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1. Introduction

While the statistical origin of black hole entropy remains a subject of active research, one may

wonder if the celebrated analogy [1] between the laws of black hole mechanics and the laws

of thermodynamics can be generalized to non-equilibrium processes. Holographic AdS/CFT

correspondence ( [2–4], see [5] for a review) provides a suitable arena for such a generalization.

AdS/CFT conjecture asserts that string theories on certain asymptotically anti de Sitter

spacetimes are dual to quantum field theories in lower dimension. Since the low-energy limit

of string theory is described by the appropriate supergravity, problems in general relativity

can be mapped to problems in the dual field theory. According to the duality, asymptotically

AdS background spacetimes with event horizons are interpreted as thermal states in dual field

theories. Correspondingly, small perturbations of a black hole or a black brane background
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are interpreted as small deviations from thermodynamic equilibrium in a dual theory. This

particular entry in the holographic dictionary can be made precise by considering quasinormal

spectra of asymptotically AdS spacetimes.

Quasinormal modes (see reviews [6] and references therein) are solutions to linearized

equations obeyed by classical fluctuations of a gravitational background subject to specific

boundary conditions. The choice of the boundary condition at the (future) horizon is dictated

by the fact that classically horizons do not emit radiation. Thus out of two local solutions

near the horizon typically representing waves incoming to the horizon and outgoing from it,

one chooses the incoming waves only. This choice of the boundary condition has profound

consequences, making the boundary value problem non-Hermitian, and the associated eigen-

frequencies complex. This, however, is exactly what one expects in a holographically dual

theory, where small deviations from thermal equilibrium are described by dispersion relations

which correspond to non-zero damping [7]. Mathematically, these dispersion relations ap-

pear as singularities of the retarded1 Green’s functions in the complex frequency plane. The

connection between quasinormal spectrum of AdS black holes and singularities of thermal

correlators in dual quantum field theories was first noted and explored for 2 + 1 dimensional

BTZ black holes in [8]. It was pointed out later [9] that, even for higher-dimensional sys-

tems, imposing Dirichlet boundary conditions for scalar perturbations at asymptotic infinity

ensures that quasinormal frequencies coincide with the singularities of the retarded Green’s

function in a holographically dual theory.

Quasinormal modes for electromagnetic and gravitational perturbations are physically

more interesting than those for scalars because the corresponding fluctuations couple to con-

served symmetry currents in the dual quantum field theory. However, the relation of these

quasinormal modes to correlation functions of the dual theory is not immediate: for example,

choosing Dirichlet boundary conditions for gauge-dependent quantities such as metric per-

turbations would be rather unnatural. Thus, we address the following question in this paper:

considering computation of a quasinormal spectrum as a purely general relativity problem

(independent of the holographic duality), what variables and boundary conditions should one

use in order to ensure that the resulting spectrum coincides with the poles of the correlators

in the dual quantum field theory? (For related discussions, see [10–12].)

For vector and gravitational fluctuations, a convenient approach similar to the one used

in cosmology [13] is to work with gauge-invariant combinations of the fluctuations. As an

example, consider gravitational fluctuations hµν of five-dimensional AdS-Schwarzschild back-

ground with translationally invariant horizon. According to the gauge theory/gravity duality

the fluctuation couples to the stress-energy tensor on the boundary [5], and thus we expect the

quasinormal spectrum of hµν to be related to the poles of the retarded two-point correlation

function Gµν,αβ of the stress-energy tensor. As we discuss in Section 2, the two-point function

of the stress-energy tensor in the dual theory is a sum of three independent components

Gµν,αβ(k) = Sµν,αβ G1(k0,k
2) + Qµν,αβ G2(k0,k

2) + Lµν,αβ G3(k0,k
2) ,

1Choosing outgoing waves at the horizon, one obtains advanced Green’s functions in the dual theory.
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where k is the four-momentum, and Sµν,αβ, Qµν,αβ , Lµν,αβ are the appropriate projectors

which provide three independent Lorentz index structures. The correlation function is there-

fore completely determined by three scalar functions G1, G2, G3. On the gravity side, one can

form three gauge-invariant combinations of the components of hµν in such a way that each of

them corresponds to one of the functions G1, G2, G3. Each of these gauge-invariant variables

satisfies a second-order ordinary differential equation whose connection matrix essentially de-

termines G1, G2, G3. Dirichlet boundary condition imposed on each of the gauge-invariant

variables ensures that their quasinormal spectrum corresponds to the poles of G1, G2, G3.

The paper is organized as follows. In Section 2 we discuss general Lorentz index structure

of thermal correlators of conserved currents and stress-energy tensor in relativistic quantum

field theories. In Section 3 we propose a way to identify quasinormal frequencies of asymp-

totically AdS spacetimes with poles of the corresponding retarded Green’s functions in the

holographically dual finite temperature field theory. In Section 4 we provide a detailed ac-

count of scalar, electromagnetic and gravitational quasinormal spectra for the five dimensional

AdS-Schwarzschild background with translationally invariant horizon. Using the approach of

gauge-invariant variables, we explicitly show that one can define quasinormal modes whose

frequencies coincide with singularities of retarded Green’s functions in the dual theory, when

the latter are computed using the standard AdS/CFT prescription. In the low-energy limit

we reproduce earlier results [14–16] on hydrodynamic properties of 3 + 1 dimensional N=4

supersymmetric SU(Nc) Yang-Mills theory. In the more general case, we numerically com-

pute the positions (in the complex frequency plane) of the singularities of retarded correlation

functions of global R-symmetry currents and energy-momentum tensor in strongly coupled

N=4 supersymmetric Yang-Mills theory in the limit of large Nc. Some technical details

appear in two appendices.

2. Field theory correlators

We start by discussing Lorentz index structure of retarded Green’s functions of conserved

currents and energy-momentum tensor in relativistic quantum field theories in infinite, flat

D-dimensional Minkowski space. Translation and rotation invariance are assumed to be

unbroken symmetries of the theory. We shall be interested in retarded Green’s functions of

conserved symmetry currents,

Cµν(x − y) = −i θ(x0−y0)〈[Jµ(x), Jν(y)]〉 (2.1)

as well as of stress-energy tensor,

Gµν,αβ(x − y) = −i θ(x0−y0)〈[Tµν(x), Tαβ(y)]〉 . (2.2)

The expectation value is taken in a translation-invariant state, so that the expressions can be

Fourier transformed:

Cµν(x − y) =

∫

dDk

(2π)D
eik(x−y)Cµν(k) (2.3)

– 3 –



and similarly for Gµν,αβ(x − y). Here k = (k0,k) is a D-dimensional momentum vector,

kx = k0x
0 + kx, and the metric ηµν is taken to be mostly plus. Expectation values of all

global conserved charges are assumed to vanish in the equilibrium state, in other words we

consider systems without chemical potentials. Then CPT invariance of the equilibrium state

implies that

Cµν(k) = Cνµ(k) , (2.4)

Gµν,αβ(k) = Gαβ,µν(k) . (2.5)

In addition, correlation functions of stress-energy tensor satisfy

Gµν,αβ(k) = Gνµ,αβ(k) = Gµν,βα(k) (2.6)

because of the symmetry of Tµν(x). Conservation of Jµ(x) and Tµν(x) implies that the

correlation functions may be defined so that they satisfy the following Ward identities2

kµCµν(k) = 0 , (2.7)

kµGµν,αβ(k) = 0 . (2.8)

If in addition the theory possesses scale invariance, then the correlation functions of stress-

energy tensors satisfy an extra Ward identity

ηµνGµν,αβ(k) = 0 . (2.9)

Hermiticity of Jµ and Tµν combined with rotation invariance implies

Cµν(k0,k) = Cµν(−k0,k)∗ , (2.10)

Gµν,αβ(k0,k) = Gµν,αβ(−k0,k)∗ . (2.11)

2.1 Conserved currents

In vacuum, the Ward identity (2.7) implies that the current-current correlation function

Cµν(k) is proportional to the projector onto conserved vectors,

Pµν = ηµν − kµkν

k2
, (2.12)

where k2 = −k2
0 + k2. All components of Cµν(k) are thus determined by a single scalar

function,

Cµν(k) = Pµν Π(k2) . (2.13)

