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The implications of noninertial motion on covariant quantum spin
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It is shown that the Pauli-Lubanski spin vector defined in terms of curvilinear co-ordinates does not
satisfy Lorentz invariance for spin-1/2 particles in noninertial motion along a curved trajectory. The
possibility of detecting this violation in muon decay experiments is explored, where the noninertial
contribution to the decay rate becomes large for muon beams with large momenta and trajectories
with radius of curvature approaching the muon’s Compton wavelength scale. A new spacelike spin
vector is derived from the Pauli-Lubanski vector that satisfies Lorentz invariance for both inertial
and noninertial motion. In addition, this spin vector suggests a generalization for the classification of
spin-1/2 particles, and has interesting properties that are applicable for both massive and massless
particles.

PACS numbers: 11.30.Cp, 03.30.+p, 04.90.+e, 14.60.Ef

I. INTRODUCTION

Quantum mechanics and general relativity are re-
garded as the two pillars of modern theoretical physics,
but despite many attempts in finding a satisfactory the-
ory of quantum gravity, this goal has proved elusive. Un-
derstanding how the two theories can fit together har-
moniously is a serious intellectual challenge. Approaches
such as string theory [1, 2], loop quantum gravity [3, 4],
twistor theory [5], causal set theory [6], and others each
assume distinct mathematical and philosophical founda-
tions, and necessarily possess a high degree of mathemat-
ical sophistication. Whether any one of these approaches
can ultimately lead to the definitive theory of quantum
gravity is purely speculative at present because there is
no observational evidence to support or disregard them.
While there is yet no experimental or observational jus-
tification to tamper with either quantum mechanics or
general relativity, there are suggestions that a modifica-
tion of one or both theories may be required to incorpo-
rate Planck-scale physics. Whether such modifications
are justifiable or not is also debatable. Because both
quantum mechanics and general relativity are very suc-
cessful in their respective domains, it is a challenge to
propose a modification without compelling evidence to
support the change.

Any sort of observation involving gravity and matter
at the microscopic level is notoriously difficult to per-
ceive, let alone perform, which makes the advancement
of quantum gravity research extremely challenging out-
side of purely theoretical considerations. From inves-
tigating quantum field theory in a classical space-time
background, the topic of black hole entropy and the pre-
diction of Hawking radiation [7] from black holes is widely
cited as an indicator of an effect that a successful quan-
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tum gravity theory must reproduce. Similarly, the anal-
ogous prediction of thermal radiation observed by an ac-
celerated observer in flat space-time, now known as the
Unruh effect [8], suggests a type of confirmation that
supports this viewpoint, via the principle of equivalence.
However, a closer inspection of certain outstanding issues
[9] involving Hawking radiation may indicate that inher-
ent assumptions about the nature of space-time at the
quantum level need to be very clearly identified and ad-
dressed. If it turns out that a subtle change is required
on the assumptions for how particles behave in curved
backgrounds, it may force one to question the reliabil-
ity of quantum field theory in curved space-time and the
consequences that follow, such as Hawking radiation.

One avenue where the interface between quantum me-
chanics and general relativity may be explored involves
the intrinsic nature of particles in a curved space-time
background. From standard quantum field theory in flat
space-time, the classification of subatomic particles ac-
cording to their mass and spin angular momentum via
the Poincaré symmetry group [10] is a well known and
accepted procedure. Yet it must be emphasized that the
Poincaré group is applicable only for particles in strictly
inertial motion. In reality, the notion of a truly iner-
tial reference frame is merely an idealization, since gen-
eral relativity demonstrates that any mass-energy source
generates space-time curvature, which produces a grav-
itational field. At best, the closest approximation to
an inertial frame in a gravitational field is the so-called
freely falling frame, in which a particle propagates along a
geodesic and feels no external forces while on this world-
line. Even here, however, it is impossible to completely
neutralize the gravitational field effects for any parti-
cle that is not strictly pointlike, since an extended ob-
ject can sense tidal forces acting upon it due to space-
time curvature, as determined by neighbouring geodesics
along the object’s centre-of-mass worldline. As well, it
is certainly possible to describe noninertial motion in
Minkowski space-time, where the deviations from force-
free motion are treated classically as effects due to “fic-
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titious” forces. These facts indicate that the Poincaré
group is insufficient for the description of intrinsic prop-
erties of subatomic particles while in noninertial motion.

