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Abstract

We show that under general conditions there is at least one natural

inflationary direction for the Kähler moduli of type IIB flux compactifi-

cations. This requires a Calabi-Yau which has h2,1 > h1,1 > 2 and for

which the structure of the scalar potential is as in the recently found ex-

ponentially large volume compactifications. We also need - although these

conditions may be relaxed - at least one Kähler modulus whose only non-

vanishing triple-intersection is with itself and which appears by itself in

the non-perturbative superpotential. Slow-roll inflation then occurs with-

out a fine tuning of parameters, evading the η problem of F-term inflation.

In order to obtain COBE-normalised density perturbations, the stabilised

volume of the Calabi-Yau must be O(105 − 107) in string units, and the

inflationary scale Minfl ∼ 1013 GeV. We find a robust model independent

prediction for the spectral index of 1− 2
Ne

= 0.960 → 0.967, depending on

the number of efoldings.
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1 Introduction

One of the most exciting recent developments in string theory has been the great
progress made in moduli stabilisation [1, 2]. There are now well-established
techniques to give masses to the moduli that appear ubiquitously in string com-
pactifications. The process of moduli stabilisation represents ‘step zero’ towards
string phenomenology, as the moduli vevs determine such basic quantities as the
string scale and the gauge coupling constants.

Given moduli potentials, an obvious application is to inflation. While the
moduli sector has only indirect effects on Standard Model matter, the dynamics
of light scalar fields is the principal theme of inflation. Inflation is the dominant
paradigm for structure formation in the early universe and observations can now
provide precision tests of inflationary models [3].

In string theory there are several candidates for the inflaton field, which can
be classified according to their origin in either the open or closed string sector
[4, 5]. The most common open string inflaton is a brane/antibrane separation
[6, 7, 8], whereas closed string inflatons typically correspond to geometric moduli
[9]. There has been much recent effort devoted to inflationary model building,
particularly since the appearance of the KKLT scenario of moduli stabilisation
[2]. For recent discussions, [9, 10, 11, 12] may be consulted.

A standard problem bedevilling both brane and modular inflation - and indeed
most supergravity inflation scenarios - is the η problem. This states that for F-
term inflation the slow-roll η parameter is O(1) unless a finely tuned cancellation
occurs. The η problem is manifest for F-term modular inflation. In brane inflation
it is not manifest, but reappears once this is embedded into a moduli stabilisation
scenario [10].

In this note we will present a simple inflationary scenario within the framework
of the moduli stabilisation mechanism of [13, 14]. The inflaton is one of the
Kähler moduli and inflation proceeds by reducing the F-term energy. The η

problem is evaded by the pseudo-no scale property of the Kähler potential. The
structure of the potential is such that inflation is obtained naturally and almost
inevitably, without either fine tuning or a need to introduce large flux or brane
numbers. This mechanism in principle applies to a very large class of Calabi-Yau
compactifications that will be specified below.

2 Almost Flat Directions

2.1 General Idea

Slow-roll inflation requires the presence of almost flat directions in the scalar
potential. A natural source of such a flat direction would be a field only appearing
exponentially in the potential. Denoting this field by τ , an appropriate (and
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textbook [15]) potential would be

Vinf = V0

(

1 − Ae−τ + . . .
)

, (1)

where the dots represent higher exponents.
In string theory there are many moduli whose stabilisation requires nonpertur-

bative effects. Examples are the Kähler moduli in IIB flux compactifications and
both dilaton and Kähler moduli in heterotic Calabi-Yau compactifications. We
regard all such fields as candidate inflatons, but shall focus on the Kähler moduli
(Ti) of type IIB flux compactifications. These only appear nonperturbatively in
the superpotential, which takes the form

W =

∫

G3 ∧ Ω +
∑

i

Aie
−aiTi , (2)

where Ti = τi + ici with τi the 4-cycle volume and ci the axionic component. The
Ai represent threshold corrections and are independent of the Kähler moduli.

