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Abstract

The Gribov copies and their consequences on the infrared behavior of the gluon
propagator are investigated in Euclidean Yang-Mills theories quantized in linear co-
variant gauges. Considering small values of the gauge parameter, it turns out that
the transverse component of the gluon propagator is suppressed, while its longi-
tudinal part is left unchanged. A Green function, Gtr(k), which displays infrared
enhancement and which reduces to the ghost propagator in the Landau gauge is
identified. The inclusion of the dimension two gluon condensate 〈A2

µ〉 is also con-
sidered. In this case, the transverse component of the gluon propagator and the
Green function Gtr(k) remain suppressed and enhanced, respectively. Moreover, the
longitudinal part of the gluon propagator becomes suppressed. A comparison with
the results obtained from the studies of the Schwinger-Dyson equations and from
lattice simulations is provided.
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1 Introduction

Gribov ambiguities [1] and their relevance for the nonperturbative aspects of Euclidean
Yang-Mills theories have witnessed growing interest in recent years. These ambiguities,
affecting the Faddeev-Popov quantization formula, deeply modify the infrared behavior
of Yang-Mills theories, as one learns from the large amount of results obtained in the
Landau gauge [2, 3, 4, 5, 6, 7] as well as in the Coulomb gauge [8, 9, 10, 11, 12].

As pointed out in [13], the existence of these ambiguities is due to the lack of a globally well
defined gauge-fixing procedure. Among the class of covariant gauges, the Gribov ambigui-
ties have been much investigated in the Landau gauge, where the gauge field is transverse,
∂µA

a
µ = 0. This property plays an important role here. It ensures that the Faddeev-Popov

operator, Mab(A) = −∂µ
(
∂µδ

ab − gfabcAc
µ

)
, is hermitian, M = M†. Its eigenvalues are

thus real. Concerning now the quantization of Yang-Mills theories in the Landau gauge,
it turns out that, as a consequence of the existence of Gribov copies, the domain of inte-
gration in the Feynman path integral has to be restricted to the so called Gribov region Ω
[1, 2, 3, 4, 5, 6, 7], which is the set of all transverse fields for which the Faddeev-Popov oper-

ator is positive definite, i.e. Ω =
{
Aa

µ, ∂µA
a
µ = 0,Mab(A) = −∂µ

(
∂µδ

ab − gfabcAc
µ

)
> 0

}
.

The boundary ∂Ω,where the first vanishing eigenvalue of the Faddeev-Popov operator ap-
pears, is called the first Gribov horizon. For the partition function of Yang-Mills theories
in the Landau gauge, one has

Z =
∫

Ω
DAδ(∂A)

(
det

(
−∂2δab + gfabcAc

µ∂µ
))

e−
1
4

∫
d4xF a

µνF
a
µν

=
∫

Ω
DADcDcδ(∂A)e−

1
4

∫
d4xF a

µνF
a
µν+
∫

d4x ca∂µ(∂µδab−gfabcAc
µ)cb . (1.1)

The restriction of the domain of integration to the region Ω has important consequences on
the infrared behavior of the gluon and ghost propagators [1, 2, 3, 4, 5, 7]. More precisely,

in the Landau gauge, the gluon propagator
〈
Aa

µ(k)A
b
ν(−k)

〉
is found to be suppressed in

the infrared, while the ghost propagator
〈
ca(k)cb(−k)

〉
is enhanced, according to

〈
Aa

µ(k)A
b
ν(−k)

〉
= δab

(
δµν −

kµkν
k2

)
k2

k4 + γ4
, (1.2)

and

Ggh(k) =
1

N2 − 1

∑

ab

δab
〈
ca(k)cb(−k)

〉
,

Ggh(k)k→0 ∼
1

k4
. (1.3)

The Gribov parameter γ in eq.(1.2) has the dimension of a mass and is determined by a
gap equation which, to the first order approximation, reads

3Ng2

4

∫
d4k

(2π)4
1

k4 + γ4
= 1 . (1.4)
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From equation (1.3), one sees that the infrared behavior of the ghost propagator is more
singular than the perturbative behavior 1/k2. This infrared enhancement is known as the
Gribov-Zwanziger horizon condition [1, 4, 7], generally stated as limk→0 (k

2Ggh(k))
−1

= 0.
Remarkably, this behavior of the gluon and ghost propagators in the Landau gauge has
received many confirmations from lattice simulations [14, 15, 16, 17, 18, 19, 20, 21, 22]
as well as from recent studies of the Schwinger-Dyson equations [23, 24, 25, 27, 28, 29, 30].

Several results have been established about the Gribov region Ω. It has been proven
that Ω is convex and bounded in every direction [2, 5]. Moreover, every gauge orbit
passes inside Ω [6]. The latter result is deeply related to the possibility of introducing an
auxiliary functional, F(A) =

∫
d4xAa

µA
a
µ, whose minimization with respect to the gauge

transformations provides a characterization of the region Ω [6, 31]. It can be checked in
fact that the Gribov region Ω can be identified as the set of all relative minima of the
functional F(A). It should also be mentioned here that the region Ω is not free from Gri-
bov copies, i.e. Gribov copies still exist inside Ω [6, 31, 32]. To avoid the presence of these
additional copies, a further restriction to a smaller region Λ, known as the fundamental
modular region, should be implemented [6, 31, 32]. The region Λ is contained in the Gri-
bov region Ω, being defined as the set of all absolute minima of the auxiliary functional
F(A). However, it is difficult to give an explicit description of Λ. Recently, it has been
argued in [33] that the additional copies existing inside Ω have no influence on the expec-
tation values, so that averages calculated over Λ or Ω are expected to give the same result.