2One may choose to define the correlation functions in such a way that local (in position space) counter-

terms appear on the right-hand side of the Ward identities. The correlation functions defined in this way will

differ from Cµν(k) and Gµν,αβ(k) by analytic functions of k0 and k.
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If the expectation value is taken in a state that has only rotation symmetry (such as thermal

equilibrium state in canonical ensemble), it is convenient to split the projector Pµν into

transverse and longitudinal parts,

Pµν = P T
µν + PL

µν , (2.14)

where P T
µν and PL

µν are mutually orthogonal (P T
αµηµνPL

νβ = 0) projectors defined as

P T
00 = 0 , P T

0i = 0 , P T
ij = δij −

kikj

k2
, (2.15)

PL
µν = Pµν − P T

µν . (2.16)

They satisfy kµP T
µν = kµPL

µν = 0, and therefore any expression constructed out of P T
µλ, PL

µλ will

automatically satisfy current-conservation constraint. Therefore in the rotation-invariant case

the current-current correlation function is determined by two independent scalar functions,

Cµν(k) = P T
µν ΠT (k0,k

2) + PL
µν ΠL(k0,k

2) . (2.17)

When ΠT = ΠL = Π, this expression reduces to the Lorentz-invariant form (2.13). Also,

it is not difficult to see that due to rotation invariance the k → 0 limits (with k0 fixed) of

transverse and longitudinal self-energies coincide,

lim
k→0

ΠT (k0,k
2) = lim

k→0
ΠL(k0,k

2) . (2.18)

As an example, consider a four-dimensional field theory at non-zero temperature. Without

loss of generality one can take the spatial momentum oriented along the x3 direction, so

that kµ = (−ω, 0, 0, q), with k2 = −ω2 + q2. Then the components of the current-current

correlation function are

Cx1x1(k) = Cx2x2(k) = ΠT (ω, q) , (2.19)

as well as

Ctt(k)=
q2

ω2−q2
ΠL(ω, q), Ctx3(k)=

−ωq

ω2−q2
ΠL(ω, q), Cx3x3(k)=

ω2

ω2−q2
ΠL(ω, q) . (2.20)

For a system in stable thermodynamic equilibrium at temperature T , the low-energy (ω≪T ,

q≪T ) behavior of ΠT and ΠL is universal and is described by effective hydrodynamic theory

(see for example [17]). In the approximation of linearized hydrodynamics, ΠT (ω, q) is non-

singular as a function of ω because it does not couple to charge density fluctuations. On the

other hand, correlators which involve conserved charge density must exhibit a hydrodynamic

singularity whose dispersion relation satisfies ω(q)→0 as q→0. The longitudinal self-energy

ΠL(ω, q) has a simple pole at ω= − iDQ q2, where DQ is the diffusion constant of charge Q

associated with current Jµ(x).
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2.2 Stress-energy tensor

In vacuum, the two-point correlation function of stress-energy tensor may be written as a

sum of five terms allowed by the symmetries (2.5), (2.6), which are proportional to ηµνηαβ ,

(ηµαηνβ + ηµβηνα), (ηµνkαkβ + kµkνηαβ), (ηµαkνkβ + ηναkµkβ + ηµβkνkα + ηνβkµkα), and

kµkνkαkβ . Only two linear combinations of these terms are consistent with the Ward identity

(2.8); they can be taken to be PµνPαβ and PµαPνβ + PµβPνα. A convenient way to write

Gµν,αβ(k) is

Gµν,αβ(k) = PµνPαβ GB(k2) + Hµν,αβ GS(k2) , (2.21)

where

Hµν,αβ =
1

2
(PµαPνβ + PµβPνα) − 1

D−1
PµνPαβ

is a projector onto conserved traceless symmetric tensors, which is constructed to satisfy

ηµνHµν,αβ = 0. As a result, a scale-invariant theory must have GB(k2) = 0, and the correla-

tion function takes a simple form

Gµν,αβ(k) = Hµν,αβ GS(k2) . (2.22)

If the expectation value is taken in a state that has only rotation symmetry (such as thermal

equilibrium state in the canonical ensemble), it is convenient to split Hµν,αβ into mutually

orthogonal projectors constructed out of P T
µν , PL

µν . One relevant combination is

Sµν,αβ =
1

2

(

P T
µαPL

νβ + PL
µαP T

νβ + P T
µβPL

να + PL
µβP T

να

)

. (2.23)

It satisfies kµSµν,αβ = 0, and also ηµνSµν,αβ = 0 because of the orthogonality of P T and PL.

It is not difficult to find another independent combination with the same properties,

Qµν,αβ =
1

D−1

(

(D−2)PL
µνPL

αβ +
1

D−2
P T

µνP T
αβ − (P T

µνPL
αβ + PL

µνP T
αβ)

)

. (2.24)

The projectors Sµν,αβ and Qµν,αβ square to themselves, and are orthogonal to each other

(Sµν,αβ ηαλ ηβρQλρ,στ = 0). Therefore the projector Hµν,αβ can be split as

Hµν,αβ = Sµν,αβ + Qµν,αβ + Lµν,αβ ,

where Lµν,αβ ≡ Hµν,αβ − Sµν,αβ − Qµν,αβ is orthogonal to both Sµν,αβ and Qµν,αβ . Thus the

correlation function of energy-momentum tensor in a scale-invariant theory can be written as

a sum over three independent index structures,

Gµν,αβ(k) = Sµν,αβ G1(k0,k
2) + Qµν,αβ G2(k0,k

2) + Lµν,αβ G3(k0,k
2) . (2.25)

It is not difficult to show that rotation invariance implies that k → 0 limits (with k0 fixed)

of the three independent scalar functions must coincide,

lim
k→0

G1(k0,k
2) = lim

k→0
G2(k0,k

2) = lim
k→0

G3(k0,k
2) . (2.26)
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In a scale non-invariant theory, two extra scalar functions are needed to specify Gµν,αβ(k).

They multiply two independent linear combinations of P T
µνP T

αβ , PL
µνPL

αβ , and (P T
µνPL

αβ +

PL
µνP T

αβ); one possible choice is

Gµν,αβ(k) =

(

P T
µνP T

αβ +
1

2
(P T

µνPL
αβ + PL

µνP T
αβ)

)

CT (k0,k
2)

+

(

PL
µνPL

αβ +
1

2
(P T

µνPL
αβ + PL

µνP T
αβ)

)

CL(k0,k
2)

+ Sµν,αβ G1(k0,k
2) + Qµν,αβ G2(k0,k

2) + Lµν,αβ G3(k0,k
2) . (2.27)

When CT =CL=GB and G1=G2=G3=GS , this expression reduces to the Lorentz-invariant

form (2.21).

As an example, consider a four-dimensional field theory at non-zero temperature. Choos-

ing momentum to be kµ = (−ω, 0, 0, q) as above, one finds the following components of the

correlation function. The correlations of transverse momentum density are determined by

G1(ω, q),

Gtx1,tx1(k) =
1

2

q2

ω2−q2
G1(ω, q), (2.28)

Gtx1,x1x3(k) = −1

2

ωq

ω2 − q2
G1(ω, q), (2.29)

Gx1x3,x1x3(k) =
1

2

ω2

ω2−q2
G1(ω, q). (2.30)

The correlations of longitudinal momentum density, energy density, and diagonal stress are

determined by G2(ω, q), CL(ω, q), CT (ω, q). For example,

Gtt,tt(k) =
1

3

q4

(ω2−q2)2

[

2G2(ω, q) + 3CL(ω, q)
]

, (2.31)

Gtt,tx3(k) = −1

3

ωq3

(ω2−q2)2

[

2G2(ω, q) + 3CL(ω, q)
]

, (2.32)

Gtt,x1x1 =
1

6

q2

(q2−ω2)

[

2G2(ω, q) − 3CL(ω, q) − 3CT (ω, q)
]

. (2.33)

The correlations of transverse stress are determined by G3(ω, q),

Gx1x2,x1x2(k) =
1

2
G3(ω, q) . (2.34)

For a system in stable thermodynamic equilibrium at temperature T , the low-energy (ω≪T ,

q≪T ) behavior of Gµν,αβ is universal and is described by effective hydrodynamic theory

(see for example [17]). In the approximation of linearized hydrodynamics, G3(ω, q) is non-

singular as a function of ω because it does not couple to energy density or momentum density

fluctuations. On the other hand, correlation functions which involve conserved densities ex-

hibit hydrodynamic singularities whose dispersion relations satisfy ω(q)→0 as q→0. Function
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G1(ω, q) has a simple pole at ω= − iγηq
2, where γη is the damping constant of the shear

mode, proportional to shear viscosity. In a conformal theory (when CL = CT = 0), function

G2(ω, q) has simple poles at ω = ±vsq − iΓsq
2, where vs is the speed of sound, and Γs is the

damping constant of the sound mode, also proportional to shear viscosity.