Although it is currently difficult to envision a suitable
generalization of the Poincaré group to operate on a gen-
eral curved space-time background, there exists one type
of generalization called the de Sitter group [11] for the
special case of conformally flat space-times in four dimen-
sions. Because the de Sitter space-time can be embedded
in a flat five-dimensional space-time described by an over-
all radius of curvature R, the momentum operators are
elements of a ten-parameter set of rotation generators.
The Casimir invariants of the de Sitter group are then
generalizations of the squared mass and spin involving R,
which then reduce to their corresponding expressions for
the Poincaré group as R → ∞. However, it also appears
that the de Sitter group suffers from the same limitations
as the Poincaré group, in that its properties rely heavily
on inertial motion of the particle to obtain the associated
Casimir invariants. This is because, in all known formu-
lations of such space-time symmetry groups, cartesian co-
ordinates are automatically assumed for the co-ordinates
and derivative operators to compose the group genera-
tors. Because physical properties should be independent
of the choice of co-ordinate system, it seems reasonable to
re-examine the Poincaré and de Sitter groups assuming
general curvilinear co-ordinates.

The purpose of this paper is to investigate the proper-
ties of one aspect of the Poincaré group in curvilinear co-
ordinates, namely the Pauli-Lubanski four-vector which
describes spin-1/2 particle spin in covariant form. If a
particle’s trajectory appears as a curved path in three-
dimensional space, it can be mapped by a non-cartesian
co-ordinate system which best reflects the symmetry of
the particle’s motion. By now describing the Pauli-
Lubanski vector with respect to curvilinear co-ordinates,
it may be possible to see whether a breakdown occurs in
describing the particle’s associated Casimir invariant, as
determined by some inertial laboratory frame defined at
the origin. It must be clearly understood that this pa-
per is not an attempt to establish new theory, but rather
to examine the phenomenological consequences of explor-
ing the limitations of the Poincaré group when applied to
noninertial motion. If there is a significant observational
deviation that appears from exploring this perspective,
then it seems reasonable to propose a modification to ac-
commodate the difference and explore the consequences
that follow.

The paper begins in Sec. II with a brief description
on the hypothesis of locality employed for the descrip-
tion of particle motion in a noninertial reference frame.
This is followed by Sec. III, which describes the Pauli-
Lubanski vector for a spin-1/2 particle generalized in
terms of curvilinear co-ordinates, with interesting con-
sequences when the intended Casimir invariants are eval-
uated. An application of the main results is presented
in Sec. IV, which consider the effects of noninertial mo-
tion on muon decay in a circular storage ring. It is then

shown in Sec. V that a new form of covariant spin oper-
ator can be constructed from the Pauli-Lubanski vector
which satisfies the Casimir invariant conditions for both
inertial and noninertial motion, with interesting prop-
erties to follow. This leads to a conclusion in Sec. VI,
which explores possible future developments of this in-
vestigation.

II. THE HYPOTHESIS OF LOCALITY FOR

NONINERTIAL MOTION

A central assumption used in describing noninertial
motion is the hypothesis of locality [12], in which an accel-
erated observer can be equated with an instantaneously
comoving inertial observer at a given moment of proper
time. This is described mathematically by defining a
family of velocity vectors tangent to each point on the
observer’s worldline, which smoothly correspond one-to-
one with their respective comoving inertial frames. Em-
bedded with this assumption is an intrinsic length and
time scale associated with the accelerated observer. The
hypothesis of locality is certainly reasonable for an accel-
erated classical particle, since its instantaneous position
and velocity occupy the same state as that of comov-
ing inertial particle. As well, in the limit as the particle
becomes pointlike, this hypothesis is also well-defined.
However, the situation becomes more complicated when
applied to a quantum mechanical system because the
quantum particle has wavelike properties and requires
a region of space-time to define its location properly. It
is possible to surmise that the hypothesis of locality may
become violated when considering accelerated quantum
systems possessing long wavelengths. Conversely, it is
possible to retain this hypothesis if the time scale as-
sociated with the measurement of a quantum particle
is much shorter than the accelerated observer’s intrinsic
time scale.