Besides the Landau gauge, the effects of the Gribov copies on the infrared behavior
of Yang-Mills theories have been studied to a great extent in the noncovariant Coulomb
gauge [8, 9, 10, 11, 12], ∂iA

a
i = 0, i = 1, 2, 3. In particular, the Coulomb gauge allows for

a direct study of the confining properties of the static potential V (r) between an external
quark pair at spatial separation r. It turns out that V (r) can be accessed by means of

the 44-component,
〈
Aa

4(
−→x , t)Ab

4(0)
〉
, of the gluon propagator. Moreover, in analogy with

the Landau gauge, the spatial components of the gluon propagator,
〈
Aa

i (k)A
b
j(−k)

〉
, are

found to be suppressed in the infrared, a feature confirmed by lattice simulations [34, 35].

Concerning now other covariant gauges, although the presence of the Gribov copies is
certainly to be expected [13], as explicitly confirmed by a recent study of the zero modes
of the Faddeev-Popov operator in the maximal Abelian gauge [36], very little is known
about their consequences on the infrared behavior of the gluon and ghost propagators
and, more generally, on the whole Yang-Mills theory. The need for such an investigation
is motivated by the increasing belief that the Gribov copies might have a crucial role for
the infrared region of Yang-Mills theories as well as for color confinement. It would be de-
sirable thus to improve our understanding on how the Gribov copies manifest themselves
in different gauges and how they modify the infrared behavior of the theory.

This work aims at studying this issue in the class of covariant linear gauges, ∂µA
a
µ = −αba,

where α is the gauge parameter and ba is the Lagrange multiplier. The task is far from
being trivial. Many features of the Landau gauge are lost for a generic nonvanishing α.
The Faddeev-Popov operator, Mab(A) = −∂µ

(
∂µδ

ab − gfabcAc
µ

)
, is now not hermitian.

Moreover, a suitable minimizing functional in these gauges is not yet at our disposal.
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As a consequence, the identification of the region to which the domain of integration in
the path-integral should be restricted becomes difficult to be handled. All this makes a
complete treatment of the Gribov copies in linear covariant gauges far beyond our present
capabilities. Nevertheless, we shall be able to establish some preliminary results which
enable us to obtain a characterization of the infrared behavior of the gluon propagator,
at least for small values of the gauge parameter α. Considering in fact small values of the
gauge parameter α, will allow us to stay close to the Landau gauge fixing. The present
covariant gauge can be considered thus as a kind of deformation of the Landau gauge,
whose results have to be recovered in the limit α → 0, thereby providing a useful consis-
tency check.

The output of our findings can be summarized as follows. As in the case of the Lan-
dau gauge, the transverse component of the gluon propagator turns out to be suppressed
in the infrared. Moreover, its longitudinal part remains unchanged.

Concerning now the behavior of the ghost fields in linear covariant gauges, it turns out
that, instead of the ghost propagator, the Green function which is enhanced in the infrared
is given by the quantity Gtr(k), defined as

Gtr(k) =
1

N2 − 1

∑

ab

δabGab
tr (k) ,

Gab
tr (k) =

〈
k

∣∣∣∣
(
M−1(AT )

)ab∣∣∣∣ k
〉

, (1.5)

where

AaT
µ =

(
δµν −

∂µ∂ν
∂2

)
Aa

ν , (1.6)

is the transverse component of the gauge field and
(
M−1(AT )

)ab
stands for the inverse of

the Faddeev-Popov operator Mab(AT ),

Mab(AT ) = −∂µ
(
∂µδ

ab − gfabcATc
µ

)
. (1.7)

The Green function Gtr(k) is found to obey the Gribov-Zwanziger horizon condition, i.e.
limk→0 (k

2Gtr(k))
−1

= 0. It should be remarked that Gtr(k) does not coincide with the
ghost propagator for a generic value of the gauge parameter α. However, Gtr(k) reduces
to the ghost two-point function for vanishing α, so that our results turn out to coincide
with those of the Landau gauge in the limit α → 0.

The infrared behavior of the gluon propagator and of Gtr(k) will be investigated also

in the presence of the dimension two gluon condensate
〈
Aa

µA
a
µ

〉
. A detailed study of this

condensate in linear covariant gauges can be found in [37]. In the presence of
〈
Aa

µA
a
µ

〉
,

the infrared suppression of the transverse component of the gluon propagator is enforced.
Furthermore, its longitudinal component turns out to be suppressed as well. Concerning
the Green function Gtr(k), its infrared enhancement is not modified by the condensate〈
Aa

µA
a
µ

〉
.

The work is organized as follows. In Sect.2 a few properties of the Gribov copies in
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the linear covariant gauges, and for small values of the gauge parameter α, are presented.
In Sect.3 the infrared behavior of the gluon propagator, of the Green function Gtr(k) and
of the ghost propagator is worked out. Sect.4 accounts for the inclusion of the gluon
condensate

〈
Aa

µA
a
µ

〉
. Sect.5 is devoted to a comparison of our results with those obtained

from the analysis of the Schwinger-Dyson equations and from lattice simulations. In
Sect.6 we present our conclusion.