3. Quasinormal spectrum and holographic duality

3.1 Thermal correlation functions

We will be interested in small fluctuations of a black p-brane,

ds2 = a(r)

(

−f(r)dt2 +

p
∑

i=1

(dxi)2

)

+ b(r)dr2 . (3.1)

Metrics of this form arise as a result of dimensional reduction of higher dimensional super-

gravity backgrounds. In addition, these backgrounds have non-zero values of various “matter”

fields which we collectively denote by φ(0) suppressing all indices. Holographically dual theory

is defined on the boundary (r→∞) of (3.1), which is a flat p+1 dimensional Minkowski space.

Translation invariance on the boundary implies that all fluctuating fields can be taken

to be proportional to e−iωt+iqx; thus linearized fluctuations δgµν , δφ of the background will

obey a system of second-order linear ordinary differential equations. Generically, the system

will be redundant, reflecting the gauge freedom (such as linearized diffeomorphisms) enjoyed

by the fluctuation fields. Instead of fixing a particular gauge, we consider gauge-invariant

combinations of the fluctuation fields. Let Zk be these gauge-invariant variables which are

constructed as linear combinations of fluctuating fields and their derivatives, excluding r-

derivatives. Variables Zk will obey a system of coupled second order linear ordinary differential

equations (ODEs) which can in principle be diagonalized. Let Z(r) be such a gauge-invariant

variable satisfying a second-order ODE. A local solution of the ODE near the horizon will

generally be a superposition of incoming and outgoing waves. Since classically the horizon

does not radiate, we choose the incoming wave boundary condition there.

The solution obeying the incoming wave boundary condition at the horizon can be written

in the basis of two local solutions at the boundary3 as

Z(r) = Aϕ1(r) + Bϕ2(r) , (3.2)

where A, B are the connection coefficients of the corresponding ODE. Coefficients A, B
typically depend on the parameters (such as frequency and momentum) which enter the

differential equation for Z(r). Near the boundary, the solution (3.2) becomes

Z(r) = A r−∆− (1 + · · · ) + B r−∆+ (1 + · · · ) , (3.3)

3By local solutions we mean the solutions obtained as power series around the corresponding singular point

(r=∞ in this case) of the differential equation. See for example [18] for a general discussion.
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where ∆+, ∆− are exponents of the ODE at r = ∞, and ellipses denote higher powers of

r. We consider the situation when the exponents are not equal, ∆+ > ∆−, and ∆+ can be

taken positive.4

The action of the system expanded to quadratic order in fluctuations δgµν , δφ can be

rewritten in terms of the gauge-invariant variables. On shell, the part of the action quadratic

in fluctuations will reduce to the boundary term

S(2) ∼ lim
r→∞

∫

dωdpq F (ω,q)Z ′(r)Z(r) + contact terms , (3.4)

where F (ω,q) depends on the details of the action, and “contact terms” do not contain Z ′(r).

In holographic AdS/CFT duality, fluctuation δφ couples to a particular operator O of the

dual theory at the boundary. Applying the Lorentzian AdS/CFT prescription [9, 20] to the

action (3.4) to compute the retarded correlator, and remembering that Z(r) is a functional

of δφ, we find

〈OO〉R ∼ B
A + contact terms . (3.5)

The poles of the retarded correlator correspond to zeros of the connection coefficient A. On

the other hand, setting A = 0 in Eq. (3.2) corresponds to a particular choice of boundary

conditions for the fluctuation Z(r). From the general relativity point of view, this choice

determines the quasinormal spectrum of Z(r). In other words, equation A = 0 defines

quasinormal spectrum for gauge-invariant perturbations which has the interpretation of the

poles of retarded correlators in a holographically dual theory.5 This argument is similar to

the one given in [9, 22] in the case of a scalar fluctuation, the difference being the use of

gauge-invariant variables in the present discussion.
4In AdS/CFT correspondence, ∆+ is equal to the conformal dimension of the operator that couples to bulk

fields contained in Z. See also [19] for exceptional cases.
5 One should add at once that in addition to zeros of A, singularities of the correlator (3.5) may also come

from singularities of B. However, singularities of B are completely determined by the singularities of the local

Frobenius solution ϕ1 considered as a function of parameter(s) of the differential equation. Indeed, a general

theorem [21] guarantees smoothness of a solution of a differential equation with respect to a parameter, if the

equation and the boundary conditions depend smoothly on the parameter. Thus the solution Z is smooth, and

singularities of B are destined to cancel the singularities of the coefficients of the series expansion in the local

Frobenius solution ϕ1 with respect to a parameter. Therefore, singularities of B are essentially determined by

the recursion relations for the coefficients of the series expansion which defines ϕ1. Let us illustrate this point

using hypergeometric equation as an example. On the interval z ∈ [0, 1], the solution 2F1(a, b; c; z) defined by

its recursion relations at z = 0 is related to two local solutions at z = 1 by

2F1 (a, b; c; z) = A 2F1 (a, b; a + b − c + 1; 1 − z)

+ B (1 − z)c−a−b
2F1 (c − a, c − b; c − a − b + 1; 1 − z) , (3.6)

where the connection matrix coefficients are given by

A =
Γ(c)Γ(c − a − b)

Γ(c − a)Γ(c − b)
, B =

Γ(c)Γ(a + b − c)

Γ(a)Γ(b)
.

To be in agreement with the scenario set by Eq. (3.2), let us further assume that c − a − b > 0. The poles of

the correlator (3.5) come from the poles of Γ(c− a) and Γ(c− b) (also corresponding to the Dirichlet condition
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3.2 Black brane fluctuations

According to the dictionary of the AdS/CFT correspondence [5], global symmetry currents of

the dual field theory have as their sources boundary values of the gauge field Aµ on the higher-

dimensional background (3.1). Similarly, stress-energy tensor of the dual theory is sourced

by gravitational fluctuations hµν of the black brane. We shall be interested in quasinormal

spectra of these fluctuations. We take the fluctuations to be of the form Aµ(r)e−iωt+iqz ,

hµν(r)e−iωt+iqz where z = xp. The fluctuations can be classified according to their transfor-

mation properties under the “remaining” world-volume symmetry group O(p−1) acting on

x1, .., xp−1.

Let us restrict ourselves to the simplest case when the considered fluctuations do not

couple to fluctuations of other background fields. Components At, Az do not transform

under O(p−1), while components Aα, α = x1, .., xp−1 transform as vectors. One can therefore

distinguish two symmetry channels for electromagnetic fluctuations

Spin 0 (diffusive channel): At, Az, Ar (3.7a)

Spin 1 (transverse channel): Aα . (3.7b)

A similar classification can be adopted for metric fluctuations. Components htt, htz , hzz, hrr,

htr, and hzr do not transform under O(p−1), components htα, hzα, and hrα transform as

vectors, while hαβ transform as rank-2 tensors. The tensor representation is reducible, for

a symmetric hαβ can be decomposed into the trace part δαβh/(p−1), where h =
∑

α hαα (a

singlet) and the symmetric traceless part hαβ − δαβh/(p−1). Thus we have three symmetry

channels for gravitational fluctuations:6

Spin 0 (sound channel): htt, htz , hzz, h, hrr, htr, hzr (3.8a)

Spin 1 (shear channel): htα, hzα, hrα (3.8b)

Spin 2 (scalar channel): hαβ − δαβh/(p−1) . (3.8c)

The O(p−1) symmetry guarantees that equations for fluctuations belonging to different sym-

metry channels decouple. Classification presented here mirrors the classification of the cor-

relators in Section 2: diffusive and transverse channels of the U(1) fluctuation correspond

A = 0), and from the poles of Γ(a + b − c). The latter are determined by the local solution near z = 1,

2F1 (a, b; a + b − c + 1; 1 − z) = 1 +
ab

1 + a + b − c
(1 − z)

+
ab(a + 1)(b + 1)

2(1 + a + b − c)(2 + a + b − c)
(1 − z)2 + · · · ,

the coefficients of which have poles at a + b − c = −n, where n is a positive integer. These are precisely the

poles of the correlator (3.5) coming from B. By setting a + b− c = −n + ǫ and taking the limit ǫ → 0, one can

show that the right hand side of Eq. (3.6) is in fact a smooth function of the parameters a, b, c.
6The name “scalar” for spin-2 fluctuations reflects the fact that the corresponding wave equation coincides

with that of the minimally coupled massless scalar [23]. The names “shear” and “sound” (as well as “diffusive”

above) reflect physical interpretation of the lowest quasinormal frequency (for a given symmetry channel) in

the dual field theory. This will be seen explicitly in the next section.
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to functions ΠL and ΠT of the current-current correlator. When the dual theory possesses

conformal invariance, shear, sound and scalar channels of the gravitational fluctuation are

related to functions G1, G2, G3 of the stress-energy tensor correlator.

