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Using a spin–charge separation of the gluon field in the Landau gauge we show

that the SU(2) Yang-Mills theory in the low-temperature phase can be considered as

a nematic liquid crystal. The ground state of the nematic crystal is characterized by

the A2 condensate of the gluon field. The liquid crystal possesses various topological

defects (instantons, monopoles and vortices) which are suggested to play a role in

non-perturbative features of the theory.

Separation of degrees of freedom is a useful analytical tool which is widely used in various
physical applications. For example, the spin-charge decomposition (often referred to as the
slave-boson formalism [1]) of the strongly correlated electrons is a popular technique invoked
to describe a low-temperature physics of the high-Tc cuprate superconductors [2]. According

to the slave-boson formalism the electron creation operator c†iσ is represented as the product
of two operators,

c†iσ = f †
iσbi , (1)

where i is the lattice site and σ =↑, ↓ is the spin index. The operator f †
iσ creates a chargeless

spin-1/2 fermion state (”spinon”) while the operator bi annihilates a charged spin-0 boson
state (”holon”). Physically, the electron is represented as a composite of the spinon particle
(which carries information about the spin of the electron) and the holon particle (which
knows about the electron charge). The decomposition conserves the total number of the

degrees of freedom because of the constraint f †
i↑fi↑ + f †

i↓fi↓ + b†ibi = 1. In Eq. (1) the states
with double occupancy are disregarded for simplicity.

The local nature of the spin-charge decomposition (1) leads to an emergence of an internal
compact U(1) gauge symmetry realized in the form of the gauge transformations

fiσ → eiϕi fiσ , bi → eiϕi bi . (2)

Certain properties of the high-Tc superconductors can be described [2, 3] by U(1) gauge
models which are utilizing the mentioned internal gauge symmetry. These gauge models are
treatable within the mean field approach which predicts a rich phase structure. In particular,
the d-wave high–Tc superconductor is suggested [3] to be realized as a phase in which the

spinon pairing, ∆ij ≡ 〈f †
i↑fj↓ − f †

i↓fj↑〉 6= 0, is accompanied with a spontaneous breaking of
the internal U(1) symmetry by the holon condensate:

b ≡ 〈bi〉 6= 0 . (3)

The presence and the subsequent spontaneous breaking of the internal gauge symmetry may
have important physical consequences if even this symmetry is not realized in the original
formulation of the theory.

Quantum Chromodynamics is another example of a strongly interacting system in which
the breaking of the internal symmetry may play an essential role. Long time ago it was

http://arxiv.org/abs/hep-th/0506107v1
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suggested [4] that the confinement of quarks into hadrons may happen due to a condensation
of special gluonic configurations called Abelian monopoles. In this approach – referred to as
the dual superconductivity scenario – a condensate of the monopoles breaks spontaneously
an internal (or, ”dual”) U(1) gauge symmetry. According to the dual superconductor idea,
the breaking of the dual symmetry gives rise naturally to the dual Meissner effect, which
insures a formation of a QCD string, which in turn leads to the confinement the quarks into
hadronic bound states.

The problem of an explicit realization of the dual superconductivity in QCD in terms of
the original (gluon) fields is not solved yet. Moreover, the dual superconductivity is shown
numerically to be realized [5] only in a special Maximal Abelian gauge which explicitly
selects predefined direction(s) in the color gauge group. In this gauge the gluons from the
diagonal (Cartan) subgroup are likely to be responsible for the infrared phenomena such as
the quark confinement [5]. The off-diagonal gluons were shown to be short–ranged and are
largely inessential for the infrared physics [6].

Recently, it was proposed [7] to split the gluons in a manner of the spin-charge separation
used in the high-Tc superconductivity models. The splitting is based on the field decomposi-
tion [8] which is applied to the off-diagonal gluons while leaving the diagonal gluons intact.
In the SU(2) Yang-Mills (YM) theory the splitting of the off-diagonal gluons [7, 8],

A1
µ + iA2

µ = ψ1 eµ + ψ∗
2 e

∗
µ, eµeµ = 0, eµe

∗
µ = 1, (4)

leads to appearance of two electrically charged (with respect to the Cartan subgroup of the
color gauge group) Abelian scalar fields ψ1,2 and the electrically neutral field eµ which is a
complex vector. There are also other popular gluon field decompositions [9], some of which
were suggested to be related to the monopole condensation.