2 A few properties of the Gribov copies in the linear

covariant gauges

In this section we shall discuss a few properties of the Gribov copies in the linear covariant
gauges. Let us begin by considering the expression of the Euclidean Yang-Mills action
quantized in the linear covariant α−gauges, namely

SYM + Sgf =
1

4

∫
d4xF a

µνF
a
µν −

∫
d4x

(
ba∂Aa +

α

2
baba + ca∂µ

(
∂µδ

ab − gfabcAc
µ

)
cb
)

,

(2.8)
where ca, ca stand for the Faddeev-Popov ghosts. The Lagrange multiplier ba has been
introduced to implement the gauge condition

∂µA
a
µ = −αba , (2.9)

from which it follows
∫

d4x
(
ba∂Aa +

α

2
baba

)
⇒ −

1

2α

∫
d4x

(
∂µA

a
µ

)2
. (2.10)

From the relation (2.9) we see that the field Aa
µ is not transverse, due to the presence of

the gauge parameter α. Of course, in the limit α → 0, we recover the Landau gauge,
∂µA

a
µ = 0. In what follows, it will be useful to decompose the gauge field Aa

µ into transverse
and longitudinal components, according to

Aa
µ = AaT

µ + AaL
µ , (2.11)

with

AaT
µ =

(
δµν −

∂µ∂ν
∂2

)
Aa

ν ,

∂µA
aT
µ = 0 , (2.12)

and

AaL
µ =

∂µ∂ν
∂2

Aa
ν = −α

∂µ
∂2

ba ,

∂µA
aL
µ = −αba . (2.13)

As already underlined, we shall restrict ourselves to the case in which α is small, i.e.
α ≪ 1, so that the longitudinal component AaL

µ in eq.(2.11) can be considered as a small
perturbation with respect to the transverse part AaT

µ .

Let us proceed by proving the following statement.
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• Statement

If the transverse component AaT
µ of the gauge field Aa

µ =
(
AaT

µ + AaL
µ

)
belongs to the

Gribov region Ω, i.e. AaT
µ ∈ Ω, Ω =

{
AaT

µ , ∂µA
aT
µ = 0, − ∂µ

(
∂µδ

ab − gfabcAcT
µ

)
> 0

}
,

then the Faddeev-Popov operator Mab(A) = −∂µ
(
∂µδ

ab − gfabcAc
µ

)
has no zero

modes.

Proof

The proof of this statement is done by assuming the converse. Suppose indeed that
the operator Mab(A) has a zero mode, i.e. it exists a ϕ̃a(x, α) such that

− ∂µ
(
∂µδ

ab − gfabcAcT
µ − gfabcAcL

µ

)
ϕ̃b(x, α) = 0 , (2.14)

which, from eq.(2.13), becomes

− ∂µ

(
∂µδ

ab − gfabcAcT
µ + αgfabc

(
∂µ
∂2

bc
))

ϕ̃b(x, α) = 0 . (2.15)

Since α is small we perform a Taylor expansion of ϕ̃a(x, α), namely

ϕ̃a(x, α) =
∞∑

n=0

αnϕ̃a
n(x) , (2.16)

with
ϕ̃a
0(x) = ϕ̃a(x, α)|α=0 . (2.17)

Equation (2.15) splits thus in a tower of equations, given by

− ∂µ
(
∂µδ

ab − gfabcAcT
µ

)
ϕ̃b
0(x) = 0 , (2.18)

− ∂µ
(
∂µδ

ab − gfabcAcT
µ

)
ϕ̃b
1(x)− ∂µ

(
gfabc

(
∂µ
∂2

bc
)
ϕ̃b
0(x)

)
= 0 , (2.19)

− ∂µ
(
∂µδ

ab − gfabcAcT
µ

)
ϕ̃b
2(x)− ∂µ

(
gfabc

(
∂µ
∂2

bc
)
ϕ̃b
1(x)

)
= 0 , (2.20)

− ∂µ
(
∂µδ

ab − gfabcAcT
µ

)
ϕ̃b
3(x)− ∂µ

(
gfabc

(
∂µ
∂2

bc
)
ϕ̃b
2(x)

)
= 0 , (2.21)

and so on.

Moreover, since AaT
µ belongs to the Gribov region Ω, AaT

µ ∈ Ω, it follows that ϕ̃b
0(x)

in the first equation (2.18) necessarily vanishes, i.e. ϕ̃b
0(x) = 0, since the operator

−∂µ
(
∂µδ

ab − gfabcAcT
µ

)
has no zero modes in Ω. Furthermore, setting ϕ̃b

0(x) = 0 in

the second equation (2.19), we get

− ∂µ
(
∂µδ

ab − gfabcAcT
µ

)
ϕ̃b
1(x) = 0 , (2.22)

which, in turn, implies the vanishing of ϕ̃b
1(x), i.e. ϕ̃b

1(x) = 0. As a consequence,
eq.(2.20) reads

− ∂µ
(
∂µδ

ab − gfabcAcT
µ

)
ϕ̃b
2(x) = 0 , (2.23)

from which ϕ̃b
2(x) = 0. It is apparent thus that the argument can be easily iterated

to the whole tower of equations, implying that ϕ̃b(x, α) vanishes, ϕ̃b(x, α) = 0. This
concludes the proof of the statement.
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In particular, from this result it follows that if AaT
µ belongs to the Gribov region, AaT

µ ∈ Ω,

the field Aa
µ =

(
AaT

µ + AaL
µ

)
does not possess Gribov copies which are closely related, i.e.

obtained from Aa
µ through an infinitesimal gauge transformation

Ãa
µ = Aa

µ +
(
∂µδ

ab − gfabcAc
µ

)
ωb , (2.24)

where ωa(x) denotes the parameter of the gauge transformation. Indeed, from the condi-
tion

∂µÃ
a
µ = ∂µA

a
µ , (2.25)

we should have
∂µ
(
∂µδ

ab − gfabcAc
µ

)
ωb = 0 , (2.26)

which, however, has no solution for ωa(x).