3.3 Gauge-invariant variables

We now define gauge-invariant variables corresponding to classes (3.7), (3.8). Combinations

of the gauge field components invariant under the transformation Aµ → Aµ − ∂µλ include

components of the electric field

Diffusive channel: Ez = q At + ω Az , (3.9)

Transverse channel: Eα = ωAα . (3.10)

Perturbations hµν transform under infinitesimal diffeomorphisms as hµν→hµν −∇µ ξν −∇ν ξµ,

where ξµ = ξµ(r)e−iωt+iqz are gauge functions, and covariant derivatives are taken with re-

spect to the background metric (3.1). One may define the following gauge-invariant combi-

nations linear in perturbations:

Shear channel: Z1 = qHtx1 + ωHzx1 (3.11)

Sound channel: Z2 = q2fHtt + 2ωqHtz + ω2Hzz + q2f

(

1 +
af ′

a′f
− ω2

q2f

)

H (3.12)

Scalar channel: Z3 = Hx1x2 , (3.13)

where Htt = htt/af , Htz = htz/a, Hij = hij/a (i, j 6= t), H = h/(p−1)a. From Einstein

equations obeyed by the fluctuations, one obtains three independent second-order ODEs

satisfied by Z1, Z2, and Z3.

Quasinormal modes are defined as solutions to the second-order differential equations

satisfied by the gauge-invariant variables Ez, Eα, Z1, Z2, Z3 obeying incoming wave boundary

condition at the horizon and Dirichlet condition at the boundary. According to the above

discussion, the spectra of complex eigenfrequencies obtained in solving the boundary value

problem for fluctuations Ez, Eα, Z1, Z2, Z3 coincide with poles of the functions ΠL, ΠT , G1,

G2, G3, respectively.

4. Thermal correlators in strongly coupled N = 4 SYM

We now apply the approach outlined in Section 3 to the near-horizon limit of the non-extremal

gravitational background of type IIB low energy string theory describing Nc parallel black

three-branes. The background is given by the metric

ds2 =
r2

R2

(

−f(r)dt2 + dx2 + dy2 + dz2
)

+
R2

r2f(r)
dr2 + R2dΩ2

5 , (4.1)

where R is a constant, which depends on the number of D3 branes, R ∝ N
1/4
c , and f(r) =

1 − r4
0/r

4. The parameter of non-extremality r0 specifies the location of the horizon, whose
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Hawking temperature is T = r0/πR2. Upon dimensional reduction on S5, gravitational

perturbations will effectively propagate on the five-dimensional part of the background (4.1).

Introducing new coordinate u = r2
0/r

2, the metric can be written as

ds2 =
(πTR)2

u

(

−f(u)dt2 + dx2 + dy2 + dz2
)

+
R2

4u2f(u)
du2 , (4.2)

where f(u) = 1 − u2. In these coordinates, the horizon is located at u=1, and the boundary

is at u=0. In addition, the background is specified by the value of the self-dual five form field

F5 =
2(πTR)4

u3
(1 + ∗) dt ∧ dx ∧ dy ∧ dz ∧ du , (4.3)

with all other fields vanishing. The dual quantum field theory is N = 4 SU(Nc) supersym-

metric Yang-Mills theory in 3+1 dimensional Minkowski space at large Nc and large ’t Hooft

coupling [2]. The field theory is taken in a thermal equilibrium state at a temperature equal

to the Hawking temperature of the background. Real-time thermal correlators of the con-

served R-symmetry currents and stress-energy tensor in this theory were considered in the

AdS/CFT approach in [11, 15, 16]. Here we show that reformulating the problem in terms

of gauge-invariant variables allows one to compute functions ΠL, ΠT , G1, G2, G3 directly

by solving the second-order ODEs associated with each of them. In particular, quasinor-

mal spectra of the gauge-invariant fluctuations determine poles of these functions in complex

frequency plane.7

4.1 R-current correlators

Correlators of R-currents in strongly coupled N = 4 SYM at zero temperature were computed

in [24,25] by using the AdS/CFT correspondence. Similar approach can be taken at non-zero

temperature [15]. On the gravity side of AdS/CFT, one considers an effective U(1) field8 in

the five-dimensional asymptotically AdS part of the background (4.2). This five-dimensional

Maxwell field is essentially a graviphoton of the dimensional reduction of (4.1) on S5.

According to the discussion in Section 2, thermal current-current correlators are deter-

mined by two independent scalar functions, ΠT (ω, q) and ΠL(ω, q). Correspondingly, we

expect the dual five-dimensional Maxwell system to reduce to two independent equations for

gauge-invariant variables whose quasinormal frequencies determine the poles of the correla-

tors. One of the quasinormal frequencies should be purely imaginary (at least in the regime

q/T ≪ 1), reflecting diffusive relaxation of large-scale charge density fluctuations around

thermal equilibrium state in the dual field theory.

Maxwell’s equations for the U(1) field are simply ∂A(
√−g gACgBDFCD)=0, where FCD =

∂CAD − ∂DAC , capital Latin indices run over t, x, y, z, u, and components of the five dimen-

sional metric gAB are given by (4.2). Translation invariance for the t, x, y, z coordinates implies
7The problem of additional singularities discussed in footnote 5 does not arise here.
8The R-charges of the theory Qa =

∫

d3x ja
0 (x) generate global SU(4) symmetry group, with a = 1 . . . 15.

In an equilibrium state without chemical potentials for the R-charges, the correlation function of R currents

ja
µ has the form Cab

µν(x) = δabCµν(x). The expressions of this section refer to Cµν(x).
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that vector potential can be Fourier transformed,

AC(u, t,x) =

∫

d4k

(2π)4
eik0t+ikxAC(u, k) . (4.4)

Choosing k = (−ω, 0, 0, q), one can derive the following equations satisfied by transverse and

longitudinal electric fields:

E′′

α +
f ′

f
E′

α +
w

2 − q

2f

uf2
Eα = 0 , α = x, y , (4.5a)

E′′

z +
w

2f ′

f(w2 − q

2f)
E′

z +
w

2 − q

2f

uf2
Ez = 0 , (4.5b)

where Eα ≡ wAα, Ez ≡ qAt + wAz, dimensionless parameters w and q are defined as

w =
ω

2πT
, q =

q

2πT
, (4.6)

and prime denotes the derivative with respect to u.

