to sum over all possible AdS metrics
which approach same boundary manifold at infinity. In the case at hand the boundary
manifold is two-dimensional torus (φ, τE) with periodicities (φ, τE) → (φ+Ln, τE + βm),
n,m ∈ Z. The complex holomorphic coordinate on the torus is w = φ + iτE . The torus
is characterized by the modular parameter τ = iβ/L. The SL(2,Z) modular transforma-
tions act as

τ → τ ′ =
aτ + b

cτ + d
, w → w′ =

w

cτ + d
, ad− bc = 1 , (2.13)

where group parameters a, b, c, d are integers. In fact we should be interested in the
SL(2,Z)/Z transformations, i.e. modulo the parabolic group transformations (a, b) →
(a + c, b + d). These transformations are completely determined by pairs of relatively
prime (c, d). In the SL(2,Z) family the choice (a = 1, b = c = 0, d = 1) corresponds to
the thermal AdS3 while the choice (a = 0, b = 1, c = −1, d = 0) describes BTZ black
hole. The gravitational action for a AdS metric asymptotically approaching the torus
characterized by modular parameter τ ′ takes the form [22]

S(τ ′) =
πki

2

[

aτ + b

cτ + d
− aτ̄ + b

cτ̄ + d

]

= −πk βL

c2β2 + d2L2
. (2.14)

Applying now AdS/CFT rules for computing the 2-point function on the torus we have
to sum over the SL(2,Z)/Z family with appropriate weight [13],

〈O(w, w̄)O(0, 0)〉SL(2,Z) =
∑

(c,d)

∑

n∈Z

e−S(τ ′)

|cτ + d|2∆
(π/L)2∆

| sin π(w′

L
+ nτ ′)|2∆ , (2.15)
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where w′ and τ ′ are defined in (2.13) and for simplicity we take h = h̄ = ∆/2. An
important question is what to choose for the weights in (2.15). Explicit calculation [23]
for the field theory elliptic genus shows that the weight of each geometry might be rather
complicated and is not just the Euclidean action. In (2.15) however we made this simplest
choice in order to simplify our analysis.

Since we are interested in the real time correlators, we should analytically continue
τE = it. This gives the substitution w = φ − t, w̄ = φ + t in (2.15). The correlation
function (2.15) then can be written in the form the

〈O(t, φ)O(0, 0)〉SL(2,Z) =

∑

(c,d)

∑

n∈Z

e
πkβL

c2β2+d2L2

[

L2

c2β2 + d2L2

]∆
(π/L)2∆

(sinh π(x+n(c,d)) sinh π(x
−
n(c,d)))

∆
, (2.16)

where

x±n(c,d) =
β

c2β2 + d2L2
(c(t± φ)± nL)

−i L

c2β2 + d2L2
(d(φ± t) + n

(acβ2 + bdL2)

L
) . (2.17)

For large c or d the quantities x±n(c,d) accumulate near zero so that convergence of (2.16)
is not obvious. (A particular divergent contribution is due to terms with c = d − 1,
a = b = 1.) Some regularization of (2.16) may be needed. A possible one is to replace
x±n(c,d) → x±n(c,d) ± iγ where γ is real. Below some regularization of this sort is assumed.
In the SL(2,Z) family the configuration with c = 0 is thermal AdS for which correlation
function (2.16) is oscillating (see (2.12)) while the ones with c 6= 0 are black holes for
which the correlation function exponentially decays as in (2.11).

What can we say about the temporal behavior of sum (2.16)? Can it be quasi-periodic
even though it is built out of the exponentially decaying pieces? Answering these questions
it is instructive to look at the large t behavior of (2.16) at fixed n. We find (see also [13]
for a related analysis)

〈O(t, φ)O(0, 0)〉SL(2,Z) =
∑

(c,d)

e
πkβL

c2β2+d2L2

[

π2

c2β2 + d2L2

]∆

e
−

2∆βπ|c|t

c2β2+d2L2 . (2.18)

Each term in (2.18) is exponentially decaying. However, the characteristic decay time for
term characterized by pair (c, d) becomes arbitrary large for large c and d. This means
that such terms become relevant at later and later times. In fact it is an indication of
that the sum (2.18) actually decays with time slower than an exponent. On the other
hand, as was observed in [13], at certain critical time tc =

kL
2∆|c|

the decaying exponential

factor compensates the exponent of action in (2.18) so that for time t ≥ kL
2∆

there is no
suppression in (2.18) and all terms in the sum are equally important. In [13] this was
interpreted as a signal of breakdown of the semiclassical approximation.