2.1 Restriction of the domain of integration in the path-integral

The results obtained in the previous sections suggest to restrict the domain of integration
in the path integral to the region Ω̃ defined as

Ω̃ ≡
{
Aa

µ; A
a
µ = AaT

µ + AaL
µ , AaT

µ ∈ Ω
}

, (2.27)

i.e. Ω̃ is the set of all connections whose transverse part AaT
µ belongs to the Gribov region

Ω =
{
AaT

µ , ∂µA
aT
µ = 0, − ∂µ

(
∂µδ

ab − gfabcAcT
µ

)
> 0

}
. This choice is motivated by the

following considerations:

• Since the gauge parameter α is small, α ≪ 1, the region Ω̃ can be regarded as a
deformation of the Gribov region Ω. It is apparent in fact that in the limit α → 0
the region Ω is recovered, namely

lim
α→0

Ω̃ = Ω . (2.28)

• As discussed before, the Faddeev-Popov operator,Mab(A) = −∂µ
(
∂µδ

ab − gfabcAc
µ

)
,

has no zero modes within Ω̃. Therefore, the restriction to Ω̃ allows us to get rid of the
Gribov copies which can be obtained through infinitesimal gauge transformations.

• The effective implementation in the path-integral of the restriction of the domain
of integration to the region Ω̃ can be done by repeating the no-pole prescription of
Gribov’s original work [1]. Indeed, since the transverse component AaT

µ of any field

belonging to Ω̃ lies in the Gribov region Ω, to implement the restriction to Ω̃ it
will be sufficient to require that the Green function Gtr(k) of eq.(1.5) has no poles
for any AaT

µ ∈ Ω, except for a singularity at k2 = 0, corresponding to the Gribov
horizon ∂ Ω.
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Thus, for the partition function of Yang-Mills theories in linear covariant gauges, we write

Z =
∫

DADbδ(∂A + αb) det
(
Mab(A)

)
e−(

1
4

∫
d4xF a

µνF
a
µν−
∫

d4x(ba∂Aa+α
2
baba))V(Ω̃)

=
∫

DA det
(
−∂µ

(
δab∂µ − gfabcAc

µ

))
e−(

1
4

∫
d4xF a

µνF
a
µν+

1
2α

∫
d4x(∂Aa)2)V(Ω̃) , (2.29)

where the factor V(Ω̃) implements the restriction to the region Ω̃. An explicit character-
ization of V(Ω̃) and of its consequences on the infrared behavior of the gluon propagator
and of Gtr(k) will be discussed in the next section.

Finally, it is worth to spend a few words on the aspects which remain uncovered by
the present investigation. Even if the restriction to the region Ω̃ allows us to get rid of the
Gribov copies which are closely related, i.e. attainable by infinitesimal gauge transfor-
mations, we still lack a treatment of the copies which cannot be attained by infinitesimal
transformations. This task is beyond our present possibilities, as the knowledge of a
suitable auxiliary functional associated to the linear covariant gauges would be required.
Nevertheless, since we are limiting ourselves to small values of α, the restriction to the
region Ω̃ looks quite natural.

2.2 Characterization of the factor V(Ω̃)

As already remarked, the factor V(Ω̃) can be accommodated for by requiring that the
Green function Gtr(k) of eq.(1.5) has no poles for a given nonvanishing value of the mo-
mentum k. This condition can be understood by recalling that the region Ω is defined
as the set of all transverse gauge connections

{
ATa

µ

}
, ∂µA

Ta
µ = 0, for which the operator

Mab(AT ) is positive definite, i.e.Mab(AT ) = −∂µ
(
∂µδ

ab − gfabcATc
µ

)
> 0. This implies

that the inverse operator
[
−∂µ

(
∂µδ

ab − gfabcATc
µ

)]−1
, and thus Gtr(k), can become large

only when approaching the horizon ∂Ω, which corresponds in fact to k = 0 [1]. The
quantity Gtr(k) can be evaluated order by order in perturbation theory. Repeating the
same calculation of [1], we find that, up to the second order

Gtr(k) ≈
1

k2

1

1− ρ(k, AT )
, (2.30)

with ρ(k, AT ) given by

ρ(k, AT ) =
N

N2 − 1

g2

V

1

k2

∑

q

kµ(k − q)ν

(k − q)2
ATa

µ (q)ATa
ν (−q)

=
N

N2 − 1

g2

V

kµkν
k2

∑

q

1

(k − q)2
ATa

µ (q)ATa
ν (−q) , (2.31)

V being the Euclidean space-time volume. According to [1], the no-pole condition for
Gtr(k) reads

ρ(0, AT ) < 1 ,

ρ(0, AT ) =
1

4

N

N2 − 1

g2

V

∑

q

1

q2

(
ATa

λ (q)ATa
λ (−q)

)
. (2.32)
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Therefore, for the factor V(Ω̃) in eq.(2.29) we have

V(Ω̃) = θ(1− ρ(0, AT )) , (2.33)

where θ(x) stands for the step function∗.

3 The gluon propagator

In order to study the gluon propagator, it is sufficient to retain only the quadratic terms in
expression (2.29) which contribute to the two-point correlation function

〈
Aa

µ(k)A
b
ν(−k)

〉
.