Gauge-gravity duality implies that all information about two-point R-current correlation

functions in the dual N=4 SYM theory (in the large Nc and large ’t Hooft coupling limit) is

contained in the solutions to the differential equations (4.5). For both equations, the singu-

larity at u = 1 (the horizon) has exponents ±iw/2 corresponding to the outgoing/incoming

waves. To compute the retarded correlators, one has to impose the incoming wave boundary

condition at the horizon [9] thus choosing −iw/2 as the correct exponent. At the boundary

(u = 0) the exponents for both equations are 0 and 1, and thus solutions to equations (4.5)

which satisfy incoming-wave boundary condition at the horizon behave near u = 0 as

Eα(u) = A(α)(w, q) + · · · + B(α)(w, q)u + · · · , (4.7a)

Ez(u) = A(z)(w, q) + · · · + B(z)(w, q)u + · · · . (4.7b)

The boundary action of the Maxwell system in the gauge Au = 0 is9

S = lim
u→0

N2
c T 2

16

∫

dωdq

(2π)2
[

A′

t(u, k)At(u,−k) − f(u)A′(u, k)A(u,−k)
]

(4.8)

Using Maxwell’s equations, the action can be written in terms of gauge-invariant variables as

S = lim
u→0

N2
c T 2

16

∫

dωdq

(2π)2

[ f(u)

q

2f(u) − w

2
E′

z(u, k)Ez(u,−k)

− f(u)

w

2

(

E′

x(u, k)Ex(u,−k) + E′

y(u, k)Ey(u,−k)
)

]

+ contact terms , (4.9)

where “contact terms” do not contain derivatives of the electric fields. In order to find the

correlation functions, one has to express the derivatives of the fields in terms of the boundary

9Normalization of the five-dimensional action S = 1/4g2
B

∫ √−g FABF AB is fixed by g2
B = 16π2R/N2

c [24].
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values of the fields A0
µ(k)≡Aµ(u→0, k), E0

µ(k)≡Eµ(u→0, k) using the solutions (4.7); applying

Lorentzian AdS/CFT prescription [9], one finds10

Cαα(ω, q) =
δ2S

δA0
α(k)δA0

α(−k)
=

w

2δ2S

δE0
α(k)δE0

α(−k)
= −

N2
c T 2B(α)

8A(α)
. (4.10)

Similarly,

Ctt(ω, q) =
N2

c T 2
q

2B(z)

8(q2 − w

2)A(z)
, (4.11a)

Ctz(ω, q) = Czt(ω, q) =
N2

c T 2
wqB(z)

8(q2 − w

2)A(z)
, (4.11b)

Czz(ω, q) =
N2

c T 2
w

2 B(z)

8(q2 − w

2)A(z)
. (4.11c)

Comparing these expressions with the general result (2.20), one finds

ΠT (ω, q) = −N2
c T 2 B(α)(ω, q)

8A(α)(ω, q)
, ΠL(ω, q) = −N2

c T 2 B(z)(ω, q)

8A(z)(ω, q)
. (4.12)

Thus the correlation functions are completely determined by the ratios of the connection

coefficients of differential equations (4.5). In particular, poles of the correlators correspond

to zeros of the coefficients A(α)(w, q) and A(z)(w, q). To find the zeros, we impose Dirichlet

boundary conditions on electric fields at u = 0 for the solutions to equations (4.5) which

satisfy the incoming wave conditions at the horizon. Physically, the horizon acts as a perfectly

absorbing surface, while the boundary acts as a perfect conductor.

In order to determine the self-energies ΠT (ω, q), ΠL(ω, q), one needs to know the solution

to equations (4.5). Analytic solution is unknown, except for a special case of q = 0, when the

Dirichlet boundary value problem can be reformulated as a problem of solving a transcen-

dental algebraic continued fraction equation [11,26]. For q = 0, gauge-invariant variables Ei,

i = x, y, z obey the same equation11

E′′

i +
f ′

f
E′

i +
w

2

uf2
Ei = 0 . (4.13)

The solution to the Dirichlet boundary value problem for Eq. (4.13) can be found exactly,

and is given by Heun polynomials [11]. The quasinormal spectrum is

q = 0 , w = n(1 − i) , n = 0, 1, 2, ... . (4.14)

For q 6= 0, quasinormal spectra of perturbations Eα and Ez (and, correspondingly, the poles of

ΠT (ω, q) and ΠL(ω, q)) differ from each other, and can be found numerically, as explained in

Appendix B. A typical arrangement of quasinormal frequencies is shown in Fig. 1 (the poles of

ΠL(ω, q) were found numerically in [11]). Quasinormal frequencies are located symmetrically

with respect to the imaginary axis, as is expected from the singularities of the corresponding

correlation function in the dual field theory, see equation (2.10).
10See [9] for the definition of functional derivative in this context.
11As they should, in accord with rotation invariance in the dual field theory, see Eq. (2.18).
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Figure 1: Quasinormal spectrum of electric field fluctuations in the plane of complex w ≡ ω/2πT ,

shown for spatial momentum q ≡ q/2πT = 1. Quasinormal frequencies on the left are defined by

equation (4.5a) for the transverse electric field, and coincide with the poles of ΠT (ω, q), as explained

in the text. Quasinormal frequencies on the right are defined by equation (4.5b) for the longitudinal

electric field, and coincide with the poles of ΠL(ω, q). As q decreases, all poles stay at a finite distance

from the real axis, except for the one marked with a large dot. This pole is purely imaginary and

approaches the origin in the limit q → 0. The presence of this special quasinormal frequency is

a manifestation of the diffusive relaxation of R-charge density fluctuations in the dual N=4 SYM

theory.

Hydrodynamic approximation

In the hydrodynamic limit one can find analytic solutions to equations (4.5) as a series in

w ≪ 1, q ≪ 1. Assuming first that w, q are of the same order, we get

Eα(u) = Cα f(u)−iw/2

[

1 + iw log
1 + u

2
+ O(w2, q2)

]

, (4.15a)

Ez(u) = Cz f(u)−iw/2

[

1 + iw log
1 + u

2
+

iq2

w

(1 − u) + O(w2, q2)

]

, (4.15b)

where Cα, Cz are normalization constants. Imposing Dirichlet boundary conditions at u = 0,

one finds that the equation Eα(0) = 0 has no solution compatible with the assumption w ≪ 1.

Holographic interpretation of this fact is that the function ΠT (ω, q) has no singularities in

the hydrodynamic regime. The condition Ez(0) = 0 leads to w = −iq2 + O(q3). This is the

lowest hydrodynamic quasinormal frequency of the Dirichlet boundary value problem for Ez.

Accordingly, in the hydrodynamic regime function ΠL(ω, q) has a pole at12

ω = −iDRq2 , (4.16)

where DR = 1/2πT . Physically, it corresponds to the R-charge diffusion with the diffusion

constant DR. By comparing the solutions (4.15) to the definition of connection coefficients

12 One may question the validity of this result since it implies that w ∼ q

2, whereas the solution (4.15b)

was obtained under the assumption that w and q are of the same order. To check our result, we introduce a

new parameter µ = w/q ∼ q. Solving Eq. (4.5b) perturbatively in µ ≪ 1, q ≪ 1, where µ and q are of the

same order, we find Ez(u) = Cz f−iµq/2 [1 + iq (1 − u)/µ + O(µ)]. The condition Ez(0) = 0 again gives the

dispersion relation w = −iq2.
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(4.7), one finds A(α) = 1, B(α) = iw, A(z) = 1 + iq2/w, B(z) = iw− iq2/w. Substituting these

connection coefficients into AdS/CFT results (4.10) and (4.11), one reproduces the R-current

correlators in the low-frequency approximation found earlier in [15].

4.2 Stress-energy tensor correlators

Correlation functions of stress-energy tensor in the finite temperature N = 4 SYM at large

Nc and strong coupling were studied in [11,15,16]. Here we use the gauge-invariant variables

approach to identify the correct associated boundary value problem, and to obtain new results

for the correlators in the sound wave channel.

To compute correlators of the stress-energy tensor in AdS/CFT correspondence, one

considers metric fluctuations hAB of the supergravity background. To linear order in hAB, the

Einstein equations are

R(1)
AB = − 4

R2
hAB , (4.17)

where R(1)
AB is the linearized Ricci tensor evaluated in the background (4.2). Translation invari-

ance for the t, x, y, z coordinates implies that metric perturbations can be Fourier transformed,

and classified according to their transformations with respect to the rotation group O(2), as

discussed in Section 3.2. As we shall see shortly, quasinormal spectra of the three gauge-

invariant variables (3.11) – (3.13) appear correspondingly as the poles of the three functions

G1, G2, G3 in Eq. (2.25) which determines the two-point correlation function of stress-energy

tensor in a scale-invariant theory.