It is instructive to analyze those issues in a simple example. Consider the sum

I(t) =
∞
∑

n=1

1

n2
ea

2/n2

e−t/n (2.19)
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which consists of exponentially decaying terms but the characteristic decay time grows
with n. As a result, the sum decays slower than exponential function. In fact, as we
show below, it falls off by power law. At t = a2/n the two exponential functions in (2.19)
compensate each other so that for t > a2 all terms in the sum are equally contributing.
One might worry whether sum (2.19) is actually convergent at t = a2. Obviously, this is
a false alarm – sum (2.19) is convergent for any t due to factor 1/n2. In order to make
all these points more transparent we approximate the sum (2.19) by integral

I(t) ≃
∫ ∞

1

dn

n2
ea

2/n2

e−t/n =

√
π

2
i[Φ(−i t

2a
)− Φ(i(a− t

2a
))] =

a2

t
+O(

a2ea
2

t
e−t) , (2.20)

where in the last passage we assumed that t ≫ 2a2 and approximation for the error
function Φ(z) of large (complex) argument was used. Obviously, there is nothing special
happening at t = a2. For large t≫ 2a2 the sum I(t) falls off by power law as anticipated.

Returning to our sum (2.18) we may expect that it actually falls off by a power law
similarly to the sum I(t). In order to see this we can use similar trick and replace infinite
sum

∑

(c,d) by integral
∫

dc dd. Obviously, this will overestimate the actual sum and hence
give an upper bound on it. Considering c and d as continuous variables it is useful to
make a transformation to “polar” coordinate variables (ρ, ϕ)

c =
ρ

β
cosϕ , d =

ρ

L
sinϕ . (2.21)

Then we get that

〈O(t, φ)O(0, 0)〉SL(2,Z) ≃
2π2∆

Lβ

∫ ∞

R

dρ

ρ2∆−1
e

πkβL

ρ2

∫ π/2

0
dϕ e−

2∆πt
ρ

cosϕ ,

∫ π/2

0
dϕ e−

2∆πt
ρ

cosϕ =
π

2
(I0(

2∆πt

ρ
)− L0(

2∆πt

ρ
)) , (2.22)

where R ≃
√
β2 + L2. The ρ integral is peaked at lower limit and we can approximate

e
πkβL

ρ2 ∼ e
πkβL

R2 . The integration over ρ in (2.22) then can be performed explicitly for any
integer ∆. The result is expressed in terms of Bessel Ik(z) and Struve Lk(z) functions.
For ∆ = 2 in particular we have

〈O(t, φ)O(0, 0)〉SL(2,Z) ≃
1

Lβ

e
πkβL

R2

4πtR
[I1(

4πt

R
)− L1(

4πt

R
)] ∼ 1

t

1

βLR
eπkβL/(β

2+L2) , (2.23)

where in the last passage we take the limit of large t. In fact, the analysis shows that the
power law 1/t is universal large t behavior of (2.22) for all values ∆ ≥ 2.

We see that sum over pairs (c, d) produces correlation function which decays by a power
law. It is an improvement over the exponential decay of each individual contribution (due
to black holes) in the sum. This, however, does not produce a quasi-periodic correlation
function.

2.3.3 Unitarity: boundary theory and black hole

Thus, the AdS/CFT correspondence predicts that the relaxation in CFT dual to gravity
on AdS3 is combination of oscillating and decaying functions. Thus, the information about
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initial perturbation seems to be inevitably lost in the boundary system. Since the latter
lives in finite volume (circle of size L) and is supposed to be unitary there must be a way
to resolve this apparent contradiction. The resolution was suggested in [8] where it was
noted that at finite k there should exist another scale in the system which is additional
to and much large than L. This scale appears due to the fact that in the dual CFT
at high temperature the typical configuration consists of multiply wound strings which
effectively propagate in a much bigger volume, Leff ∼ kL. The gravity/CFT duality
however is valid in the limit of infinite k in which this second scale becomes infinite.
So that the exponential relaxation corresponds to infinite effective size Leff that is in
complete agreement with the general arguments. At finite k the scale Leff would be finite
and the correlation function is expected to be quasi-periodic with two periods 1/L and
1/Leff. The transition of this quasi-periodic function to combination of exponentially
decaying and oscillating functions when Leff is infinite then should be similar to what we
have observed in the case of free fermions when L was taken to infinity.