In this paper we propose a novel generalization of the spin-charge decomposition of the
high–Tc superconductors (1) to the SU(2) Yang–Mills (YM) theory. This decomposition
splits the SU(2) gluon field into spin and color degrees of freedom treating all color compo-
nents equally:

Aa
µ(x) = Φai(x) eiµ(x) . (5)

Here Φai(x) is the 3 × 3 matrix, and aiµ(x) are the three vectors forming an (incomplete)

orthonormal basis in the four dimensional space-time, eiµ(x)e
j
µ(x) = δij. The elements

of Φai(x) and aiµ(x) are real functions labeled by the color (a = 1, 2, 3), internal (i =
1, 2, 3) and Euclidean vector (µ = 1, . . . , 4) indices. Obviously, Eq. (4) is a color-symmetric
generalization of Eq. (4). In order to avoid cluttering of notations with lower and upper
indices we prefer to work in the Euclidean space–time.

The splitting (5) of the gluon fields can obviously be written in any SU(2) gauge. However,
under the local SU(2) color transformations, Aµ(x) → AΩ

µ (x) = Ω(Aµ + ig ∂µ)Ω
†, the fields

Φai and eiµ mix with each other in a complicated way. Here Aµ ≡ Aa
µσ

a/2 is the gauge field,
σa are the Pauli matrices, and g is the gauge coupling.

In order to make the splitting (5) well–defined we fix the Landau gauge (6) which mini-
mizes the gauge fixing functional,

min
Ω
F [AΩ] , F [A] =

∫

d4x
[

Aa
µ(x)

]2
, (6)

over the gauge transformations. This gauge condition fixes the SU(2) color gauge freedom up
to the SU(2) global freedom (which is usually disregarded): Aa

µ(x) → Ωab
gl A

b
µ(x), where Ω

ab
gl =
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Tr (σaΩσbΩ†)/2 is the coordinate-independent matrix belonging to the adjoint representation
of the color SU(2) group.

The transformation rules for the components of the gauge field (5) are:

Φ(x) → Ωgl Φ(x) Λ
T (x) , eµ(x) → Λ(x) eν(x) ξµν , (7)

or, explicitly, Φai(x) → Ωab
gl Φ

bj(x) Λij(x) and eiµ(x) → Λij(x) ejν(x) ξµν . Here Ωgl is the matrix
of the SU(2) color global transformations, ξµν is the SO(4) element of the rotations in the
Euclidean space-time and Λ is the matrix of the internal SO(3) transformations (ΛTΛ = 1l):

Ωgl ∈ SO(3)colorglobal , ξ ∈ SO(4)spinglobal , Λ(x) ∈ SO(3)internallocal . (8)

Equation (5) can be interpreted as a spin-color separation of the gluon field since the color
gauge transformations Ωgl are acting only on the matrix field Φ while spin transformations ξ
affect only the field eµ. Note that the color and the space-time rotations are the symmetries
of the original SU(2) gauge theory while the internal symmetry group originates from the
form of the splitting (5) in analogy to the compact U(1) internal symmetry (2) of the high-
Tc superconductors. For the sake of brevity we call below the group of the internal gauge
transformations as SO(3)int.

The proposed splitting (5) is self-consistent from the point of view of counting of the
degrees of freedom (d.o.f.). The original field Aa

µ is described by 3× 4 = 12 real functions1.

The field Aa
µ is now rewritten (5) as the product of the matrix Φai (3 × 3 = 9 d.o.f.) and

the three vector fields eiµ (3 × 4 = 12 d.o.f.) subjected to the orthonormality constraints
(−6 d.o.f.). The group SO(3)int of the internal gauge transformations has 3 generators (−3
d.o.f.). Thus, the number of the d.o.f. in the field Aa

µ (which is 12) is the same as the total

number of d.o.f. in the product of the fields Φai and eiµ: (which is 9 + 12− 6− 3 = 12).
It is instructive to rewrite the SU(2) gauge model in an explicitly SO(3)int invariant form.