4.2.1 Scalar channel

According to the discussion in Section 3, the equation satisfied by the component hxy of

the perturbed metric decouples from the rest of Einstein equations. The gauge-invariant

function Z3 = Hxy = hx
y satisfies the equation for a minimally coupled massless scalar in the

background (4.2),

Z ′′

3 − 1 + u2

uf
Z ′

3 +
w

2 − q

2f

uf2
Z3 = 0 . (4.18)

The exponents of this equation near u=0 are 0 and 2, therefore asymptotic behavior of Z3

near the boundary is

Z3(u) = A(3) (1 + · · · ) + B(3)u
2 + · · · , (4.19)

where ellipses denote higher powers of u. The relevant part of the boundary gravitational

action (Eq.(6.9) of [15]) can be written using our notations as

S = −π2N2
c T 4

8
lim
u→0

∫

dωdq

(2π)2
f(u)

u
Z ′

3(u, k)Z3(u,−k) . (4.20)
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Figure 2: Quasinormal spectrum of gravitational fluctuations in the scalar channel, shown in the

plane of complex w ≡ ω/2πT , for spatial momentum q ≡ q/2πT = 1. The quasinormal frequencies

coincide with poles of G3(ω, q), as explained in the text. As q → 0, all poles stay at a finite distance

from the real axis, as one expects from the absence of hydrodynamic singularities in G3(ω, q).

Proceeding as in Section 4.1, we obtain the correlator13

Gxy,xy = −π2N2
c T 4B(3)

2A(3)
. (4.21)

Comparing this expression to the general result (2.34), we find

G3(ω, q) = −
π2N2

c T 4 B(3)(ω, q)

A(3)(ω, q)
. (4.22)

Turning now to the connection between quasinormal spectrum and AdS/CFT correlators, we

see that the condition A(3)(w, q) = 0 determines the singularities of G3. From the definition

of connection coefficients (4.19) it is evident that the condition A(3)(w, q) = 0 is equivalent

to imposing the Dirichlet boundary condition on fluctuations, Z3(u=0) = 0.

The quasinormal spectrum of fluctuations obeying incoming wave boundary condition at

the horizon and Dirichlet condition Z3(u=0) = 0 at the boundary was numerically computed

in [11, 26]. The spectrum wn is discrete, (presumably) infinite, and almost equidistant. For

q = 0 its asymptotics for higher modes is well approximated by a simple formula14 [26]

ωn = 2πTn (±1 − i) , n → ∞ . (4.23)

A typical arrangement of quasinormal frequencies is shown in Fig. 2. Quasinormal frequen-

cies are located symmetrically with respect to the imaginary axis, as is expected from the

singularities of the corresponding correlation function in the dual field theory, see Eq. (2.11).

13Terms analytic in w and q are ignored, even if they are divergent as u→0.
14For an analytic approach to the asymptotic behavior (4.23) see [27].
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Hydrodynamic approximation

In the hydrodynamic limit w ≪ 1, q ≪ 1, analytic solution to Eq. (4.18) can be found,

Z3(u) = C3 f(u)−iw/2
[

1 + O(w2, q2)
]

, (4.24)

where C3 is a normalization constant. By comparing this solution with the definition of

connection coefficients (4.19), one finds A(3) = 1 + O(w2), B(3) = iw/2 + O(w2, q2,wq).

Substituting these connection coefficients into the AdS/CFT result (4.21), one reproduces

the correlator of transverse components of stress tensor in the low-frequency approximation

found earlier in [15]. The equation A(3)(w, q) = 0 does not have solutions compatible with

the condition w ≪ 1. This is consistent with our expectations in Section 2 that G3 has no

hydrodynamic singularities.

4.2.2 Shear channel

According to the discussion in Section 3, equations satisfied by the components htx, hzx, and

hux of the perturbed metric form a closed set. In the radial gauge huA=0, they read

H ′

zx = − w

qf
H ′

tx , (4.25a)

H ′′

tx =
1

u
H ′

tx +
wq

uf
Hzx +

q

2

uf
Htx , (4.25b)

where Htx = uhtx/(πTR)2, Hzx = uhzx/(πTR)2. Using these equations, one finds that

Z1(u) ≡ qHtx(u) + wHzx(u) satisfies the following second-order ODE

Z ′′

1 +
(w2 − q

2f)f − uw2f ′

uf(q2f − w

2)
Z ′

1 +
w

2 − q

2f

uf2
Z1 = 0 . (4.26)

The exponents of Eq. (4.26) at u = 0 are 0 and 2, and thus asymptotic behavior of Z1 near

the boundary is

Z1(u) = A(1)(1 + . . . ) + B(1)u
2 + . . . , (4.27)

where ellipses denote higher powers of u. The relevant part of the boundary gravitational

action is given by Eq. (6.19) of [15]. Expressed in terms of the gauge-invariant variable Z1,

the action is

S = −π2N2
c T 4

8
lim
u→0

∫

dωdq

(2π)2
f(u)

u(w2 − q

2f(u))
Z ′

1(u, k)Z1(u,−k) + contact terms . (4.28)

Proceeding as in Section 4.1, we find after comparing the expression for the correlator with

(2.28) – (2.30)

G1(ω, q) = −
π2N2

c T 4B(1)(ω, q)

A(1)(ω, q)
. (4.29)

Again, the condition A(1)(ω, q) = 0 is equivalent to Dirichlet boundary condition Z1(u=0) =

0. A typical arrangement of quasinormal frequencies is shown in Fig. 3.
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Figure 3: Quasinormal spectrum of gravitational fluctuations in the shear channel, shown in the

plane of complex w ≡ ω/2πT , for spatial momentum q ≡ q/2πT = 1. The quasinormal frequencies

coincide with poles of G1(ω, q), as explained in the text. As q decreases, all poles stay at a finite

distance away from the real axis, except for the one marked with a large dot. This pole is purely

imaginary and approaches the origin in the limit q → 0. The presence of this special quasinormal

frequency is a manifestation of the diffusive relaxation of transverse momentum density fluctuations

in the dual N = 4 SYM theory.

Hydrodynamic approximation

In the limit w ≪ 1, q ≪ 1, the perturbative analytical solution to Eq. (4.26) satisfying the

incoming wave boundary condition at the horizon is15

Z1(u) = C1f(u)−iw/2

(

1 +
iq2f

2w
+ O(w2, q2,wq)

)

, (4.30)

where C1 is a normalization constant. Expanding for small u, we find the connection coeffi-

cients

A(1) = 1 +
iq2

2w
+ O(w2, q2,wq) , B(1) =

i(w2 − q

2)

2w
+ O(w2, q2,wq) . (4.31)

The Dirichlet condition Z1(u=0) = 0 gives the hydrodynamic quasinormal frequency w =

−iq2/2 + O(q3). It is interpreted as the dispersion relation for the shear mode,

ω = −iγηq
2 + O(q3) , (4.32)

where γη = 1/4πT . For the function G1(ω, q) in this approximation we find

G1(ω, q) =
πN2

c T 3(ω2 − q2)

4(iω − q2/4πT )
, (4.33)

in agreement with the result obtained earlier in [15]. The quasinormal spectrum for frequen-

cies beyond the hydrodynamic limit was obtained in [11] using a slightly different approach.
15The argument of footnote 12 regarding the scaling of w, q also applies here. The boundary condition

constrains w and q in such a way that the initial assumption that w and q are of the same order is invalid.

Using the correct scaling we find that the result (4.32) remains unchanged.

