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The transition between the hadronic phase and the quark gluon plasma phase at nonzero tem-
perature and quark chemical potentials is studied within the large-Nc expansion of QCD.

I. INTRODUCTION

The study of QCD at nonzero temperature and quark chemical potentials is of crucial importance to understand
a wide range of different physical phenomena, from heavy-ion-collision experiments to neutron stars and cosmology.
This has led to numerous theoretical investigations of the phase diagram of QCD at nonzero temperature and quark-
chemical potentials.
Historically, numerical simulations using Monte Carlo techniques have been very fruitful for the study of QCD at

nonzero temperature and zero quark chemical potentials. However, this approach faces a major problem at non-zero
quark chemical potentials: In general, the fermion determinant is complex and Monte Carlo techniques do not work.
This is the so-called ’sign problem’. There is one exceptional case where there is no sign problem: QCD at non-zero
isospin chemical potential and zero baryon and strangeness chemical potentials. In this case standard Monte Carlo
techniques can been used. Lattice simulations show that the QCD phase diagram in this particular case is very rich
[1, 2]. The sign problem represents a severe challenge for our general understanding of the QCD phase diagram
at nonzero temperature and quark chemical potentials. Eventhough there is no general method to solve the sign
problem, recent advances have been made to circumvent it at small quark chemical potentials [3, 4, 5, 6]. These
recent studies have concentrated on the transition between the hadronic phase and the quark-gluon-plasma phase
at nonzero baryon chemical potential and zero isospin and strangeness chemical potentials, and in particular on the
corresponding critical temperature as a function of quark chemical potentials, Tc(µu, µd, µs).
At small chemical potentials, two remarkable properties of the critical temperature seem to emerge from lattice

studies. The critical temperature weakly depends on the chemical potentials, and Tc(µ, µ, 0) ∼ Tc(µ,−µ, 0) [1, 4].
These properties are rather puzzling, the second one in particular, since physics at nonzero baryon chemical potential
and zero isospin chemical potential is rather different from physics at zero baryon chemical potential and nonzero
isospin chemical potential. In this article we shall use the large-Nc expansion of QCD to shed light on these properties
and show that they naturally emerge in this context. We shall also use the large-Nc expansion to show that if there is
a first order phase transition between the hadronic phase and the quark-gluon-plasma phase at a critical temperature
Tc(µ,−µ, µs) <∼ 140 MeV, then there is also a first order phase transition at a critical temperature Tc(µ, µ, µs), and
vice versa. This is important since simulations at µu = −µd can be readily performed using standard Monte Carlo
techniques, whereas simulations at µu = µd suffer from the sign problem.

II. LARGE-Nc EXPANSION

Since its inception, the large-Nc expansion in QCD has been a useful tool both conceptually and phenomenologically
[7, 8]. It is insightful because it provides us with a small parameter expansion that distinguishes classes of Feynman
diagrams. Although the theory has not yet been solved at leading order in 1/Nc in four dimension, properties of these
classes of Feynman diagrams can be used to determine relations between some observables. In this article, we shall use
the usual large-Nc expansion [8] augmented by recent developments on the large-Nc expansion at nonzero temperature
and chemical potential [9]. In the large-Nc expansion, the leading-order contribution to the pressure is given by planar
diagrams that contain only gluons, and the next-to-leading order contribution is given by planar diagrams with only
one quark loop as a boundary. This expansion is still valid at nonzero temperature and quark chemical potentials,
provided that the temperature and the quark chemical potentials are of order N0

c , and if the different superfluid and
superconducting phases are avoided [9, 10]. Following the arguments developed for two flavors in [9], the large-Nc

expansion leads to the following expression for the pressure in QCD with Nf quark flavors, f , in a finite volume V :

p(T, {mf , µf}) = ǫ0({mf , µf}) +
T
V
lnZ(T, {mf , µf}) (1)

p(T, {mf , µf}) = N2
c

(

p0(T ) +
1
Nc

∑

f p1(T,mf , µ
2
f ) +O( 1

N2
c
)
)