On the gravity side the question of which type of relaxation occurs in the system is
related to one of the most fundamental problems in physics – the problem of information
loss and black hole unitarity. The unitarity problem was suggested to be resolved within
the AdS/CFT correspondence [6]. Indeed, since the theory on the boundary is unitary
it should be possible to reformulate all processes happening in the bulk of black hole
space-time on the intrinsically unitary language of the boundary CFT. In particular it
was suggested [6] that in order to restore unitarity of physics in the bulk and reproduce the
expected unitary behavior of boundary theory we have to take into account the topological
diversity of gravitational instantons that asymptotic to given boundary manifold. If
worked this way the black hole unitarity would be resolved within semiclassical gravity
appropriately redefined to account for all possible topologies. Alternatively and perhaps
more traditionally the unitarity might be expected to restore as a result of fundamentally
non-perturbative effects of Quantum Gravity. On the present stage of our understanding
of Quantum Gravity this second way would inevitably involve making some guesses about
the non-perturbative behavior of black hole.

The relaxation phenomenon gives us adequate language for analysis of the problem
of black hole unitarity. That relaxation of black hole is characterized by a set of com-
plex frequencies (quasi-normal modes) is mathematically precise formulation of the lack
of unitarity in the semiclassical description of black holes. The loss of information in
semiclassical black hole is indeed visible on the CFT side. It is encoded in the expo-
nentially decaying contribution to the 2-point correlation function. For the CFT itself
this however is not a problem. As we discussed above the finite size unitarity restores at
finite value of k. This however goes beyond the limits where the gravity/CFT duality is
formulated. Assuming that the duality can be extended to finite k an important question
arises: What would be the gravity counter-part of the duality at finite k? Obviously, it
can not be a semiclassical black hole or ensemble of topologically distinct semiclassical
black holes. The black hole horizon should be somehow removed so that the complex
quasi-normal modes (at infinite k) would be replaced with real (normal) modes when k

is finite. This puts us on the second track of resolving the unitarity problem: within a
non-perturbative treatment of Quantum Gravity. So that we should start with making
our best guess about the nonsemiclassical description of black hole horizons.

11



3 Wormhole modification of near-horizon geometry

Before passing to our proposal for the nonsemiclassical black hole let us pause for a
moment and discuss another proposal made almost twenty years ago by ’t Hooft and
called the “brick wall” [27] (see also [28]). It was an attempt to explain the entropy of
black hole as entropy of thermal atmosphere of particles outside the black hole horizon.
In D space-time dimensions the free energy of thermal gas at temperature T in finite
volume VD−1 takes the form

F = −π−D/2Γ(
D

2
) ζ(D)TDVD−1 . (3.1)

Near horizon the appropriate volume VD−1 is defined in the optical metric (2.4) and is
infinite. This means that the spectrum of field excitations is continuous and the entropy is
infinite. In order to regularize it ’t Hooft suggested to cut the region just outside horizon
by introducing boundary at small distance ǫ from horizon and imposing there Dirichlet
boundary condition. This procedure has two important consequences: the spectrum now
becomes discrete, ωn ∼ πn/Lopt, n ∈ Z and Lopt = ln 1

ǫ
is the “size” of the finite region;

and the entropy which can be computed from (3.1) using standard formula S = −∂F
∂T

becomes finite. Moreover, due to remarkable property of the optical volume VD−1 ∼ A
ǫD−2

the entropy calculated this way is proportional to the horizon area A, S ∼ A
ǫD−2 . The

entropy diverges when ǫ is taken to zero and there was a lot of discussion in the literature
in the 90’s what this divergence should mean [29]. For our story it is important to note
that once horizon has been removed the system now lives in finite optical volume and,
most importantly, the complex quasi-normal modes disappear. This is exactly what we
need in order to restore unitarity in black hole [10]. The brick wall model however is an
artificial way to regularize the otherwise smooth black hole geometry. It can be considered
as rather crude way of presenting the unknown non-perturbative Planckian physics.

By our earlier (unpublished) work [30] there however exists a smooth way of chang-
ing the near horizon geometry which would now look like a wormhole connecting two
asymptotic regions semiclassically separated by horizon. This modification of black hole
geometry does the same job as the brick wall, i.e. leads to discrete spectrum and finite
entropy, but does it in a smooth way. In the context of the black hole relaxation which
is subject of the present study the wormhole modification has some attractive features
absent in the brick wall model and in fact describes the expected unitary relaxation quite
naturally. We study these issues in the next sections. Here we first introduce the modified
geometry for the BTZ black hole [9],

ds2 = −(sinh2 y + λ2(k)) dt2 + dy2 + cosh2 y dφ2 . (3.2)