– 19 –



4.2.3 Sound channel

According to the discussion in Section 3, equations obeyed by the components of the metric

Htt = uhtt/f(πTR)2, Htz = uhtz/(πTR)2, Hzz = uhzz/(πTR)2, Haa = u(hxx + hyy)/(πTR)2

form a closed system of equations (in the radial gauge huA = 0). These equations are lengthy,

and we present them in Appendix A. Using the equations of motion (A.1) – (A.4) one can

show that the gauge-invariant combination

Z2(u) ≡ 4wqHtz + 2w2Hzz + Haa

[

q

2(2 − f) − w

2
]

+ 2q2fHtt (4.34)

obeys the following second-order differential equation:

Z ′′

2 − 3w2(1 + u2) + q

2(2u2 − 3u4 − 3)

uf(3w2 + q

2(u2 − 3))
Z ′

2

+
3w4 + q

4(3 − 4u2 + u4) + q

2(4u5 − 4u3 + 4u2
w

2 − 6w2)

uf2(3w2 + q

2(u2 − 3))
Z2 = 0 . (4.35)

In the limit u → 0 this equation coincides with Eq. (4.18) obeyed by a minimally coupled

massless scalar, and thus the behavior of the solution Z2(u) near the boundary is given by

Z2(u) = A(2)(1 + · · · ) + B(2)u
2 + · · · , (4.36)

where ellipses denote higher powers of u. Using the equations of motion (A.1) – (A.4), the

relevant part of the on-shell boundary gravitational action (quadratic in fluctuations) can be

written as16

S
(2)
B = lim

u→0

∫

dωdq

(2π)2
A(w, q, u)Z ′

2(u, k)Z2(u,−k) + S
(2)
CT , (4.37)

where

A(w, q, u) =
3N2

c π2T 4f(u)

32u(3w2 − q

2(3 − u2))2
, (4.38)

and the “contact term” part S
(2)
CT does not contain derivatives of the fluctuations (its boundary

value is given in Appendix A). In order to compute the stress-tensor correlation functions,

we need to solve the “wave equation” (4.35) for Z2(u) subject to the boundary condition

Z2(u=0) = 4wqH0
tz + 2w2H0

zz + H0
aa

(

q

2 − w

2
)

+ 2q2H0
tt , (4.39)

substitute the result into the action (4.37) and take the appropriate functional derivatives17

with respect to the boundary values of the fields H0
tt, H0

tz, H0
zz, H0

aa. For example, for the

16The action involving the relevant components of the metric is written in Appendix A. In order to find

A(w, q, u), we form the difference S
(2)
B −

∫

dωdq/(2π)2A(w, q, u) Z′

2(u, k)Z2(u,−k), then use the equations of

motion (A.1) – (A.4) to eliminate all derivatives in the difference except H ′

tt, and find A(w, q, u) by requiring

that the coefficient in front of H ′

tt should vanish.
17For correct normalization of the coupling between the boundary gravitational fluctuations and the stress-

energy tensor, see Eq. (3.18) of [16] .
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Figure 4: Quasinormal spectrum of gravitational fluctuations in the sound channel, shown in the

plane of complex w ≡ ω/2πT , for spatial momentum q ≡ q/2πT = 1. The quasinormal frequencies

coincide with the poles of G2(ω, q), as explained in the text. As q decreases, all poles stay at a finite

distance away from the real axis, except for the ones marked with large dots, which approach the

origin as q → 0 (see Appendix B for the corresponding dispersion curves). Such behavior of the lowest

quasinormal frequencies is a manifestation of oscillatory relaxation of longitudinal momentum density

(as well as energy density) fluctuations in the dual N = 4 SYM theory.

correlator Gtt,tt we have

Gtt,tt = −4
δ2S

(2)
B

δH0
tt(k)δH0

tt(−k)
. (4.40)

Using the expansion (4.36), we find that the correlators are given by Eqs. (2.31) – (2.33)

with18

G2(ω, q) = −N2
c π2T 4B(2)(ω, q)

A(2)(ω, q)
+ contact terms . (4.41)

The problem of computing correlation functions in the dual theory is thus reduced to finding

the connection coefficients A(2) and B(2) of the second order ODE (4.35). Zeroes of A(2)(w, q)

appear as poles of the correlators. Finding the poles is therefore equivalent to solving the

boundary value problem for the gauge invariant variable Z2(u) obeying the incoming wave

boundary condition at the horizon u=1 and Dirichlet condition Z2(u=0) = 0 at the boundary.

For q = 0, eqs. (4.18), (4.26), (4.35) all reduce to the equation for a minimally coupled

massless scalar at zero spatial momentum, and consequently all have the same quasinormal

spectrum with the asymptotics (4.23). This is expected, in accord with rotation invariance

in the dual field theory, see Eq. (2.26). For q 6= 0, the spectrum can be found numerically, as

explained in Appendix B; a typical arrangement of quasinormal frequencies is shown in Fig. 4.

However, for small momenta, the lowest quasinormal frequency can be found analytically.

18Terms analytic in w and q are ignored, even if they are divergent as u → 0.
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Hydrodynamic approximation

In the hydrodynamic regime w ≪ 1, q ≪ 1, Eq. (4.35) for Z2(u) can be solved perturbatively

in w and q. Introducing the book-keeping parameter λ, rescaling w → λw, q → λq, and

expanding in λ ≪ 1, to first order in λ we find

Z2(u) = C2f(u)−iw/2

[

q

2(1 + u2) − 3w2

4q2
− iwf(u)

2

]

, (4.42)

where C2 is a normalization constant. Imposing Dirichlet boundary condition Z2(u=0) = 0

gives the lowest (|w| ≪ 1) overtone of the quasinormal spectrum

w = ± q√
3
− iq2

3
+ O

(

q

3
)

. (4.43)

In the holographically dual finite temperature quantum field theory, Eq. (4.43) appears as

a pole in the retarded correlator of stress-energy tensors, and is interpreted as dispersion

relation for the sound wave mode,

ω(q) = ±vsq − iΓsq
2 + O(q3) . (4.44)

The values for the speed of sound vs = 1/
√

3 and the attenuation constant Γs = 1/6πT

coincide with those found previously in [16]. Expanding the solution (4.42) near u = 0 and

comparing with (4.19), we identify the coefficients A(2) = (q2 − 3w2 − 2iwq2)/4q2, B(2) =

(2q2 + 5iwq2 − 3iw3)/8q2. Thus to leading order in the hydrodynamic approximation we

obtain

G2(ω, q) =
N2

c π2T 4q2

3ω2 − q2
. (4.45)

The dispersion relation w = w(q) for the sound wave frequency can be determined numerically

(as explained in Appendix B), and is shown in Fig. 5.

5. Discussion

In this paper, we proposed a general approach for identifying quasinormal spectra of asymp-

totically AdS spacetimes with the poles of the retarded correlators in the holographically dual

finite temperature field theory. Our demonstration in Section 4 that quasi-normal spectrum of

gauge-invariant perturbations in asymptotically AdS spacetimes has a precise interpretation

in dual field theory was specific to the case of five-dimensional AdS-Schwarzschild background

with a plane-symmetric event horizon. Although we expect the same to be true in a more

general setting as discussed in Section 3 (such as black holes rather than branes, or more

complicated backgrounds), we did not give a general proof. Explicit computations for other

backgrounds can be done along the lines of Section 4.

From the dual field theory point of view, a noteworthy observation is that the only

singularities of thermal Green’s functions identified in the supergravity approach are simple
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Figure 5: Real and imaginary parts of the lowest quasinormal (sound wave) frequency as a function of

spatial momentum. Light curves correspond to the analytic approximation (4.43) for small q. Dashed

line is w = q. As q grows, the dispersion curve enters the region where ∂Re (w)/∂q > 1. This, however,

happens for q ∼ 1, where the corresponding singularity of the energy-momentum correlation function

no longer has the interpretation of a sound wave.

poles. It may indeed be true that real-time thermal correlation functions of gauge-invariant

operators are meromorphic in complex frequency plane; we leave the analysis of analytic

structure for future investigation. Of course, this simple nature of singularities is possible

only at infinite Nc; for example, it is known that low-energy correlation functions of conserved

currents develop branch cuts in the complex frequency plane, with discontinuities across the

cuts suppressed in the Nc→∞ limit (such cuts are not visible in classical supergravity and

reflect quantum modifications of the quasinormal spectrum) [28]. In a sense, the situation is

similar to zero-temperature spectrum of confining gauge theories, when resonances become

stable as Nc→∞ [29]. However, at finite temperature, the poles of the real-time correlation

functions can not be automatically interpreted as quasi-particles propagating in thermal bath

– a definite interpretation can be given only after the full spectral density (not just the poles)

is known. In infinitely strongly coupled N = 4 SYM theory, the quasiparticle interpretation

is unlikely because of the unique energy scale (temperature). On the other hand, it is possible

that α′ corrections to the quasinormal spectrum will reveal new poles corresponding to heavy

excitations (whose mass scales with the ’t Hooft coupling of the dual field theory) which can

be interpreted as quasiparticles.
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A. Equations of motion and boundary action for the sound channel