, (2)
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where Z(T, {mf , µf}) is the QCD grand canonical partition function at nonzero temperature, T , for Nf quark flavors

of mass mf and chemical potential µf , and where ǫ0({mf , µf}) = − limT→0
T
V
lnZ(T, {mf , µf}) is the vacuum energy

density. In the large-Nc expansion in the equation above, p0(T ) contains the leading-order diagrams, which are
planar diagrams with gluons only, and thus depends on T only. At next-to-leading order there is no mixing between
the different quark flavors. The diagrams that contribute to p1(T,mf , µ

2
f ) are planar diagrams that contain gluons

and only one quark loop as a boundary, and since the gluons do not mix the quark flavors, the quark chemical
potentials do not mix at next-to-leading order. Furthermore, since Z(T, {mf , µf}) = Z(T, {mf ,−µf}) because of CP,
p1(T,mf , µ

2
f ) is even in µf [9]. The mixing between the chemical potentials of the different quark flavors appears only

at next-to-next-to-leading order.
The U(1)-axial anomaly could spoil this property of the diagrammatic expansion of QCD in the large-Nc limit.

However, as shown in [11], the triangle anomaly does not depend on the temperature. It is straightforward to
generalize the argument developed in [11] to show that the anomaly is also independent of the quark chemical
potentials. Another way to show that the anomaly does not mix the different quark chemical potentials is to use
chiral perturbation theory in the hadronic phase at nonzero temperature, zero baryon chemical potential, nonzero
isospin and strangeness chemical potentials [12, 13, 14, 15, 16]. Chiral perturbation theory is a low-energy effective
theory of QCD solely based on the symmetry of QCD. It contains only the Goldstone modes due to the spontaneous
breaking of chiral symmetry: π, η, and K. In the large-Nc limit, the chiral symmetry breaking is different, and the
η′ becomes a Goldstone boson as well. The large-Nc expansion and the inclusion of the η′ have been implemented in
chiral perturbation theory [12, 17]. The pressure of the hadronic phase can easily be calculated following [16]. In the
hadronic phase, we find that the temperature and quark chemical potentials enter the pressure and mix at O(N0

c ) in
chiral perturbation theory. Therefore, in chiral perturbation theory the quark chemical potentials mix only at order
N0

c in the large-Nc expansion in the hadronic phase, in complete agreement with the diagrammatic argument sketched
above and developed in detail in [9]. We thus conclude that the anomaly does not spoil the diagrammatic argument
presented in [9].

III. CRITICAL TEMPERATURE

At finite volume V , the separation between the hadronic phase and the quark gluon plasma phase corresponds to a
peak in the specific heat CV = ∂ǫ/∂T |V , where ǫ = −p+T∂p/∂T+

∑

f µf∂p/∂µf is the energy density. In the infinite
volume limit the peak value of CV stays finite if there is a crossover, and it diverges if the phase transition is first
order or second order. The scaling of the peak value with the volume depends on the nature of the phase transition.
Therefore, the critical temperature as a function of the quark chemical potential, Tc(µu, µd, µs), is implicitly given by

∂CV

∂T

∣

∣

∣

∣

Tc

= 0. (3)

From (2) and (3) and at zero chemical potentials, we find that the difference between the critical temperature for very
massive quarks, i.e. pure Yang-Mills theory, TYM

c , and the critical temperature for QCD, TQCD
c , should be of order

1/Nc:

TQCD
c − TYM

c

TYM
c

= O(
1

Nc

). (4)

This is indeed what has been observed on the lattice for Nc = 3: Tc ≃ 270 MeV for pure Yang-Mills [18], and
Tc ≃ 175 MeV for QCD with three flavors [19, 20, 21]. Similarly, the critical temperatures for pure Yang-Mills
theories with different number of colors have been computed on the lattice, and they have been found to differ by
O(1/N2

c ), in agreement with the large-Nc expansion,

TYM
c (Nc)

TYM
∞

= 1 +
0.76(6)

N2
c

+ · · · , (5)

where TYM
∞ is the critical temperature for pure Yang-Mills theory when Nc → ∞ [18].