III. GENERAL FORMALISM

Assuming c = 1 units throughout, a flat metric in
terms of curvilinear co-ordinates and −2 signature is de-
scribed by g = ηµ̂ν̂ e

µ̂ ⊗ eν̂ , given a set of orthonor-
mal tetrads {eµ̂} and basis one-forms

{

eµ̂
}

labelled by
caratted indices to define a local Minkowski frame satis-
fying

〈

eµ̂, eν̂
〉

= δµ̂ν̂ . A general metric tensor in curved
space-time and its Minkowski counterpart are related by
vierbein sets

{

eα̂µ

}

, {eµα̂} satisfying eα̂ = eα̂β e
β and

eα̂ = eβα̂ eβ , such that eα̂µ e
µ
β̂
= δα̂

β̂
, eµα̂ e

α̂
ν = δµν ,

and gµν = η
α̂β̂
eα̂µ e

β̂
ν . The caratted indices are raised

and lowered by the Minkowski metric η
α̂β̂

, while the un-

caratted indices are manipulated with the general metric
gµν .
Given the covariant Dirac equation

[iγµ(x) [∂µ + iΓµ(x)] −m/~]ψ(x) = 0 (1)
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FIG. 1: Comoving co-ordinate frames for a quantum particle moving along a curved trajectory. For muon decay, it is possible
to identify the beam’s instantaneous location with either local cartesian co-ordinates (x̂, ŷ, ẑ) or cylindrical polar co-ordinates
(r̂, ϕ̂, ẑ) with respect to the laboratory frame (x,y, z), as shown in Figures 1(a) and 1(b). However, the fundamental issue
is whether one local frame is more appropriate than the other for accurately mapping the muon beam’s trajectory, with
implications for describing potential non-inertial effects.

with the spin connection Γµ(x), the associated momen-

tum operator is P µ = i~ gµν [∂ν + iΓν(x)] = eµµ̂ P
µ̂,

where P µ̂ = pµ̂ + Ω
µ̂ is described in terms of the op-

erator pµ̂ = i~∇µ̂ in curvilinear co-ordinates [13] and

the spin connection contribution Ω
µ̂ . The p-momentum

components are explicitly described by

p0̂ = i~
∂

∂t
, p̂ = − i~

λj(u)

∂

∂û
, (2)

where λj(u) are the scale functions corresponding to the
co-ordinate system that best reflects the symmetries of
the particle’s motion in space. Consider now the Pauli-
Lubanski four-vector W µ = eµµ̂ W

µ̂ in curved space-
time as a vierbein projection onto a local tangent space,
such that [14]

W µ̂ = −1

4
εµ̂

α̂β̂γ̂
σα̂β̂ P γ̂ , (3)

where W µ̂ is the Pauli-Lubanski vector in Minkowski
space-time, εµ̂α̂β̂γ̂ is the Levi-Civita alternating symbol

with ε0123 ≡ 1, and σα̂β̂ = (i/2) [γα̂, γβ̂ ] are the spin
matrices. By introducing a decomposed representation

of σα̂β̂ in the form

σα̂β̂ = i
(

δα̂0 δ
β̂
̂ − δβ̂0 δ

α̂
̂

)

α̂ − ε0α̂β̂m̂ σm̂ , (4)

where α̂ = β γ ̂, σ̂ = 1

2
ǫjkl σ

k̂l̂, and ǫijk is the
three-dimensional Levi-Civita alternating symbol with
ǫ123 ≡ 1, it follows naturally that

W µ̂ =
1

2

[

−ηµ̂0̂ σm̂ P m̂

+ ηµ̂m̂
[

σm̂ P 0̂ + i ǫmjk α
̂ P k̂

]]

. (5)

Because it is generally true that (i/~)
[

pı̂,p̂
]

≡
N ı̂̂ 6= 0 in curvilinear co-ordinates, there exists a Her-

mitian three-vector R called the noninertial dipole oper-

ator [15, 16], whose more general form in terms of Ω is
now

Rk̂ =
i

2~
ǫijk [P ı̂,P ̂]