The deformation parameter λ(k) is supposed to be some function of the large N parameter
k such that it vanishes when k is infinite. Concrete form of this function is discussed later
in this Section. The horizon located at y = 0 in classical BTZ black hole disappears in
metric (3.2) if λ is non-vanishing. The whole geometry now is that of wormhole with
the second asymptotic region at y < 0. The two asymptotic regions (y > 0 and y < 0)
which were separated by horizon in classical BTZ metric (2.1) are now connected through
narrow throat and thus can talk to each other exchanging information. The metric (3.2)
is still asymptotically AdS although it is no more a constant curvature space-time. The
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Ricci scalar

R = − 2

(sinh2 y + λ2)2
[λ2 + λ4 + 3 sinh4 y + 5λ2 sinh2 y] (3.3)

approaches value −6 at infinite y and −2(1/λ2 + 1) at y = 0 where the horizon used to
stay. Notice that the parameter λ should account for the quantum Planckian effects. The
curvature at the throat which replaced horizon is thus of the Planckian order. The metric
(3.2) is an example that shows that horizon as causally special set in space-time can be
seen as a place which accumulates the quantum effects so that under the small deformation
there appears Planckian scale curvature concentrated in the Planck size region.

The metric (3.2) can be brought to the usual Schwarzschild like form introducing the
radial coordinate r = cosh y,

ds2 = −(r2 − 1 + λ2)dt2 +
dr2

r2 − 1
+ r2dφ2 . (3.4)

In the semiclassical case (λ = 0) it was possible to extend the metric to include the region
where r2 < 1 that was joint to the region r2 > 1 along the light-like horizon r = 1. In the
non-semiclassical case (3.4) there appears an intermediate region (1−λ2 < r2 < 1) where
the signature becomes (− − +) (i.e. it is spacetime with two time-like coordinates) and
which can not be extended neither to region r2 ≥ 1 nor to region r2 ≤ 1− λ2. The latter
two regions are thus disconnected from each other and present two different space-times.

Let us now illustrate our point that the entropy of the thermal gas in the metric (3.2)
has finite entropy. Indeed, the optical volume

Vopt = 2
∫ ∞

0

dy cosh y

sinh2 y + λ2(k)
L = πλ−1(k)A , (3.5)

where A = L is the “area” of horizon, is now finite. Applying now formula (3.1) for D = 3
and taking into account that the Hawking temperature (we take the classical value for
the temperature) is T = 2π we find that the entropy

S = 6π2ζ(3)λ−1(k)A (3.6)

is finite. If there are N species of particles all of them should be taken into account so
that the entropy (3.6) would be proportional to N . In principle, playing with two free
parameters N and λ we can easily match the entropy (3.6) with the Bekenstein-Hawking
entropy of BTZ black hole. This however is not our primary goal in this paper.

It is clear that the spectrum of field excitations in the metric (3.2) should be discrete.
This is just because the size of the space-time in the optical metric measured from one
boundary to another is finite

Lopt = 2
∫ ∞

0

dy
√

sinh2 y + λ2
= 2K(

√
1− λ2) = 2 ln

4

λ
+O(λ2 lnλ) , (3.7)

where K(z) is elliptic integral and we used one of its expansions. The expected spectrum
in the limit of small λ then reads

ωn ≃ π n

Lopt

≃ π n

2 ln 4
λ

, n ∈ Z (3.8)
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for large n, that agrees with the earlier mode calculation in [12]. These are the normal
frequencies in the metric (3.2). Comparing the two approaches, the brick wall and the
wormhole modification, we see that there exists a correspondence between them provided
we make a substitution λ↔ ǫ.

We finish this section with discussion on the possible form of the deformation param-
eter λ as function of the large N parameter k. One obvious choice is λ = a/k where a is
some unknown factor. The advantage of this choice is that the entropy (3.6) takes the
form

S = # kA . (3.9)

The numerical factor in front of (3.9) can be chosen (by changing parameter a) in a
way that (3.9) exactly reproduces the classical Bekenstein-Hawking entropy. The normal
frequencies (3.8) then would scale as ∼ 1/ ln k.

Another choice is λ(k) ∼ e−k. Recalling relation between k and the Newton constant,
k = 1/4G, the wormhole modification appears as non-perturbative Quantum Gravity
effect, λ ∼ e−1/4G. The normal modes then scale as 1/k and, choosing λ ∼ e−kL, we can
identify Lopt and Leff introduced in section 2.3.3. Notice that S = kL is the entropy of
BTZ black hole. This choice seems to be preferable since in this case the geometry (3.2)
originates in completely non-perturbative fashion.