To this end one may introduce two composite gauge fields:

Γij
µ =

1

2
(eiν∂µe

j
ν − ejν∂µe

i
ν) , ϑijµ =

1

2

(

(Φ−1)ia∂µΦ
aj − (Φ−1)ja∂µΦ

ai
)

, (9)

and two composite matter fields,

χij = ΦaiΦaj , zijµ =
1

2

(

(Φ−1)ia∂µΦ
aj + (Φ−1)ja∂µΦ

ai
)

, (10)

which transform under the internal gauge transformations as

Γµ → Λ(Γµ + ∂µ)Λ
T , ϑµ → Λ(ϑµ + ∂µ)Λ

T , χ→ ΛχΛT , zµ → ΛzµΛ
T . (11)

The SO(3)int gauge fields Γµ and ϑµ are asymmetric with respect to permutations of the
internal indices while the scalar matter field χ and the vector matter field zµ are symmetric
under these permutations. The matter fields transform in the adjoint representation of the
SO(3)int gauge group. Note that it is impossible to construct composite matter fields from

1 While counting the degrees of freedom we do not take into account the pure color gauge degrees of freedom

(−3 d.o.f.) and do not impose the Gauss constraint (−3 d.o.f.) to select the physical states because these

restrictions equally affect both sides of Eq. (5).
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the ”spin” field eµ in a manner of Eq. (10) due to the orthonormality constraints imposed
on eµ.

The Landau gauge functional (6) can be expressed in terms of the matter field χ

F [A] ≡ F [χ] =

∫

d4xTrχ . (12)

Note that this functional still invariant under all global and local transformations (8).
Technically, the existence of the two gauge fields (9) and one adjoint vector field (10)

allows us to define an arbitrary number of covariant derivatives, Dij
µ (γ) = ∂µ δ

ij + γijµ where
the vector field γµ stands for any linear combination of the Γµ, ϑµ and zµ fields which
transforms as a SO(3)int gauge field. Then, the derivative of the gauge field Aa

µ can be

represented in an explicitly SO(3)int invariant form, ∂µA
a
ν = (Φ̂a, Dµêν) + (DµΦ̂

a, êν). The
local (differential) condition of the Landau gauge, ∂µA

a
µ = 0, can be rewritten as a constraint

(Φ̂a, Dµêµ) + (DµΦ̂
a, êµ) = 0 . (13)

Here vectors Φ̂a ≡ (Φa1,Φa2,Φa3)T are the columns of the matrix Φai, êµ = (e1µ, e
2
µ, e

3
µ)

T
, and

(a, b) = aibi is the scalar product in the internal SO(3)int space. Below we make the choice
γijµ = Γij

µ for convenience.

It is also convenient to introduce the vector e4µ = εµναβe
1
νe

2
αe

3
β. The four vectors eīµ,

ī = 1, . . . , 4 form a complete orthonormal basis in the 4D space-time, eīµe
j̄
µ = δ īj̄. The

internal SO(3)int transformations act in the subspace spanned onto vectors ekµ with k = 1, 2, 3

while leaving the vector e4µ intact.
The YM Lagrangian be divided into the three parts

LSU(2)[A] ≡
1

4

[

Ga
µν(A)

]2
= L0[Φ, χ,Γ] + L1[χ,Γ, ϑ] + L2[χ] + Lgf , (14)

where Ga
µν(A) = ∂[µ,A

a
ν] + g εabcAb

µA
c
ν is the SU(2) field strength tensor and the term Ln is

proportional to the nth power of the SU(2) coupling constant g. For a moment we disregard
the term Lgf coming from the Landau gauge fixing. Using an appropriate multiplication by

the vectors ek̄µ to convert the Euclidean indices into the internal SO(3)int basis we rewrite
the YM Lagrangian (14) as follows:

L0[Φ, χ,Γ] =
1

2

(

Dk̄(Γ)Φ̂
a
)2

+
1

2

(

Σ(Γ), χΣ(Γ)
)

, (15)

L1[χ,Γ, ϑ] = 2g
√

detχ · (Γij
k − ϑijk ) εijk , (16)

L2[χ] =
g2

4

[

(Trχ)2 − Trχ2
]

. (17)

where Dk̄(Γ) ≡ ek̄µDµ(Γ) is the covariant derivative acting on the internal SO(3)int indices.