= ǫkmn [(∇m̂ lnλn)pn̂ −∇m̂Ωn̂] . (6)

For example, if the locally flat tangent space-time is de-
scribed by spherical co-ordinates, then for

P r̂ = −i~
(

∂

∂r
+

1

r

)

, P θ̂ = − i~
r

(

∂

∂θ
+

1

2
cot θ

)

,

P φ̂ = − i~

r sin θ

∂

∂φ
, (7)

it follows that

Rr̂ =
i

~

[

P θ̂,P φ̂
]

= −cot θ

r
pφ̂ , (8a)

Rθ̂ =
i

~

[

P φ̂,P r̂
]

=
1

r
pφ̂ , (8b)

Rφ̂ =
i

~

[

P r̂,P θ̂
]

= −1

r
P θ̂ , (8c)

where r is interpreted as the local radius of curvature as-
sociated with the trajectory of the particle. As r → ∞,
it is self-evident that R → 0 for fixed momentum. If
the P ̂ are defined by cartesian co-ordinates to represent
rectilinear motion, then R vanishes identically, justifying
its label to describe noninertial effects due to rotation.
For a spin-1/2 particle in a rotating frame, it can be

shown that while P µ P µ = m2 remains a Lorentz scalar,
the corresponding scalar operator associated with parti-
cle spin is now frame-dependent, in the form

W µ W µ = W µ W
µ

= −1

2

(

1

2
+ 1

)

m2 +
~

2
(σ ·R) . (9)
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FIG. 2: Relative contribution of R on the decay rate for
µ− → e− + ν̄e + νµ, where r = 711.2 cm for Fig. 2(a), while
|p

µ
| = 3.0 GeV for Fig. 2(b). It is evident that |∆Γ|/Γ be-

comes large as r → 10−12 cm, the length scale of the muon’s
Compton wavelength.

In addition, the orthogonality condition between W and
P is no longer satisfied for noninertial motion due to
rotation, since

W µ P µ = −P µ W µ = −~

2
(α ·R) . (10)

It may seem contradictory to now regard the Casimir in-
variant W µ W µ as a frame-dependent quantity when it
is constructed as a Lorentz scalar. However, when this
operator is applied to an eigenstate, the associated eigen-
value is − 1

2

(

1

2
+ 1

)

m2, and any contribution due to R

does not appear. As well,W µ P µ = 0 when applied to an
eigenstate. For both (9) and (10), the apparent violation
of Lorentz symmetry and the orthogonality condition is
due to a spin interaction with R, which suggests that
noninertial motion induces a spin precession about the
particle’s worldline.

IV. APPLICATIONS TO MUON DECAY

One of the assumptions in quantum field theory of-
ten taken for granted is the notion that every elemen-
tary interaction within a Feynman diagram occurs at a
mathematical point, where it is assumed that momentum
conservation is precisely satisfied at each vertex. While
it appears that this hypothesis is valid for interactions
on a flat space-time background, this idealization has to
be examined more carefully when applied to a curved

background or in situations involving noninertial motion.
While elementary particles are reasonably assumed to be
pointlike objects, quantum fields exist as a continuous
distribution of matter, and since a gravitational field is
described classically as tidal forces within a local neigh-
bourhood about some point on the manifold, there are
conceptual ambiguities involved in how best to represent
the interactions of quantum matter in a gravitational
field [17]. Unlike any collision involving classical objects
where the properties of the incident and final products of
the reaction are completely determined, the Heisenberg
uncertainty principle implies that an ambiguity exists at
the precise moments when a scattering or decay event
occurs.
One example of how R may appear within an ex-

perimental context is via muon decay inside a circular
storage ring. If an event like muon decay is only well-
defined up to some identifiable interaction region, then
it is reasonable to suspect that R is a legitimate oper-
ator which leads to a meaningful prediction of physical
effects. For inertial motion, it is well-known that the
computed rest-frame decay rate [18, 19] for the reaction
µ− → e− + ν̄e + νµ is