Of course, it is well known that N = 1 F-term inflation suffers from an η

problem. Both the Kähler potential and superpotential enter into the scalar
potential, and for generic potentials η ∼ O(1). However, the key word here is
‘generic’, and the Kähler potentials arising from string theory are (by definition)
not generic. A common way these potentials fail to be generic is by being no-scale,
corresponding to

Kij̄∂iK∂j̄K = 3. (3)

For a constant superpotential W = W0, a no-scale scalar potential vanishes:

VF = eK
(

Kij̄DiWDj̄W̄ − 3|W |2
)

= 0, (4)

where DiW = ∂iW +(∂iK)W , with all directions being exactly flat. In type IIB,
the tree-level Kähler potential for the size moduli takes the no-scale form

K = −2 ln(V), (5)

where V is the internal volume. Suppose we now add nonperturbative modular
dependence into the superpotential as in (2). The scalar potential becomes

VF = eKKij̄
[

aiAiajĀje
−aiTi−aj T̄j − ((∂iK)WajĀje

−aj T̄j + c.c)
]

. (6)

Ti only appear nonperturbatively along exponentially flat directions and it is
natural to ask whether this flatness can drive inflation.

While the potential (6) is exponentially flat, it also appears exponentially
small. However, this is only true so long as all Ti fields are large. In the presence
of several Kähler moduli the variation of V along the Ti direction is in general
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uncorrelated with the magnitude of V - we note this cannot happen in a one-
modulus model.

There are also extra corrections to the potential, arising both from the break-
ing of no-scale behaviour by Kähler corrections and from the uplift terms needed
to fine-tune the cosmological constant. The latter have several possible sources
[2, 16, 17] and scale inversely with the volume

Vuplift ∼
1

Vα
, (7)

where 4
3
≤ α ≤ 2. Notice that the uplift encodes its modular dependence through

the overall volume, rather than depending explicitly on the moduli. Thus at
constant volume the Tn direction is extremely flat for large values of Tn.

2.2 Embedding in IIB Flux Compactifications

While this is promising, inflation in string theory cannot be isolated from moduli
stabilisation, as the methods used to stabilise the moduli can generate unac-
ceptably large masses for the inflaton. We now embed the above in reasonably
explicit IIB flux compactifications3 and in particular in the moduli stabilisation
mechanism of [13, 14]. (For other recent work on perturbative corrections in IIB
flux compactifications see [18, 19, 20, 21, 22]).

For multi-modulus Calabi-Yaus, evaluating the scalar potential requires ex-
pressing the overall volume in terms of the 4-cycle volumes, which we shall denote
by τi = Re(Ti). For illustration, we shall take a simplified form for the Calabi-Yau
volume,

V = α(τ
3/2
1 −

n
∑

i=2

λiτ
3/2
i )

=
α

2
√

2

[

(T1 + T̄1)
3/2 −

n
∑

i=1

λi(Ti + T̄i)
3/2

]

. (8)

τ1 controls the overall volume and τ2, . . . , τn are blow-ups whose only non-vanishing
triple intersections are with themselves. α and λi are positive constants depend-
ing on the particular model. The minus signs are necessary as ∂2V

∂Ti∂Tj
must have

signature (1, h1,1−1) [23]. We stabilise the dilaton and complex structure moduli

3The lack of explicitness lies principally in the difficulty of knowing whether and what

nonperturbative superpotentials will be generated on a particular Calabi-Yau.
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with fluxes and take the Kähler moduli superpotential to be4

W = W0 +

n
∑

i=2

Aie
−aiTi, (9)

where ai = 2π
gsN

. The Kähler potential is

K = Kcs − 2 ln

[

α

(

τ
3/2
1 −

n
∑

i=2

λiτ
3/2
i

)

+
ξ

2

]

, (10)

where ξ = − χ(M)
2(2π)3

. We have included the α′ corrections of [18]. The dilaton
has been fixed and so we can define the moduli using either string or Einstein-
frame volumes; we use the former. If the latter, we must replace ai → aigs and
ξ → ξg

−3/2
s in (9) and (10) - the physics is of course the same. As we work in the

moduli stabilisaton framework of [13, 14] we anticipate that at the minimum we
will have τ1 >> τi and V >> 1. The resulting scalar potential is