At nonzero quark chemical potentials the large-Nc expansion in (2) implies that for QCD with mu = md, the
critical temperature as a function of quark chemical potential, Tc(µu, µd, µs), must satisfy the following relation

Tc(µ, µ, µs)− Tc(µ,−µ, µs)

Tc(µ, µ, µs)
= O(

1

N2
c

). (6)



3

Therefore, for µs = 0, the critical temperature that separates the hadronic phase and the quark-gluon-plasma phase
at nonzero baryon chemical potential, µb = (µu+µd)/2, and zero isospin chemical potential, µi = (µu −µd)/2, differs
from the critical temperature at zero baryon chemical potential and nonzero isospin chemical potential by 1/N2

c . This
is in complete agreement with recent results obtained in numerical lattice simulations [1, 4], and in various models
[22, 23, 24]. This is a useful relation since lattice simulations at µb = 0 and µi 6= 0 do not suffer from the sign problem
present at nonzero µb, and are therefore much easier to perform.
More explicitly and for QCD with three quark flavors with mu = md 6= ms in a finite volume, we can perform

a Taylor expansion of ∂CV /∂T around the critical temperature that separates the hadronic phase from the quark-
gluon-plasma phase at zero chemical potentials, T0. Using (2), we find that

∂CV

∂T
= a1

T − T0

T0

+
1

Nc

(

[

b0 + b1
T − T0

T0

]µ2
u + µ2

d

T 2
0

+
[

bs0 + bs1
T − T0

T0

] µ2
s

T 2
0

)

+ · · · . (7)

Notice that the coefficients related to µs differ from those related to µu and µd since mu = md 6= ms. Using (7) to
solve (3), we find that the critical temperature as a function of the quark chemical potentials is given by

Tc(µu, µd, µs)

T0

= 1−
1

Nc

(

b0
a1

µ2
u + µ2

d

T 2
0

+
bs0
a1

µ2
s

T 2
0

)

+ · · · . (8)

Therefore, we find that the large-Nc expansion leads to interesting insight on the critical temperature as a function
of quark chemical potentials. First the curvature of the critical temperature for small chemical potential is 1/Nc

suppressed. Second, for a given number of colors Nc, the curvature of the critical temperature as a function of baryon
chemical potential should increase with the number of flavors. For Nf degenerate quarks, this increase in the curvature
should be linear in Nf up to O(1/Nc) corrections. This has been indeed observed in different lattice simulations for
Nf = 2, 3, and 4 [5, 6]. Third, the leading-order dependence in the quark chemical potentials is even in µu, µd, and
µs separately, and does not mix them. The mixing term appears at next-to-next-to-leading order only. Therefore
effects due to the mixing of the quark chemical potentials should be of the order of 1/N2

c . This expression for the
critical temperature in the large-Nc expansion agrees with and simply explains several results that have been found
in numerical simulations and in various models [1, 2, 3, 4, 5, 6, 22, 23, 24].

IV. ORDER OF THE PHASE TRANSITION

The arguments developed above do not depend on the nature of the phase transition. This is, however, an important
question to address. Indeed, for QCD with three colors and physical quark masses, the separation between the hadronic
phase and the quark-gluon plasma phase at nonzero baryon chemical potential, zero isospin and strangeness chemical
potentials is believed to be a crossover at low chemical potential and a first order phase transition at higher chemical
potential [25, 26, 27]. Several recent lattice simulations have found the critical endpoint that corresponds to the end
of this first order phase transition line [3, 4]. However, these different simulations yield results that significantly differ
on the precise location of this critical endpoint.
Lattice simulations at nonzero baryon chemical potential suffer from the sign problem. No such problem is present

at nonzero isospin chemical potential and zero baryon and strangeness chemical potentials. It is therefore easier to
perform lattice simulations in the latter case. In the section above, we have shown that the large-Nc expansion leads
to a relation between the critical temperature at µu = µd with the critical temperature at µu = −µd that is valid
at next-to-leading order. It is therefore natural to investigate if such arguments can lead to a relation between the
nature of the phase transition in these two cases.
In the infinite volume limit, if the phase transition is first order, then there is a latent heat, Lh = Tc disc s, where s

is the entropy density. The latent heat is related to the discontinuity of the quark-antiquark condensate, 〈q̄q〉, through
the Clausius-Clapeyron relation derived in [28, 29]