4 Applying the AdS/CFT rules: conformal anomaly

The metric (3.2) is asymptotically AdS and thus we can use the AdS/CFT rules and
extract information about boundary theory from the asymptotic behavior of the metric.
In particular we can calculate the conformal anomaly in the boundary theory (see [31],
[32] for more details). For that we first introduce a new radial coordinate ρ = e−2y and
re-write the metric (3.2) in the form

ds2 =
dρ2

4ρ2
+

1

ρ
gij(x, ρ)dx

idxj ,

gij(x, ρ) =
∑

n

g
(n)
ij (x)ρ2n , (4.10)

where xi = (t, φ) are coordinates on the boundary. Clearly the metric (3.2) takes the form
(4.10) with

g
(0)
φφ = −g(0)tt = 1 ,

g
(2)
φφ =

1

2
, g

(2)
tt =

1

2
− λ2(k) ,

g
(4)
φφ = −g(4)tt =

1

16
. (4.11)

The vacuum expectation value of the boundary (quantum) stress tensor can be calculated
using the formula [32]

〈Tij〉 =
2l

16πG
(g

(2)
ij − g

(0)
ij Tr g(2)) . (4.12)
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In particular the trace of the stress tensor that represents the conformal anomaly in the
boundary theory is given by the formula

Tr 〈T 〉 = − 2l

16πG
Tr g(2) . (4.13)

Substituting here the asymptotic expansion (4.11) for the metric (3.2) we find

Tr 〈T 〉 = c

24π
[−2λ2] (4.14)

for the conformal anomaly, where c = 3l/2G is the central charge, c = 6k. The interest-
ing fact about this conformal anomaly is that it is non-vanishing. Indeed, the conformal
anomaly in two dimensions is given by the Ricci-scalar. The two-dimensional space-time
lying in the boundary of the three-dimensional space-time (3.2) is flat. In the Euclidean
case, when the Euclidean time is compactified, this space is two-dimensional torus. Since
the Ricci-scalar is vanishing in this case we should not normally expect any conformal
anomaly to appear. Surprisingly, the above calculation gives us non-trivial anomaly de-
termined by parameter λ and this needs to be explained. The explanation we can offer
is rather simple. We suggest that the metric (3.2) effectively describes boundary theory
with mass gap determined by parameter λ†. Indeed, in this case the conformal anomaly
can be built from a pair of dimension two quantities: Ricci-scalar and the mass squared.
For instance, a free massive scalar field (c = 1) has conformal anomaly given by

Tr 〈T 〉 = 1

24π
[R− 6m2] . (4.15)

Similar expression exists for free massive fermions. In flat space-time, when Ricci-scalar
is vanishing, the conformal anomaly is given by the mass squared only. Comparison
with (4.14) suggests that there is a mass gap m ∼ λ in the boundary theory. The exact
proportionality coefficient can not be determined from these arguments since the boundary
theory is strongly interacting while the expression (4.15) is given for non-interacting scalar
field. Recalling that λ ∼ e−k and k = 1

4G
we see that the appearance of the mass gap is

yet another non-perturbative effect encoded in the shape of the metric (3.2).

5 The quasi-periodicity: time scales and the spec-

trum

Demonstrating the quasi-periodicity in the time evolution of field perturbations in the
metric (3.2) we first notice that there exist two time scales associated with the metric
(3.2). The first one is given by the optical length Lopt ∼ ln 1

λ
and another is determined

by the size λ of the throat. When λ is small the two time scales are widely separated,
1/λ ≫ ln 1

λ
, so that we can talk about hierarchy of time scales. The time scale 1/λ

appears when we look at the metric (3.2) in the throat region (y is close to zero) and find
that it is basically flat with the “throat time” being rescaled with respect to the time t
at infinity as tthr ∼ λ t. Assuming that λ ∼ e−k we find that time flows in the throat

†Alternative interpretation of the trace anomaly (4.14) is that it appears due to non-vanishing two-
dimensional cosmological constant proportional to λ.
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extremely slow. So that processes which are rapidly changing with respect to the time
in the throat are practically frozen as measured by clocks at infinity. It is exactly this
property of the wormhole geometry (3.2) that makes the black hole unitarity restored in
the long period of time set by 1/λ which is the maximal time scale in the system. This
is the Poincaré recurrence time for the black hole that was missing in the semiclassical
description.