Γ0 ≈
G2

F
m5

µ

192 π3
≈ 2.965× 10−16 MeV, (11)

where GF = 1.16639 × 10−11 MeV−2 [19] is the Fermi
constant for weak interactions. If the muon beam fol-
lows a circular trajectory and the decay products travel
inertially off the orbit, then the squared modulus of the
interaction matrix element takes the form

|M|2 = |M|20 + |M|2NI =
G2

F

2
Lµ̂ν̂ M

µ̂ν̂ , (12)

where |M|20 is the known contribution due to inertial mo-
tion [19], and |M|2

NI
is the correction due to R. The

tensors corresponding to this reaction are then

Lµ̂ν̂ = Tr
[

/pνµ
γµ̂

(

/P µ +mµ γ
5 /nµ

)

γ ν̂
(

1− γ5
)

]

, (13a)

M µ̂ν̂ = Tr
[(

/pe +me γ
5 /ne

)

γµ̂ /pνe
γ ν̂

(

1− γ5
)]

, (13b)

where nµ is the muon’s spin polarization vector. Prior
to averaging over the spin states and using (10), it can
be shown that [14]

γ5 /nµ = − 2

m2
µ

[(n ·W ) /P + /n (P ·W )]µ . (14)

By substituting (14) into (13a), it follows that

|M|2
NI

=
20G2

F
~
2Eµ

m2
µ |P µ|

[[(

1− Ee

|pe|

)

(

pe · pνµ

)

+
m2

e

|pe|
Eνµ

]

p̂
νe

− 3

5

(

1− Ee

|pe|

)

(

pνµ
· pνe

)

p̂
e

]

× ǫjkl

(

∇
k̂Rl̂

)

, (15)
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which leads to the noninertial contribution ∆Γ for the
total decay rate Γ = Γ0 + ∆Γ in the laboratory frame.
It is interesting to note the prediction of an induced cou-
pling of the neutrinos due to rotational motion, an effect
not present in |M|20.
Adopting cylindrical co-ordinates for the muon motion

in the laboratory frame, where P ̂
µ =

(

P ẑ
µ,P

r̂
µ,P

ϕ̂
µ

)

, the

only nonzero component of the noninertial dipole opera-

tor is R1̂ = − 1

r
pϕ̂
µ [16]. Figure 1 provides a comparative

description of the muon beam’s instantaneous location in
terms of either a local cartesian frame in Figure 1(a) or
the adopted cylindrical co-ordinate frame in Figure 1(b).
When evaluated in (15), it follows that ∆Γ is negative-
valued, suggesting that the muon’s lifetime becomes en-
hanced when moving along a circular trajectory. The de-
gree of enhancement is strongly dependent on the choice
of r, as shown in Figure 2, where Figs. 2(a) and 2(b) pre-
dict the relative contribution of ∆Γ to the overall decay
rate for varying beam momenta and radius of curvature,
respectively. For a facility like the Brookhaven National
Laboratory which performs the muon g − 2 experiment
[20], the magnitude of R is negligibly small, where for a
muon beam momentum of |pµ| = 3.094 GeV and storage

ring radius of r = 711.2 cm, |R| = 5.760× 10−55 ≪ 1.

By this example, it seems that R is irrelevant for
current particle experiments. However, as r ∼ 10−8 −
10−12 cm, the length scales associated with atomic
and nuclear dimensions [21], |∆Γ|/Γ rapidly approaches
unity. In particular, the total decay rate becomes nega-
tive for r . 10−11 cm, when the length scale approaches
the muon’s Compton wavelength of 1.18×10−12 cm [22].
It is difficult to make a sensible physical interpretation of
such a decay rate at the Compton wavelength scale, and
it seems reasonable to suspect that some known physical
effect, such as bremmstrahlung radiation, will manifest
itself to avoid this scenario. At the same time, this may
be a sign of new physics emerging at the interface be-
tween quantum mechanics and general relativity, consis-
tent with reported evidence claiming, for example, that
space-time curvature can induce modifications to clas-
sical electromagnetic fields at the Compton wavelength
scale [23].