Lh =
Tc

∂Tc/∂mq|{µf}
disc 〈q̄q〉, (9)

whereQ|x means that quantityQ is evaluated at constant x. Starting from (2), and using the same reasoning that leads
to (6), we find that ∂Tc/∂mq|{µf} ∼ 1/Nc. At zero temperature the large-Nc expansion leads to 〈q̄q〉T=0 ∼ O(Nc).
At nonzero temperature, µu = −µd and µs = 0, based on lattice simulations [1, 2] and on chiral perturbation theory
[16, 30], we know that 〈q̄q〉 is almost independent of the chemical potential and of the temperature in the hadronic
phase, provided T <

∼ 140 MeV. For instance in chiral perturbation theory at zero chemical potentials, it was found
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that for T <
∼ 140 MeV, 〈q̄q〉/〈q̄q〉T=0

>
∼ 80% for QCD with two massive quarks, and with corrections due to massive

non-Goldstone modes taken into account [30]. Thus, from both lattice simulations and chiral perturbation theory, we
have that 〈q̄q〉 ∼ 〈q̄q〉T=0 = O(Nc) for T <

∼ 140 MeV in the hadronic phase. Therefore, we conclude that if a first
order phase transition between the hadronic phase and the quark-gluon plasma phase takes place at T <

∼ 140 MeV,
the corresponding latent heat is of order N2

c . This conclusion cannot be reached for higher temperatures since the
value of the quark-antiquark condensate decreases and is no longer O(Nc).
In the large-Nc perspective described above and if there is a first order phase transition at T <

∼ 140 MeV, we
can use the same reasoning that led to (4) to show that the latent heat as a function of quark chemical potentials,
Lh(µu, µd, µs), has to satisfy the following relation

Lh(µ, µ, µs)− Lh(µ,−µ, µs)

Lh(µ, µ, µs)
= O(

1

N2
c

), for T <
∼ 140MeV. (10)

In other words, if there is a first order phase transition between the hadronic phase and the quark-gluon plasma
phase at a temperature Tc(µ,−µ, µs) <∼ 140 MeV, with a latent heat Lh = O(N2

c ), or equivalently disc 〈q̄q〉 = O(Nc),
then, according to the large-Nc expansion, equations (6) and (10), there should be a first order phase transition at
a temperature Tc(µ, µ, µs) ∼ Tc(µ,−µ, µs) + O(1/N2

c ). Thus if lattice simulations at µu = −µd were to find a first
order phase transition at temperatures below ∼ 140 MeV, then the 1/Nc expansion predicts that there should also
be a first order phase transition at the same µu = µd and at the same temperature, up to O(1/N2

c ) corrections.

V. CONCLUSIONS

We have used the large-Nc expansion of QCD to study the phase transition between the hadronic phase and the
quark-gluon plasma phase at nonzero temperature and quark chemical potentials. We have shown that the critical
temperature depends on the chemical potentials at next-to-leading order in the large-Nc expansion. We have also
shown that there are relations between the critical temperature at nonzero baryon chemical potential and zero isospin
chemical potential, and the critical temperature at nonzero isospin chemical potential and zero baryon chemical
potential. These relations are valid at next-to-leading order in the large-Nc expansion. Finally, based on large-
Nc arguments, we have shown that it should be possible to determine relatively accurately the position of a first
order phase transition between the hadronic phase and the quark-gluon plasma phase in the QCD phase diagram
at nonzero baryon chemical potential and zero isospin and strangeness chemical potentials, by performing ordinary
lattice simulations at nonzero isospin chemical potential and zero baryon and strangeness chemical potentials, as long
as the latent heat is large enough. This should be a valid strategy up to temperatures of ∼ 140 MeV where the
quark-antiquark condensate is not significantly different from its value at zero temperature.
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