Making use of the integral representation for the step function

θ(1− ρ(0, AT )) =
∫ i∞+ε

−i∞+ε

dη

2πiη
eη(1−ρ(0,AT )) , (3.34)

for the partition function (2.29) one get

Zquadr = N
∫

DA
dη

2πi
eη−log ηe−(Squadr+ηρ(0,AT )) , (3.35)

where N is a constant factor and Squadr stands for the quadratic part of the quantized
Yang-Mills action

Squadr =
1

2

∑

q

(
q2Aa

µ(q)A
a
µ(−q)−

(
1−

1

α

)
qµqνA

a
µ(q)A

a
ν(−q)

)
. (3.36)

From

ATa
µ (q)ATa

µ (−q) =

(
δµν −

qµqν
q2

)(
δµσ −

qµqσ
q2

)
Aa

ν(q)A
a
σ(−q)

= Aa
µ(q)A

a
µ(−q)−

qµqν
q2

Aa
µ(q)A

a
ν(−q) , (3.37)

it follows that

Zquadr = N
∫
DA

dη

2πi
eη−log ηe−

1
2

∑
q
Aa

µ(q)Q
ab
µνA

b
ν(−q) , (3.38)

with

Qab
µν =

((
q2 +

ηNg2

N2 − 1

1

2V

1

q2

)
δµν − qµqν

((
1−

1

α

)
+

ηNg2

N2 − 1

1

2V

1

q4

))
δab . (3.39)

Integrating over the gauge field, one has

Zquadr = N
∫

dη

2πi
eη−log η

(
detQab

µν

)− 1
2 = N ′

∫
dη

2πi
ef(η) , (3.40)

where f(η) is given by

f(η) = η − log η −
3

2
(N2 − 1)

∑

q

log

(
q4 +

ηNg2

N2 − 1

1

2V

)
. (3.41)

∗θ(x) = 1 if x > 0, θ(x) = 0 if x < 0.
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Following [1], the expression (3.40) can be now evaluated at the saddle point, namely

Zquadr ≈ ef(η0) , (3.42)

where η0 is determined by the minimum condition

1−
1

η0
−

3

4

Ng2

V

∑

q

1(
q4 + η0Ng2

N2−1
1
2V

) = 0 . (3.43)

Taking the thermodynamic limit, V → ∞, and introducing the Gribov parameter γ [1]

γ4 =
η0Ng2

N2 − 1

1

2V
, V → ∞ , (3.44)

we get the gap equation
3

4
Ng2

∫ d4q

(2π)4
1

q4 + γ4
= 1 , (3.45)

where the term 1/η0 in (3.43) has been neglected in the thermodynamic limit. To obtain
the gauge propagator, we can now go back to the expression for Zquadr which, after
substituting the saddle point value η = η0, becomes

Zquadr = N
∫

DAe
− 1

2

∑
q
Aa

µ(q)Q
ab
µνA

b
ν(−q)

, (3.46)

with

Qab
µν =

((
q2 +

γ4

q2

)
δµν − qµqν

((
1−

1

α

)
+

γ4

q4

))
δab

=

((
q2 +

γ4

q2

)(
δµν −

qµqν
q2

)
+

qµqν
q2

(
q2

α

))
δab . (3.47)

Evaluating the inverse of Qab
µν , we get the gluon propagator

〈
Aa

µ(q)A
b
ν(−q)

〉
= δab

(
q2

q4 + γ4

(
δµν −

qµqν
q2

)
+

α

q2
qµqν
q2

)
. (3.48)

A few remarks are now in order.

Let us first observe that the gap equation (3.45) defining the parameter γ has the same
form of that obtained by Gribov in the Landau gauge [1]. This is an expected result, since
the factor ρ(0, AT ) in equation (2.32) depends only on the transverse component ATa

µ .

As it is apparent from the expression (3.48), the transverse component of the gluon prop-
agator is suppressed in the infrared, while the longitudinal component is left unchanged.
Moreover, as we shall see later, the behavior of the longitudinal part turns out to be
modified once the gluon condensate

〈
Aa

µA
a
µ

〉
is taken into account.

Finally, in the limit α → 0, the results of the Landau gauge are recovered.
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3.1 The infrared behavior of Gtr(k)

Let us discuss now the infrared behavior of the Green function Gtr(k) of eq.(1.5), which
is obtained upon contraction of the gauge fields in the expression (2.31), namely

Gtr(k) ≈
1

k2

1

1− ρ(k)
, (3.49)

with

ρ(k) = g2
N

N2 − 1

kµkν
k2

∫
d4q

(2π)4
1

(k − q)2

〈
ATa

µ (q)ATa
ν (−q)

〉
. (3.50)

From the expression of the gluon propagator in eq.(3.48), it follows

ρ(k) = g2N
kµkν
k2

∫
d4q

(2π)4
1

(k − q)2
q2

q4 + γ4

(
δµν −

qµqν
q2

)
. (3.51)

Furthermore, from the gap equation (3.45), it turns out

Ng2
∫ d4q

(2π)4
1

q4 + γ4

(
δµν −

qµqν
q2

)
= δµν , (3.52)

so that

1− ρ(k) = Ng2
kµkν
k2

∫
d4q

(2π)4
k2 − 2qk

(k − q)2
1

q4 + γ4

(
δµν −

qµqν
q2

)
. (3.53)

Note that the integral in the right hand side of eq.(3.53) is convergent and nonsingular at
k = 0. Therefore, for k ≈ 0,

(1− ρ(k))k≈0 ≈
3Ng2I

4
k2 , (3.54)

where I stands for the value of the integral

I =
∫

d4q

(2π)4
1

q2(q4 + γ4)
=

1

32π

1

γ2
. (3.55)

Finally, for the infrared behavior of the Green function Gtr(k) we get

(Gtr)k≈0 ≈
4

3Ng2I

1

k4
. (3.56)

One sees thus that Gtr(k) is enhanced in the infrared, obeying the Gribov-Zwanziger
condition limk→0 (k

2Gtr(k))
−1

= 0.