Note that the spin field êµ enters the Lagrangian (14) only in the form of the connection Γij

k̄
.

In order to simplify the L0 part of the YM Lagrangian (15) we used the differential Lan-
dau gauge condition and neglected a full-derivative surface term. The first term in L0 is
the kinetic term for the ”color” component of the gluon field Φ̂a in the background of the
SO(3)int gauge field Γ. The second term in L0 can be interpreted as a ”dielectric” energy
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density associated with the (space-dependent) ”dielectric susceptibility” χ and the (dynam-
ical) SO(3)int ”electric field” Σi(x) = Λij

E (x)Ej(x). Here the SO(3)int gauge transformation

Λij
E diagonalizes the matrix Γ4i

k̄
Γ4j

k̄
= [ΛE diag(E

2
1 , E

2
2 , E

2
3 ) Λ

T
E ]

ij with Ei(x) > 0.
The second part (16) of the Lagrangian represents the interaction between the gauge

fields Γ and ϑ with the effective coupling g det1/2χ ≡ g detΦ. The third part (17) is a local
potential V (χ) on the ”dielectric susceptibility” field χ.

The analogy of the spin-color separation of the gluon in YM theory (5) with the spin-
charge separation of the electron in the high-Tc superconductor models [2] manifests itself
also in the absence of the kinetic terms for the composite gauge fields Γµ and ϑµ. This fact is
natural since the local construction of each of the composite gauge fields (9) involves already
a single derivative while canonical local Lagrangians (i.e., the YM Lagrangian) contain terms

with at most two derivatives. The only explicitly propagating field in formulation (14) is Φ̂a.
Besides the remarkable analogy of the spin–color separation in the YM theory with the

spin-charge separation in the high–Tc superconductivity, the YM theory has another inter-
esting analogue in the condensed matter physics. Namely, the YM Lagrangian (14-17) can
be interpreted as the free energy density of a nematic liquid crystal.

The ordinary nematic crystals [10] consist of rod-like molecules which tend to align par-
allel to a direction n(x, t). The molecule is invariant under reflections with respect to a
plane perpendicular to the molecule axis. The unit vector n – called the Frank director – is
chosen spontaneously in the absence of external electric or magnetic fields. The molecules
in liquid crystals do not have a positional order contrary to solid crystals characterized by
lattice-like structures. The energetically favored ground state of the nematic crystal is re-
alized at low temperatures and is characterized by a constant director field, n(x, t) = n0.
As temperature increases the system undergoes a transition from the nematic phase to the
ordinary (isotropic) phase.

Due to the symmetries of the nematic molecule the symmetry group of the ordinary
nematic is G = SO(3)/ZZ2. Therefore, the order parameter in a nematic may be a unit
vector but without associated direction [10] (i.e., a vector without arrowhead). However, it is
more convenient to define the order parameter to be diadic in ni similarly to the diamagnetic
(or, dielectric) susceptibility χ̃αβ. The excellent candidate for the order parameter which
discriminates between the nematic and isotropic phases [10] is the amount of disorder in
χ̃αβ :

Q̃αβ = χ̃αβ −
1

3
δαβ χ̃γγ = ∆χ̃

∑

s

(

n(s)
α n

(s)
β −

1

3
δαβ

)

, (18)

where the last equality is written for the molecules with exact axial symmetry. In Eq. (18) the
summation is going over all molecules in a small but macroscopic volume, n(s) is the direction
of the axis of the sth molecule, and ∆χ̃ = χ̃‖ − χ̃⊥ is the anisotropy in the diamagnetic

(dielectric) susceptibility along and perpendicular to the molecule axis. The quantity Q̃αβ

is non-zero in the nematic phase while it vanishes in the isotropic phase. Below we refer to
χ̃ as to the dielectric susceptibility.