Let us now turn on a field perturbation in the background of metric (3.2) and see
what are the frequencies which characterize the time evolution of the perturbation. For
simplicity we consider minimally coupled scalar field with vanishing mass. Making anzats
Φ = e−iωteikφ(cosh y)−1/2ψ(y), where k = 2πl/L and l is any integer, and switching to a
new radial coordinate

z =
∫

dy
√

sinh2 y + λ2
= F (arcsin(

sinh y
√

sinh2 y + λ2
),
√
1− λ2) (5.16)

we find that the radial function ψ(z) should satisfy effective Schrödinger equation

∂2zψ(z) + (ω2 − U(z))ψ(z) = 0 , (5.17)

where

U(y) =
3

4
cosh2 y + k2 +

1

4
(λ2 − 2)− (1− λ2)(

1

4
+ k2)

1

cosh2 y
(5.18)

is the effective radial potential. Since there is no horizon in the metric (3.2) the quasi-
normal boundary conditions are no more in place. Instead we demand that solution to
the radial equation (5.17) be normalizable which means it should fall off appropriately at
infinity .

The integration in (5.16) results in some elliptic function. For our purposes it is
however convenient to use an approximation valid in the case when y ≪ 1. Notice that
even though y is small it can either be as small as λ, y ∼ λ, or be much larger than λ,
y ≫ λ; in the second case we have λ≪ y ≪ 1. So that regime of small (compared to 1) y
gives us possibility to probe both the throat region (set by λ) and the outside the throat
region with the size set by 1 in terms of the coordinate y. For y ≪ 1 we can replace
sinh2 y ≃ y2 in (5.16). Then the integration in (5.16) is easily performed

z =
∫

dy√
y2 + λ2

= arcsinh
y

λ
−→ y = λ sinh z . (5.19)

Notice that z defined this way can be both small and large.
In this approximation the radial potential takes the form

U(z) ≃ λ2(k2 +
1

2
) + λ2(k2 − k2λ2 + 1− λ2

4
) sinh2 z . (5.20)

The Schrödinger equation (5.17) with this potential can be written in the form

∂2zψ(z) + (ω̃2 −B2 sinh2 z)ψ(z) = 0 (5.21)

where we defined

ω̃2 = ω2 − λ2(k2 +
1

2
) , B2 = λ2(k2 − k2λ2 + 1− λ2

4
) .
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We remind that in the absence of the throat the near-horizon potential is given by expo-
nentially decaying function, U(z) ∼ e2z. The Schrödinger equation with such potential
does not have a discrete spectrum. One of the effects which the throat has produced is to
replace this exponential function by the potential U(z) ∼ λ2 sinh2 z which has the form of
the potential well and thus admits the discrete spectrum. Equation (5.21) describes the
quantum mechanical Toda Lattice. The discrete spectrum can be found explicitly using
technique developed‡ in [33]. Rather than deal with exact analysis we however prefer to
apply the WKB prescription and get the spectrum approximately. The approximation is
accurate in the limit of small λ. In what follows we assume that k = 0 (l = 0).

5.1 The spectrum in the WKB approximation

For the equation (5.21) the WKB prescription gives us the quantization condition

∫

dz
√

ω̃2 − B2 sinh2 z = π(n+
1

2
) , n ∈ Z (5.22)

where the integration is taken over z for which the expression staying under the square
root is positive. The integration can be performed explicitly in terms of elliptic functions,

J(a) =
∫ arcsinh(a)

0

√

a2 − sinh2 zdz =
√
a2 + 1(K(

a√
a2 + 1

)− E(
a√
a2 + 1

)) , (5.23)

where we introduced a = ω̃/B. For higher energy levels ω ≫ λ we have that a ≃ ω
λ
≫ 1

and can use the asymptotic formula for elliptic functions to get asymptotic expression

J(a) ≃ a ln(4a)

valid for large values of a. Assuming that ω ≪ (1/λ) the WKB quantization condition
(5.22) then produces the spectrum

ω̃ =
π

2 ln 4
λ

(n+
1

2
) , n ∈ Z (5.24)

in agreement with our qualitative analysis in section 3. Notice that we could have used
the WKB prescription for the whole potential (5.18) and then assumed that the frequency
ω ≪ 1. This condition than would bring the essential region in the WKB integral close
to the bottom of the potential where the potential can be approximated by (5.20).

The frequency ω̃ is not the same as the frequency ω which appears in the radial
Schrödinger equation (5.17), both are related as ω2 = ω̃2 + λ2/2. The spectrum for the
frequency ω then can be represented in the following suggestive form

ω2
n = m2 + p2n

m2 =
λ2

2
, pn =

π

2 ln 4
λ

(n+
1

2
) , n ∈ Z . (5.25)

The spectrum thus is that of massive particle. By our assumption, (5.25) should be
identified with spectrum (understood as poles in 2-point function) of the boundary theory