It is worthwhile to consider at this stage whether the
external magnetic field required to curve the muon’s tra-
jectory will influence the particle’s decay rate. For ex-
ample, the external magnetic field in a storage ring will,
in principle, modify the decay rate via the density of fi-
nal states. This effect has been examined in detail for
the case of neutron beta decay in a strong magnetic field
[24], where it is shown that a field strength in excess of
1012 Gauss is required to significantly modify the neu-
tron’s decay rate. In particular, the electron’s final state
density reflects the decay rate corrections in terms of an
overall scale factor, which can be taken into account in
any realistic measurement. Applying this formalism to
muon decay, it is found that the relative correction to
the overall scale factor is negligibly small for a typical

magnetic field strength of 104 Gauss required to bend
the particle beam.
Concerning a more direct examination based on a lead-

ing order calculation [25], it has been shown that the rel-
ative correction to the muon’s lifetime is on the order
of 10−14 times the magnetic field strength measured in
Tesla. Based on this assumption, an external magnetic
field of 1011 Tesla or 1015 Gauss is required to achieve
a radius of curvature approaching the muon’s Compton
wavelength scale of 10−12 cm. It is interesting to note
that this prior calculation leads to a correction of the
muon’s lifetime with the same order of magnitude as
shown in this paper, while not accounting for the pos-
sible existence of R described by (6). Such a finding sug-
gests that a much more detailed analysis may be required
to better understand the implications for either a break-
down of currently applied formalism or the emergence of
new physical phenomena at this length scale.

V. AN EQUIVALENT EXPRESSION FOR THE

PAULI-LUBANSKI VECTOR FOR

NONINERTIAL MOTION

Having shown that the squared magnitude of the Pauli-
Lubanski vector in curvilinear co-ordinates is no longer a
Lorentz invariant for noninertial motion along a curved
trajectory, is it possible to construct a new vector that
satisfies this property? It so happens that it is possible to
obtain a spin vector that preserves Lorentz invariance for
general particle motion. Consider V µ = eµµ̂ V

µ̂, where

V µ̂ ≡ AW µ̂ +B ηµ̂0̂ σm̂P m̂

+ ηµ̂m̂
[

C σm̂ P 0̂ + iD ǫmjk α
̂P k̂

]

, (16)

with A,B,C,D as algebraic constants to be evaluated. If

C and D are chosen such that C = −A
2
± i

√
3

6
(A− 2B)

and D = −A
2
± i

2
(A− 2B) , then it follows that

V µ̂ =
κ

2

[

i ηµ̂0̂ σm̂ P m̂

± ηµ̂m̂
[

1√
3
σm̂ P 0̂ + i ǫmjk α

̂ P k̂

]]

=
κ

2

[

−2 iW µ̂ ± ηµ̂m̂
[(

1√
3
∓ i

)

σm̂ P 0̂

+ (1± i) i ǫmjk α
̂P k̂

]]

, (17)

and

V µ V µ = −1

4
κ2m2 (18)

for real-valued κ ≡ i (A− 2B). If κ = ±
√
3, then

V µ V µ = (−3/4)m2 =
[

− 1

2

(

1

2
+ 1

)]

m2, resembling the
Lorentz invariance condition described by W µ W µ, but
now applicable for all forms of motion.
In particular, if A ≡ 1 in (16) for κ = ±

√
3, then it

follows that B = 1

2
± i

√
3

2
, C = 1, and D =

√
3

2
− 1

2
. By
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expressing B in complex exponential form, it is shown
that

V µ̂ = W µ̂ + e±iξ ηµ̂0̂ σm̂ P m̂

+ ηµ̂m̂
[

σm̂ P 0̂ + i
√
2 sin

(

ξ − π

4

)

ǫmjk α
̂ P k̂

]

,

(19)

where ξ = π
3
. As well, by letting B = |B| (cos ξ + i sin ξ)

for arbitrary and complex-valued κ, it follows that

ξ = sin−1

(

Re(κ)

2|B|

)

= cos−1

(

1− Im(κ)

2|B|

)

. (20)

A preliminary study of V , defined in terms of (17), re-
veals some interesting properties worth considering. The
first is that, in combination with (10), the projection of
the new spin operator along P generates the helicity op-
erator up to the phase ξ = π

3
, where

(V µ ∓ κW µ)P µ = P µ (V µ ∓ κW µ)

= ∓ κE

2

(

1√
3
± i

)

(σ · P )