The dependence of the free energy on the order parameter (18) is usually given by an
effective Landau–Lifshitz (LL) potential [10],

FLL(Q̃) = F0 +

∫

d3x
∑

n>2

αnTr Q̃
n (19)
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where αn are functions of temperature T . The dependence of the free energy on the isotropic
factor Tr χ̃ may be included into the free energy of the normal state, F0.

The deviations of the Frank director n from the ground state n0 are typically described
by the Oseen–Zöcher–Frank (OZF) free energy,

FOZF [n] =
1

2

∫

d3x
[

K1(∇ · n)2 +K2(n · ∇ × n)2 +K3(n×∇× n)2
]

, (20)

where the first three terms describe the free energy associated with the splay, twist and bend
distortions. The total free energy of the nematic crystal is F [Q̃,n] = FLL(Q̃)+FOZF [n]. Note
that relation (18) makes it possible to rewrite the OZF free energy as a more complicated
(compared to (20)) expression in terms of the order parameter Q̃.

The YM theory (14-17) can be associated with a nematic crystal in which the ”molecules”
are directed in the internal SO(3)int space. There are three species of equivalent molecules
in each space-time point (the number of species equals to the number of the gluons, Nc = 3).

Consequently, the direction of the local color field in the YM theory, (Φ̂a)i(x)/|Φ̂a(x)|, is

associated with the direction n
(a)
i (x) of the ath molecule species in the point x. Then the

adjoint matter field χij =
∑

aΦ
aiΦaj can be associated with the dielectric susceptibility,

χ̃αβ = ∆χ̃
∑

s n
(s)
α n

(s)
β . Note that YM ”dielectric susceptibility” χ is diadic in the fields Φ̂a

similarly to the dielectric susceptibility χ̃ of the nematic.
The proposed association is largely based on the form of the YM term L2(χ), Eq. (17),

which plays a role of the LL potential (19) for the YM ”dielectric” field χ. This term can be
rewritten via the isotropic factor Trχ and the traceless symmetric matrix Qij, constructed

from the ”susceptibility” χij similarly to the nematic case (18): L2[χ] =
g2

6
(Trχ)2− g2

4
TrQ2.

The negative sign in front of the second term leads to the instability to develop a disorder
in the ”dielectric susceptibility” χij .

The L0 term, Eq. (15), is a covariant generalization of the kinetic part of the OZF
free energy (20) corresponding to the liquid crystal whose splay, twist and bend distortion
constants are equal, K1 = K2 = K3 = 1. Indeed, in this case the first three terms in
Eq. (20) are reduced to 1

2

∑3
i,j=1(∇inj). Then, we get the L0 term in the YM Lagrangian

by (i) imposing the natural requirement of the SO(3)int covariance, ∇µ → Dk̄(Γ), and (ii)

taking into account all molecule species, n → Φ̂a(x).
As for the L1 term, Eq. (16), it can be interpreted as an energy density associated with

a mutual non–alignment of the directions of the different molecule species (Φ̂a)i(x)/|Φ̂a(x)|.
Let us find the ground state of the nematic associated with the YM theory (15,16,17).

In terms of the eigenvalues of the matrix χ = diag(χ1, χ2, χ3), the ground state χ = χ(0) is
defined by the relations:

3
∑

i,j=1

i>j

χ
(0)
i χ

(0)
j = 0 ,

3
∑

i=1

χ
(0)
i > 0 ,

3
∏

i=1

χ
(0)
i > 0 , (21)

where the first relation comes from the condition Trχ2 = (Trχ)2 corresponding the global
minimum of the Ginzburg–Landau potential (17). The last two relations in Eq. (21) come
from the specific definition of the χ–field (10) implying that Trχ ≡