3.2 Analysis of the ghost propagator

For the sake of completeness, let us discuss here the infrared behavior of the ghost two-
point function, Ggh(k), given by

Ggh(k) =
1

N2 − 1

∑

ab

δab
〈
ca(k)cb(−k)

〉
≈

1

k2

1

1− ω(k)
, (3.57)
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with

ω(k) =
N

N2 − 1

g2

k2

∫
d4q

(2π)4
kµ(k − q)ν
(k − q)2

〈
Aa

µ(q)A
a
ν(−q)

〉
. (3.58)

Making use of the expression for the gluon propagator in eq.(3.48) and of the equation
(3.52), it follows that, in the infrared,

1− ω(k) ≈
3Ng2

128π

k2

γ2
−

αNg2

k2

∫
d4q

(2π)4
kµ(k − q)ν
(k − q)2

qµqν
q4

. (3.59)

The second term in the right hand-side of eq.(3.59) can be easily evaluated by means of
the dimensional regularization. Adopting the MS scheme, the final expression for the
factor (1− ω(k)) is found

(1− ω(k)) ≈
3Ng2

128π

k2

γ2
−

αNg2

64π2
log

k2

µ2
. (3.60)

One sees that, in the present case, the Gribov-Zwanziger horizon condition is jeopardized
by the term log k2

µ2 in expression (3.60). As it is apparent from the presence of the gauge
parameter α, this term is due to the contribution of the longitudinal components of the
gauge field. Note that the longitudinal modes do not contribute to the Green function
Gtr(k) in eq.(3.49).

4 Inclusion of the dimension two condensate
〈
Aa

µA
a
µ

〉

The dimension two gluon condensate
〈
Aa

µA
a
µ

〉
has received much attention in the last

years [38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48]. This condensate turns out to contribute
to the gluon two-point function, as observed in [49] within the operator product expan-
sion. As such, it has to be taken into account when discussing the gluon propagator. A
renormalizable effective potential for

〈
Aa

µA
a
µ

〉
in linear covariant gauges has been con-

structed and evaluated in analytic form in [37]. The output of this investigation is that

a nonvanishing value of the condensate
〈
Aa

µA
a
µ

〉
is favoured since it lowers the vacuum

energy. As a consequence, a dynamical tree level gluon mass is generated in the gauge
fixed Lagrangian [37]. The inclusion of the condensate

〈
Aa

µA
a
µ

〉
in the present framework

can be done along the lines outlined in [50], where the effects of the Gribov copies on

the gluon and ghost propagators in the presence of
〈
Aa

µA
a
µ

〉
have been worked out in the

Landau gauge. Let us begin by giving a brief account of the dynamical mass generation
in linear covariant gauges. Following [37], the dynamical mass generation in these gauges
is described by the following action

S(A, σ) = SYM + Sgf + Sσ , (4.61)

where SYM , Sgf are the Yang-Mills and the gauge fixing terms, as given in eq.(2.8). The
term Sσ in eq.(4.61) contains the auxiliary scalar field σ and reads

Sσ =
∫

d4x

(
σ2

2g2ζ
+

1

2

σ

gζ
Aa

µA
a
µ +

1

8ζ

(
Aa

µA
a
µ

)2
)
. (4.62)
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The introduction of the auxiliary field σ allows us to study the condensation of the local
operator Aa

µA
a
µ. In fact, as shown in [37], the following relation holds

〈σ〉 = −
g

2

〈
Aa

µA
a
µ

〉
. (4.63)

The dimensionless parameter ζ in expression (4.62) is needed to account for the ultraviolet
divergences present in the vacuum correlation function 〈A2(x)A2(y)〉. For the details of the
renormalizability properties of the local operator Aa

µA
a
µ in linear covariant gauges we refer

to [51]. The action S(A, σ) is the starting point for evaluating the renormalizable effective
potential V (σ) for the auxiliary field σ, obeying the renormalization group equations. The
minimum of V (σ) occurs for a nonvanishing vacuum expectation value of the auxiliary
field [37], i.e. 〈σ〉 6= 0. In particular, from expression (4.61), the first order induced
dynamical gluon mass is found to be

m2 =
g 〈σ〉

ζ0
, (4.64)

where ζ0 is the first contribution to the parameter ζ , given by [37]

ζ =
ζ0
g2

+ ζ1 +O(g2) ,

ζ0 =
3 (78− 26α2 + 3α3 + 18α logα)

2 (3α− 13)2
(N2 − 1)

N
. (4.65)

We remind here that in linear covariant gauges, the Faddeev-Popov ghosts ca, ca remain
massless, due to the absence of mixing between the composite operators Aa

µ(x)A
a
µ(x) and

ca(x)ca(x). This stems from additional Ward identities present in these gauges [51], which
forbid the appearance of the term ca(x)ca(x).

4.1 Infrared behavior of the gluon propagator in the presence

of
〈
Aa

µA
a
µ

〉

It is worth underlining that the action S(A, σ) leads to a partition function which is
still plagued by the Gribov copies. It might be useful to note in fact that the action
(SYM + Sσ) is left invariant by the local gauge transformations

δAa
µ = −Dab

µ ωb , (4.66)

δσ = gAa
µ∂µω

a ,

δ (SYM + Sσ) = 0 . (4.67)

Therefore, implementing the restriction to the region Ω̃, for the partition function we
obtain

Z =
∫

DA Dσ det
(
−∂µ

(
δab∂µ + gfabcAc

µ

))
e−(

1
4

∫
d4xF a

µνF
a
µν+

1
2α

∫
d4x(∂Aa)2+Sσ)V(Ω̃) ,

(4.68)
with the factor V(Ω̃) given in eqs.(2.32),(2.33). To discuss the gluon propagator we pro-
ceed as before and retain only the quadratic terms in expression (4.68) which contribute to
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the two-point correlation function
〈
Aa

µ(k)A
b
ν(−k)

〉
. Expanding around the nonvanishing

vacuum expectation value of the auxiliary field, 〈σ〉 6= 0, one easily get

Zquadr = N
∫
DA

dη

2πiη
eη(1−ρ(0,A))e−(

1
4

∫
d4x((∂µAa

ν−∂µA
a
ν)

2+ 1
2α

∫
d4x(∂Aa)2+ 1

2
m2
∫

d4x(Aa
µA

a
µ))

= N
∫
DA

dη

2πi
eη−log ηe−

1
2

∑
q
Aa

µ(q)Q
ab
µνA

b
ν(−q) , (4.69)

where the factor Qab
µν is now given by

Qab
µν =

((
q2 +m2 +

ηNg2

N2 − 1

1

2V

1

q2

)
δµν − qµqν

((
1−

1

α

)
+

ηNg2

N2 − 1

1

2V

1

q4

))
δab .