= ∓ κE√
3
e±iξ (σ ·P ) , (21)

where E is the energy eigenvalue of P 0̂. The second
property is that, for a polarization vector defined as

nµ̂ =
E

m

( |P |
E
,

1

|P | P
̂

)

(22)

subject to nµ P µ = 0, it can be shown that a new vector

k
µ̂ =

2E

m2

(

1

|P | P
µ̂ − m

E
nµ̂

)

(23)

can project out the helicity operator from both V and
W . That is,

kµ W µ =
i

κ
kµ V µ =

(σ ·P )

|P | , (24)

kµ (V µ + i κW µ) = 0 , (25)

where kµ̂ = (2/ |P |) δµ̂
0̂
. This expression shows that the

helicity operator is rotated away from the particle’s di-
rection of propagation due to noninertial motion along a
curved trajectory. Moreover, for massless particles, a null

polarization vector can be defined as nµ̂ =

(

1, 1

|P | P
̂

)

orthogonal to P , such that kµ W µ = kµ V µ = 0, where

kµ̂ = P µ̂ − |P | nµ̂. (26)

This indicates that V µ = λkµ for massless spin-1/2 par-
ticles, an expression now generalized to account for both
inertial and noninertial motion, where λ = ±1/2 is the
associated helicity eigenvalue.

In addition, (21) is true for both massive and massless

(P µ P µ = 0) spin-1/2 particles. To show this explicitly,
consider the special case of a massless particle propagat-
ing in the 3-direction P µ̂ = (E, 0, 0, E). Then

V 0̂ = − i κE
2

σ3̂ = ∓ i
√
3V 3̂ , (27a)

V 1̂ = ± κE

2

[

1√
3
σ1̂ + iα2̂

]

, (27b)

V 2̂ = ± κE

2

[

1√
3
σ2̂ − iα1̂

]

, (27c)

V 3̂ = ± κE

2

1√
3
σ3̂ = ± i√

3
V 0̂ , (27d)

from which it follows naturally that

V µ P µ = V 0̂ P
0̂
+ V 3̂ P

3̂

= ∓ κE

2

(

1√
3
± i

)

(

σ3̂ P 3̂

)

, (28)

to agree with (21) for inertial motion.
The third interesting feature comes from examining

the commutation properties of (27a)-(27d). After setting

κ = ±
√
3 and re-defining the generators such that V ≡

V /E, it becomes evident that

[V 1̂,V 2̂] = −6 iV3̂ , (29a)

[V 2̂,V 3̂] = iV 1̂ , (29b)

[V 3̂,V 1̂] = iV 2̂ , (29c)

which generates the Lie algebra for a broken SU(2) sym-
metry. This suggested property of massless spin-1/2 par-
ticles, while perhaps more physically intuitive, is quite
different from what is known from Wigner’s little group
procedure [10, 18], since the latter indicates that mass-
less particle rotation is described by the Euclidean group
E(2). The reasons for this discrepancy are unclear at
present.

VI. CONCLUSION

It has been shown in this paper that the Pauli-
Lubanski covariant spin vector W µ in curvilinear co-
ordinates is not a Casimir operator, where the breakdown
comes from noninertial effects due to rotation. As well,
it is shown that there exists a new covariant spin vector
V µ whose scalar product with itself preserves Lorentz
invariance for both inertial and noninertial motion, with
interesting Lie algebra properties. While there are po-
tential experimental consequences which follow from the
stated observations for W µ, the quantitative relevance of
the effects appears to be negligible for current experimen-
tal conditions. There may be other ways of identifying
the presence of R at least on a theoretical level, and it
seems worth exploring how to make use of this formal-
ism for other relevant physical situations, such as particle
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interactions near the event horizon of a black hole. At
present, the theoretical results presented here suggest the
existence of a new avenue for better understanding the
interface between quantum mechanics and curved space-
time, via the principle of equivalence, when applied to
particles in noninertial motion.
In this paper, the consequences of noninertial motion

on covariant quantum spin were explored by performing
explicit calculations for spin-1/2 particles. For future
considerations, it is worth mentioning that the nonin-
ertial effects of the type discussed in the present work
are also calculable for particles of higher intrinsic spin
by employing appropriate representations of the Pauli-

Lubanski vector [26]. Other possibilities may come about
from future study of these ideas.
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