Fluctuations of the sound wave mode satisfy a system of differential equations

H ′

tz =
2wq

f + 2
(Haa − Htt) +

(u3 − 3u − 2w2)

qf(f + 2)
(wHaa + wHzz + 2qHtz)

− 3wf

q(f + 2)
H ′

tt , (A.1)

H ′

aa =
w(u3 − 3u − 2w2)

q

2f2(f + 2)
(wHaa + wHzz + 2qHtz) −

3w2 − q

2(f + 2)

q

2(f + 2)
H ′

tt

+
2w2

f(f + 2)
Haa +

u3 − 3u − 2w2

f(f + 2)
Htt , (A.2)

H ′

zz =
2

f(f + 2)

[

w

2Haa + w

2Hzz + q

2f (Htt − Haa) + 2wqHtz

]

+
3fH ′

tt

f + 2

+
1

f(f + 2)

[

2w2Haa + (u3 − 3u − 2w2)Htt

]

− 3w2 − q

2(f + 2)

q

2(f + 2)
H ′

tt

+
w(u3 − 3u − 2w2)

q

2f2(f + 2)
(wHaa + wHzz + 2qHtz) , (A.3)

H ′′

tt =
1

2u2f2(f + 2)

{

6uf(1 + u2)H ′

tt + 2uf
[

2w2 + q

2(1 + u2)
]

Haa + 4w2ufHzz

+ 8wqufHtz + 4uf2
q

2Htt

}

. (A.4)

The part of the boundary action quadratic in fluctuations is [16]

S
(2)
B = lim

u→0

π2N2
c T 4

8

∫

d4x

[

1

8

(

3H2
tt − 12H2

tz + 2HttHii + 2HzzHaa − H2
zz

)

− f(u)

2u

(

H2
tz +

1

4
H2

aa − HttHii + HzzHaa

)

′

]

, (A.5)

where prime denotes the derivative with respect to u, and expressions such as H2
tt are to be

understood as Htt(u, k)Htt(u,−k). The boundary value of the “contact term” part of the

gravitational action (4.37) is given by

S
(2)
CT (0) = lim

u→0
S

(2)
CT = −N2

c π2T 4

48

[

(H0
aa)

2 − q

2 + 3w2

2(q2 − w

2)
H0

aaH
0
tt −

4wq

q

2 − w

2
H0

aaH
0
tz

− 29q4 − 30w2
q

2 + 9w4)

4(q2 − w

2)2
(H0

tt)
2 − 4wq(5q2 − 3w2)

(q2 −w

2)2
H0

ttH
0
tz

− 3q2 + w

2

2(q2 − w

2)
H0

aaH
0
zz −

9q4 + 2w2
q

2 − 3w4

2(q2 − w

2)2
H0

ttH
0
zz −

4wq(3q2 − w

2)

(q2 − w

2)2
H0

tzH
0
zz

+
3q4 − 18w2

q

2 + 7w4

4(q2 − w

2)2
(H0

aa)
2 − 3q4 + 14w2

q

2 − 9w4

(q2 − w

2)2
(H0

tz)
2

]

. (A.6)

– 24 –



Equation (A.6) appears to contain more than just contact terms, since there is a pole at

|w| = q. This pole, however, is artificial — it reflects the normalization of Z2, and cancels in

the final expression for the correlators.

If one chooses to keep track of contact terms in field theory correlators, one can use S
(2)
CT

to reproduce contact terms computed earlier in [16]. For example,

Gtt,tt =
2q4

3(q2 − ω2)2
G2(ω, q) − 4

δ2S
(2)
CT (0)

(δH0
tt)

2
(A.7)

in the hydrodynamic limit becomes

Gtt,tt =
3N2

c π2T 4(3ω2 − 5q2)

8(q2 − 3ω2)
, (A.8)

which coincides with the result of [16].

B. Frobenius solution

To find the full quasinormal spectrum, one has to analyze wave equations (4.5), (4.18), (4.26),

and (4.35) in more detail. All these equations are Fuchsian ODEs with k singular points,19

two of which correspond, respectively, to the horizon (u = 1) and the boundary (u = 0). For

all of the above equations, the exponents at the horizon are equal to ±iw/2, corresponding to

two local solutions representing outgoing (incoming) waves. The solution obeying incoming

wave boundary condition at the horizon can be represented as a power series around u=1,

Z(u) = (1 − u)−iw/2(1 + u)−w/2
∞
∑

n=0

an(w, q)(1 − u)n , (B.1)

where Z(u) stands for either of Eα, Ez, Z1, Z2, Z3. The coefficients an of the series expansion

obey (k−1)-term recursion relations which can be found by substituting (B.1) in the original

differential equations. Quasinormal spectrum is determined by imposing Dirichlet boundary

condition at u = 0,

Z(0) =

∞
∑

n=0

an(w, q) = 0 (B.2)

and solving Eq. (B.2) numerically taking a sufficiently large but finite number of terms in the

sum.20 The spectra of all of the above wave equations are qualitatively similar, except for the
19For the transverse Maxwell equation (4.5a) satisfied by Eα, and for the scalar channel wave equation

(4.18) satisfied by Z3, the number of singular points is k=4, corresponding to u = 0,±1,∞. For the lon-

gitudinal Maxwell equation (4.5b) satisfied by Ez, and the shear channel wave equation (4.26) satisfied by

Z1, the number of singular points is k=6, corresponding to u = 0,±1,±
√

1 −w

2/q2,∞. For the sound

channel wave equation (4.35) satisfied by Z3, the number of singular points is also k=6, corresponding to

u = 0,±1,±
√

3(1 −w

2/q2),∞.
20Careful readers may note that the expansion (B.1) is guaranteed to converge only inside a circle of radius

ρ around u = 1 (in the complex u plane), where ρ is the distance to the nearest singular point, which may

become less than one (distance to the boundary) for some values of w and q. However, even for such values of

w and q, our numerical results for diffusive and shear modes are in agreement with previous calculations [11]

where this issue did not arise, thus suggesting wider applicability of the expansion (B.1).
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Figure 6: Real and imaginary parts of three lowest quasinormal frequencies as function of spatial

momentum. The curves for which w→0 as q→0 correspond to hydrodynamic sound mode in the dual

finite temperature N=4 SYM theory.

behavior of the lowest (hydrodynamic) frequency which is absent for Eα and Z3. For Ez and

Z1, hydrodynamic frequencies are purely imaginary (given by Eqs. (4.16) and (4.32) for small

ω and q), and presumably move off to infinity as q becomes large. For Z2, the hydrodynamic

frequency has both real and imaginary parts (given by Eq. (4.44) for small ω and q), and

eventually (for large q) becomes indistinguishable in the tower of other eigenfrequencies. As an

example, dispersion relations for the three lowest quasinormal frequencies in the sound channel

(including the one of the sound wave) are shown in Fig. 6. The tables below give numerical

values of quasinormal frequencies for q = 1. Only non-hydrodynamic frequencies are shown

in the tables. The position of hydrodynamic frequencies at q = 1 is w = −3.250637i for the

R-charge diffusive mode, w = −0.598066i for the shear mode, and w = ±0.741420−0.286280i

for the sound mode. The numerical values of the lowest five (non-hydrodynamic) quasinormal

frequencies for electromagnetic perturbations are:

Transverse channel Diffusive channel

n Rew Imw Rew Imw

1 ±1.547187 −0.849723 ±1.147831 −0.559204

2 ±2.398903 −1.874343 ±1.910006 −1.758065

3 ±3.323229 −2.894901 ±2.903293 −2.891681

4 ±4.276431 −3.909583 ±3.928555 −3.943386

5 ±5.244062 −4.920336 ±4.946818 −4.965186

and for gravitational perturbations are:

Scalar channel Shear channel Sound channel

n Rew Imw Rew Imw Rew Imw

1 ±1.954331 −1.267327 ±1.759116 −1.291594 ±1.733511 −1.343008

2 ±2.880263 −2.297957 ±2.733081 −2.330405 ±2.705540 −2.357062

3 ±3.836632 −3.314907 ±3.715933 −3.345343 ±3.689392 −3.363863

4 ±4.807392 −4.325871 ±4.703643 −4.353487 ±4.678736 −4.367981

5 ±5.786182 −5.333622 ±5.694472 −5.358205 ±5.671091 −5.370784
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