‡I thank M. Olshanetsky for pointing this reference to me.
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at finite k and is our prediction. Note that the spectrum (5.25) relies only on the shape
of the modified metric in the near-horizon region and in this sense is universal. The
parameter λ(k) appears both in the quantization of the momentum pn in the z-direction
and in the mass. The appearance of the mass m ∼ λ is in agreement with our analysis in
section 4. Notice that the inverse mass 1/m = tP and the inverse momentum 1/p0 = tH
determine two radically different time scales§: tP ∼ 1/λ ∼ ekL and tH ∼ ln 1

λ
∼ kL,

tP ≫ tH . Comparing both scales let’s assume that λ ∼ 10−10 then the time scale related
to the the inverse momentum, tH ∼ 10, while the time scale determined by the mass,
tH ∼ 1010. Since the mass m in (5.25) is extremely small the spectrum determined by
(5.25) describes (almost) periodic evolution with the period set by the time scale tH . The
mass m is however non-vanishing and hence this evolution is not exactly periodic, the
ratio of any two frequencies ωn/ωk is not given by rational number in general, and hence
the time evolution of the system is actually quasi-periodic. It is important that on the
time scale much larger than tH the evolution is dominated by the periodicity with much
larger period tP . The latter is the longest period in the system and is thus naturally
associated with the Poincaré recurrence time.

5.2 The mass and large time scale periodicity

In this subsection we want to illustrate this last statement, namely that in the case when
1/m≫ 1/p0 the large time scale evolution of the system is periodic with the period set by
inverse mass 1/m. We will do this on the boundary theory side. For simplicity we consider
massive scalar field on circle of size L (note that in this sub-section L is similar to what
we earlier denoted as Leff) with periodic boundary conditions. In two dimensions the
conformal dimension of scalar field is zero. Therefore, the correlation function of two such
fields has logarithmic divergence. Correlation function of fields with higher conformal
dimension can be obtained by differentiation of the correlation function of scalar field.
For instance, the 2-point function of massive fermions (conformal dimension 1/2) is given
by

SF (x, x
′) = (iγa∂a +m)GF (x, x

′) . (5.26)

The time periodicity of GF is preserved in SF . We choose the massive scalar field with
periodic boundary condition because the spectrum in this case

ω2
n = m2 + (

2πn

L
)2 , n ∈ Z (5.27)

is similar to the spectrum (5.25) (L ∼ ln 1
λ
and m ≪ 1/L). The 2-point function (or, in

the case at hand, the Feynman propagator) of scalar field satisfying the periodic boundary
condition takes the form

GF (x, x
′) = −

+∞
∑

n=−∞

1

4
H

(2)
0 (m

√

(t− t′)2 − (φ− φ′ + Ln)2 − iǫ) (5.28)

of sum over images to maintain the periodicity in φ. In momentum space the sum over
n appears as sum over all poles (5.27). For simplicity we ignore the temperature which

§There is, of course, one more time scale in the game: it is set by size L (∼
√
MG) of black hole. This

time scale appears due to k 6= 0 (l 6= 0) part in spectrum of equation (5.17) and is much smaller than tH
and tP .
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otherwise should be taken into account by imposing the condition of periodicity in Eu-
clidean time with period 1/T . Let us set φ = φ′ and t′ = 0 then the correlation function
(5.28) is function of only time

GF (t) = −
+∞
∑

n=−∞

1

4
H

(2)
0 (m

√
t2 − L2n2 − iǫ) . (5.29)

Manipulating further with this expression we first go to Euclidean time t = iτ , the Hankel
function H

(2)
0 (m

√
t2 − L2n2) becomes MacDonald function K0(m

√
τ 2 + L2n2) under this

analytic continuation. Then we replace the infinite sum over n by integral, this procedure
gives a good approximation if τ/L≫ 1. Thus we have that

+∞
∑

n=−∞

K0(m
√
τ 2 + L2n2) ≃ 2

∫ ∞

0
dnK0(mL

√

τ

L

2

+ n2) =
π

mL
e−mτ ,

where in the last passage the integral over n was performed explicitly using formula
(6.596.3) from [34]. Analytically continuing back to the real time we find that

GF (t) ≃ − π

4mL
e−imt . (5.30)

This is the desired formula which describes large t (t ≫ L) behavior of the correlation
function. Clearly this behavior is periodic with the period set by inverse mass 1/m. This
periodic behavior is a result of superposition of contributions from large number of images
in (5.29).