∑

ai(Φ
ai)2 > 0 and

detχ ≡ (detΦ)2 > 0, respectively. Equations (21) imply that at least two eigenvalues of χ

must be zero. Without loss of generality we take χ
(0)
1 = χ

(0)
2 = 0, and therefore the ground

state is χ(0) = diag(0, 0, χ0), where χ0 > 0 is not fixed.
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The perturbative vacuum (in terms of the original gluon fields Aa
µ) corresponds to χ0 =

0, i.e. to the isotropic liquid state. What makes the YM field similar to the nematic
liquid is the non–perturbative part of χ0, which is fixed by the minimum of the Landau
gauge functional (12). This minimum is nothing but the A2–condensate [11], Trχ = 〈A2

µ〉,
evaluated in the Landau gauge. Thus, the isotropic liquid state is broken to the nematic
crystal state by the A2 condensate. This spontaneous symmetry breaking of the isotropic
SO(3)int is similar to the breaking of the compact gauge group by the holon condensate (3).

Technically, a particular non-zero value of the A2-condensate emerges due to the presence
of the gauge–fixing term Lgf in Eq. (14) which also contributes to the free energy of the
nematic liquid and which was disregarded till now. According to the numerical calculations
of the A2 condensate [12], g2χ0 ≈ (3GeV)2.

The non-perturbative vacuum state, χ(0) = diag(0, 0, χ0) with χ0 > 0, is still invariant
under the (unbroken) group of rotations about the third axis in the internal space, H =
SO(2)int. Due to the fact that the SO(3)int gauge field Γ is non-propagating, the partial
spontaneous breaking of the original internal symmetry does not lead to a massless vector
field.

The interesting question is a possible existence of topological defects which are generally
characterized by non-trivial homotopic groups πn(G/H) of the vacuum manifold G/H of the
model. The vacuum manifold of the YM theory with Lagrangian written in the form (14-17)
is similar to the vacuum manifold of an ordinary nematic [13] with G/H = SO(3)/(ZZ2 ×
SO(2)). In particular, the nematic state contains the Z2 vortices since π1(G/H) = ZZ2. This
feature may make the physics of the YM nematic state similar to the center vortex picture
of the quark confinement in the YM theory [14].

Moreover, the nematic crystal contains monopole-like defects characterized by non-
negative integers since π2(G/H) = ZZ/ZZ2 ≡ Z+ = 0, 1, 2, . . .. The monopoles have the
hedgehog–like structure constructed from the arrowless ”molecules” (the last fact leads to
an identification of the monopoles with anti-monopoles). The presence of the monopoles
may provide a relation between the nematic liquid crystal and the dual superconductor in
the YM theory [4]. A signature of this relation may already be found in Ref. [16] by observ-
ing the dual Meissner effect in the Landau gauge. Finally, the third homotopy group of the
vacuum manifold is also nontrivial, π3(G/H) = ZZ, which may have a link to the instanton
physics.

The disorder, caused by the presence of the described topological defects in the Landau
gauge may lead to the non–trivial consequences for the non–perturbative physics of the
YM theory similarly to the effects caused by the center vortex percolation [14] and by the
Abelian monopole condensation [4].

Finally, we note that lattice simulations [15] indicate that the A2 condensate drops by
amount of 92% at the finite-temperature phase transition, T = Tc. Therefore one may
expect that in the deconfinement phase, T > Tc, the 4D nematic state may transform to
a 3D nematic state characterized by much lower value of the ”nematic dielectric suscepti-
bility” χ. Since the spatial dynamics of the gluon fields remains non–perturbative in the
deconfinement phase, one may expect that the nematic crystal splits into two modes: the
temporal components of the gluon fields form an ordinary ”isotropic liquid” while the spatial
components are still in a nematic state.

Summarizing, the spin-charge separation idea – originally invented to describe properties
of the high-Tc superconductors – may also be applied to the YM theory in the form of
the spin-color separation. This approach allows to identify the ground state of the low-
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temperature phase YM theory in the Landau gauge with a nematic liquid crystal. The
perturbative isotropic liquid state is broken down to the nematic liquid crystal state by the
A2 condensate. The nematic crystal contains various topological defects which may play a
role in explaining of non-perturbative features of the YM theory.
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