(4.70)
Integrating over the gauge field, one has

Zquadr = N
∫ dη

2πi
eη−log η

(
detQab

µν

)− 1
2 = N ′

∫ dη

2πi
ef(η) , (4.71)

with

f(η) = η − log η −
3

2
(N2 − 1)

∑

q

log

(
q4 +m2q2 +

ηNg2

N2 − 1

1

2V

)
. (4.72)

Evaluating Zquadr at the saddle point, yields

Zquadr ≈ ef(η0) , (4.73)

where η0 is determined by the minimum condition

1−
1

η0
−

3

4

Ng2

V

∑

q

1(
q4 +m2q2 + η0Ng2

N2−1
1
2V

) = 0 . (4.74)

Taking the thermodynamic limit, V → ∞, and introducing the Gribov parameter

γ4 =
η0Ng2

N2 − 1

1

2V
, V → ∞ , (4.75)

we get the gap equation in the presence of the dynamical gluon mass, corresponding to a
nonvanishing condensate

〈
Aa

µA
a
µ

〉
, namely

3

4
Ng2

∫
d4q

(2π)4
1

q4 +m2q2 + γ4
= 1 . (4.76)

Note that the dynamical mass m appears now explicitly in the gap equation (4.76). To
obtain the gauge propagator, one goes back to the expression (4.69) which, when evaluated
at the saddle point value η = η0, yields

Zquadr = N
∫

DAe−
1
2

∑
q
Aa

µ(q)Q
ab
µνA

b
ν(−q) , (4.77)

with

Qab
µν =

((
q2 +m2 +

γ4

q2

)(
δµν −

qµqν
q2

)
+

qµqν
q2

(
q2

α
+m2

))
δab . (4.78)

Thus, for the gauge propagator in the presence of the dynamical gluon mass m we get
〈
Aa

µ(q)A
b
ν(−q)

〉
= δab

(
q2

q4 +m2q2 + γ4

(
δµν −

qµqν
q2

)
+

α

q2 + αm2

qµqν
q2

)
. (4.79)

We note that, due to the presence of the massm, the infrared suppression of the transverse
component of the gluon propagator is enforced. Moreover, also the longitudinal component
gets suppressed.
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4.2 The infrared behavior of Gtr(k) in the presence of
〈
Aa

µA
a
µ

〉

It remains now to discuss the infrared behavior of the Green function Gtr(k) in the presence

of
〈
Aa

µA
a
µ

〉
. This can be easily worked out by repeating the analysis done in the previous

sections. From the expression of the gluon propagator (4.79), it follows that

Gtr(k) ≈
1

k2

1

1− ρ(k)
, (4.80)

with

ρ(k) = g2
N

N2 − 1

kµkν
k2

∫
d4q

(2π)4
1

(k − q)2

〈
ATa

µ (q)ATa
ν (−q)

〉

= g2N
kµkν
k2

∫
d4q

(2π)4
1

(k − q)2
q2

q4 +m2q2 + γ4

(
δµν −

qµqν
q2

)
. (4.81)

Also, from the gap equation (4.76), one has

Ng2
∫

d4q

(2π)4
1

q4 +m2q2 + γ4

(
δµν −

qµqν
q2

)
= δµν , (4.82)

so that

1− ρ(k) = Ng2
kµkν
k2

∫ d4q

(2π)4
k2 − 2qk

(k − q)2
1

q4 +m2q2 + γ4

(
δµν −

qµqν
q2

)
.

(4.83)

Thus, for k ≈ 0,

(1− ρ(k))k≈0 ≈
3Ng2J

4
k2 , (4.84)

where J stands for the value of the integral

J =
∫

d4q

(2π)4
1

q2(q4 +m2q2 + γ4)
, (4.85)

which is ultraviolet finite. Therefore, for the Green function Gtr(k), we get

(Gtr(k))k≈0 ≈
4

3Ng2J

1

k4
, (4.86)

exhibiting the infrared enhancement which, thanks to the gap equation (4.76), turns out

to hold also in the presence of the gluon condensate
〈
Aa

µA
a
µ

〉
.

5 Comparison with the results obtained from lattice

simulations and from the Schwinger-Dyson equa-

tions

Having investigated the infrared behavior of the gluon propagator and of the Green func-
tion (Gtr(k)), as summarized by equations (4.79) and (4.86), it is useful to make a com-
parison with the results already available from lattice simulations and from the studies of
the Schwinger-Dysons equations. Let us begin with the lattice data
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5.1 Comparison with the lattice data

In a series of papers [52, 53, 54], Giusti et al. have managed to put the linear covariant
gauges on the lattice. This has allowed for a numerical investigation of the transverse
as well as of the longitudinal component of the gluon propagator. Following [54], let us
introduce the transverse and longitudinal form factors DT (q) and DL(q) through

〈
Aa

µ(q)A
b
ν(−q)

〉
= δab

(
DT (q)

q2

(
δµν −

qµqν
q2

)
+

DL(q)

q2
qµqν
q2

)
. (5.87)

The results obtained in [52, 53, 54] show that both DT (q) and DL(q) are suppressed in
the low momentum region, see for instance Fig.3 and Fig.4 of [54]. Our results are in
qualitative agreement with the lattice data. Indeed, from the expression (4.79), we obtain

DT (q) =
q4

q4 +m2q2 + γ4
,

DL(q) =
αq2

q2 + αm2
, (5.88)

exhibiting infrared suppression. Note that, at least within the approximation considered
in the present work, the suppression of the longitudinal form factor DL(q) in eq.(5.88)

is a consequence of the dynamical gluon mass, due to the gluon condensate
〈
Aa

µA
a
µ

〉
, as

already pointed out in [37]. Concerning now the ghost propagator and the Green function
Gtr(k), to our knowledge, no results from lattice data are available so far.