5.3 Black Hole Poincaré recurrences

In general, system with discrete frequency spectrum shows rather complicated time evo-
lution. Being quasi-periodic in nature it may look dissipative on certain time scales.
Example of this we have seen in section 2.2.2 for free fermions on circle. For more compli-
cated system the characteristic time is the so called Heisenberg time (discussed in detail
in [10]) which can be defined as tH = 1/〈δω〉 where δωkn = ωn − ωk is the transition
frequency and some sort of averaging over the spectrum is assumed. The Heisenberg time
is the time scale which characterizes the discreteness of the spectrum. For time t ≪ tH
the spectrum can be approximated as continuous. In particular, this means that for time
t≪ tH the system may show dissipative behavior similar to the one we have observed in
section 2.2.2. For larger time t≫ tH the intrinsic quasi-periodicity in the system becomes
more visible and the time evolution of correlation functions starts to show long-period
oscillations. The longest one is given by the Poincaré recurrence time tP .

Returning to the spectrum (5.25) we see that it gives a particularly simple example
of time evolution we have just described. To the leading order the spacing between
energy levels is given by π/ ln(1/λ)2 so that the Heisenberg time tH is related to the
time scale ln(1/λ) we defined in section 5.1. The black hole then can be approximated
by continuous spectrum on the time scale t ≪ tH = ln 1

λ
and thus shows the usual non-

unitary (thermodynamic) behavior typical for space-times with semiclassical horizons. In
particular, it may be characterized by complex quasi-normal modes if observed during
time t≪ tH . Time set by size L of black hole is the main characteristic time scale in this
regime. The discreteness of the spectrum becomes manifest on the time scale close to tH
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so that the correlation functions start to demonstrate certain periodicity. The spectrum
looks as equidistant on this time scale. But even then unitarity is not yet completely
restored: there is more information hidden in much longer oscillations. These oscillations
are due to the fine structure of the spectrum (5.25) which deviates from that of equidistant:
the non-vanishing mass in (5.25) drives the largest time scale correlations in the system.

The time scale tP = 1/m ∼ e
1
4G is thus the Poincaré recurrence time during which all

information available in the system (black hole) is released. This is the time scale on
which evolution of black hole is ultimately unitary. Note that the brick wall produces
exactly equidistant spectrum and thus does not give rise naturally to the hierarchy of time
scales. In our picture the latter comes out as a result of the non-semiclassical (smooth)
modification (3.2) of the near-horizon geometry.

6 Conclusions

We conclude with several remarks. As is well known the black hole in AdS space can
be in thermal equilibrium with the Hawking radiation and thus represents a well-defined
example of what is called eternal black hole. It is a great simplification to us since in the
non-semiclassical modification of black hole geometry we may restrict our consideration
to static case and do not consider dynamical evolution of black hole due to quantum
evaporation. This evolution can be rather complicated and it is not yet clear how the
non-semiclassical modification should work in this case. It is however an interesting
problem which we are planning to analyze in the future.

It is of course natural to ask how our consideration extends to other spacetimes with
horizons, for instance whether de Sitter space time could be understood along same lines.
Cautiously, we might expect that our picture may be useful in this case as well although
details may be more subtle and yet have to be worked out.

Semiclassical singularity at r = 0 did not play any role in our consideration. It
is because, as we discussed this before, region with r2 ≤ 1 − λ2 is now disconnected
from the region r2 ≥ 1 which is main focus in this paper. On the other hand, space
time (3.2) does contain region of trans-Planckian curvature which should manifest itself
somehow. For instance, it may be useful to consider two copies of CFT living on two
asymptotic boundaries (y = −∞ and y = +∞). Semiclassically they are separated by
horizon but are able to communicate through semiclassical singularity, the correlation
function between two CFT thus contains information about the singularity (see [35] for
more details). In non-semiclassical spacetime (3.2) the two theories can talk to each other
directly. Geodesics connecting two boundaries pass through the highly curved region so
that the correlation functions between two theories should carry information about the
trans-Planckian curvature. It would be interesting to see how this information is encoded
in the correlation functions.

An interesting question is what happens to the semiclassical SL(2,Z) symmetry and
does it make sense to consider the T-dual of the metric (3.2). This boils down to clarifying
the non-perturbative status of the SL(2,Z) symmetry. Semiclassically the T-dual to BTZ
metric is thermal AdS. The formal T-dual of the metric (3.2) is some deformation of AdS
space-time with main deformation concentrated near the origin. Since the origin in AdS
is not in any sense a special point this modification might be difficult to justify. One
possibility can be that the deformation (3.2) of BTZ metric is a manifestation of particular
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choice of the quantum state of black hole, this choice of state may not be natural in the
case of AdS spacetime. The symmetry then should refer to spacetimes with same choice
of the quantum state.

Important open question is whether the metric (3.2) can be consistently justified within
string theory. Whatever the answer is we believe that the findings in this paper provide
us with sort of existence theorem to the solution of the unitarity problem.
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