5.2 Comparison with the results obtained from the Schwinger-

Dysons equations

The infrared behavior of the gluon and ghost propagator has been investigated within
the Schwinger-Dyson framework in [55]. Here, a power-law Ansatz for the transverse
and longitudinal form factors of the gluon propagator as well as for the ghost form factor
Dgh(q) has been employed, according to

DT (q) ≈
(
q2
)σ

,

DL(q) ≈
(
q2
)ρ

, (5.89)

and
〈
ca(q)cb(−q)

〉
= δab

Dgh(q)

q2
,

Dgh(q) ≈
(
q2
)β

, (5.90)

The results obtained for the infrared exponents (σ, ρ, β) turn out to be similar to those
of the Landau gauge, namely†

σ > 0 ,

ρ > 0 ,

−β =
σ

2
=

ρ

2
, (5.91)

†The explicit values of these infrared exponents as well as their dependence from the gauge parameter
can be found in [55].
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indicating an infrared suppression of the transverse and longitudinal gluon form factors,
and an infrared enhancement of the ghost propagator. Concerning the gluon propagator,
these results are in qualitative agreement with our results as well as with the lattice
data. However, concerning the ghost propagator, we have found that, instead of the
ghost form factor, the quantity which is enhanced in the infrared is Gtr(k). For a better
understanding of this point, it is worth reminding here that the result for the infrared
exponents in eq.(5.91) has been obtained by using a bare-vertex truncation scheme [55].
This approximation has been proven successful in the Landau gauge [23, 24, 25, 27, 28,
29]. In particular, in the Landau gauge, no qualitative difference has been found if bare
vertices are replaced by vertices dressed according to the Slanov-Taylor identities. This
feature of the Landau gauge is believed to be deeply related to the nonrenormalization
theorem of the ghost-antighost-gluon vertex, which holds to all orders of perturbation
theory [56, 57]. Recently, the nonrenormalization theorem of the ghost-antighost-gluon
vertex in the Landau gauge has been investigated through lattice simulations in [58],
which have provided indications of its validity beyond perturbation theory. However, to
our knowledge, no such a theorem is available in linear covariant gauges, for a nonvanishing
value of the gauge parameter α. Furthermore, according to the authors [55], it is yet an
open question whether the values of the infrared exponents in eq.(5.91) remain unchanged
if bare vertices are replaced by dressed ones. Our results suggest that a different behavior
might be expected when dressed vertices would be employed.

6 Conclusion

In this work we have attempted at analyzing the effects of the Gribov copies on the gluon
propagator in linear covariant gauges. By considering small values of the gauge parameter
α, a few properties of the Gribov copies have been established, allowing us to investigate
the infrared behavior of the gluon two-point function.

As in the case of the Landau gauge, it turns out that the transverse component of the
gluon propagator is suppressed in the infrared. Moreover, the longitudinal part is left un-
changed, as shown in eq.(3.48). The infrared behavior of the gluon propagator has been

investigated also in the presence of the gluon condensate
〈
Aa

µA
a
µ

〉
. In this case, the in-

frared suppression of the transverse component is enforced. Furthermore, its longitudinal
component turns out to be suppressed as well, as expressed by eq.(4.79). These results
are in qualitative agreement with those obtained from lattice simulations and from the
analysis of the Schwinger-Dyson equations.

Concerning now the behavior of the ghost fields in linear covariant gauges, the output of
our analysis is that, instead of the ghost propagator, the Green function which exhibits
infrared enhancement is given by Gtr(k), as defined in eq.(1.5). It should be remarked
that Gtr(k) does not coincide with the ghost propagator for a generic value of the gauge
parameter α. However, Gtr(k) reduces to the ghost two-point function for vanishing α,
so that our results turn out to coincide with those of the Landau gauge in the limit α → 0.

Needless to say, many aspects of the covariant linear gauges remain still to be inves-
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tigated. A partial list of them is:

As already pointed out, a suitable auxiliary functional corresponding to the linear co-
variant gauge fixing condition is not yet at our disposal. As in the case of the Landau
gauge [5, 6, 31], this functional could be very helpful for a characterization of the proper-
ties of the Gribov copies not attainable by infinitesimal gauge transformations.

From the present analysis, it emerges that the Green function Gtr(k) has a special role,
as it obeys the Gribov-Zwanziger horizon condition and reduces to the ghost two-point
function in the Landau gauge. Although its dependence from the transverse component
AaT

µ of the gauge field suggests that it might have a deeper meaning, it would be worth
to have a better understanding of Gtr(k).

It would be useful to have a consistent framework to compute quantum corrections to
the gluon propagator and to Gtr(k). This would amount to construct a local renormal-
izable action in linear covariant gauges incorporating the effects of the Gribov copies, as
done by Zwanziger in the Landau gauge [4, 7].

Finally, it would be interesting to have more data in the linear covariant gauges from
lattice simulations on the gluon and ghost propagators as well as on the Green function
Gtr(k).
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