V = eK
[

Gij̄∂iW∂j̄W̄ + Gij̄
(

(∂iK)W )∂j̄W̄ + c.c.
)

]

+
3ξW 2

0

4V3
. (11)

We need ξ > 0 and so require h2,1 > h1,1. For the above Kähler potential, we
have

Gij̄ ∼ 8V√τi

3αλi

δij + O(τiτj). (12)

Gij̄ is real and, up to terms subleading in volume, satisfies Gij̄∂j̄K = 2τi. At large

volume only the leading part of Gij̄ is relevant and the scalar potential becomes

V =
∑

i

8(aiAi)
2√τi

3Vλiα
e−2aiτi −

∑

i

4
aiAi

V2
W0τie

−aiτi +
3ξW 2

0

4V3
. (13)

The minus sign in the second term arises from setting the bi axion to its minimum.
There are terms not included in (13), but these are subleading. Importantly, they
only depend on τi through the overall volume. This is crucial and ensures that
at large τi the variation of the potential with τi is exponentially suppressed. We
can find the global minimum by extremising (13) with respect to τi. Doing this
at fixed V, we obtain

(aiAi)e
−aiτi =

3αλiW0

2V
(1 − aiτi)

(1
2
− 2aiτi)

√
τi. (14)

4 More generally we could take W = W0 +
∑

n

i=2
Aie

−aijTj , which would alter the condition

(18) in a model-dependent fashion. As long as the modified form of (18) can be satisfied, the

results for the inflationary parameters are unaffected. In general we expect this to be possible,

although we note that there do exist models, such as the F11 model of [24], for which this

cannot be achieved.
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If we approximate aiτi >> 1 (which is valid at large volume as aiτi ∼ ln(V)), then

substituting this into the potential (13) contributes
−3λiW

2

0

2V3 τ
3/2
i,minα, which can be

reexpressed as
−3λiW 2

0
α

2V3a
3/2

i

(lnV − ci)
3/2, where ci = ln(3αλiW0

2aiAi
). At large values of

lnV, the resulting potential for the volume once all τi fields are minimised is

V =
−3W 2

0

2V3

(

n
∑

i=2

[

λiα

a
3/2
i

]

(lnV)3/2 − ξ

2

)

. (15)

This is the reason why the volume may be exponentially large. It is necessary
to add an uplift term to ensure that the minimum is essentially Minkowksi. For
concreteness we use IASD fluxes5 and write the volume potential as

V =
−3W 2

0

2V3

(

n
∑

i=2

[

λiα

a
3/2
i

]

(lnV)3/2 − ξ

2

)

+
γW 2

0

V2
, (16)

where γ ∼ O( 1
V
) parametrises the magnitude of the uplift. By tuning γ, the

potential (16) (and by extension its full form (13)) has a Minkowski or small de
Sitter minimum.

To obtain inflation we consider the potential away from the minimum. We
take a ‘small’ modulus, say τn, as the inflaton and displace it far from its mini-
mum. At constant volume the potential is exponentially flat along this direction,
and the modulus rolls back in an inflationary fashion. There is no problem in
terms of initial conditions. While we do not know how the moduli evolution
starts, we do know how it must end, namely with all moduli at their minima.
Given this - we have nothing new to say on the overshoot problem [25] - inflation
occurs as the last Kähler modulus rolls down to its minimum.

It is necessary that all other moduli, and in particular the volume, are stable
during inflation. Displacing τn from its minimum nullifies the contribution made
by the stabilised τn to the volume potential. The effective volume potential during
inflation is then

V =
−3W 2

0

2V3

(

n−1
∑

i=2

[

λiα

a
3/2
i

]

(lnV)3/2 − ξ

2

)

+
γW 2

0

V2
, (17)

Provided that the ratio

ρ ≡ λn

a
3/2
n

:

n
∑

i=2

λi

a
3/2
i

(18)

is sufficiently small6, there is little difference between (16) and (17) and the
5These are pure supergravity and so it is manifest that the uplift only depends on the volume

with unwanted dependence on τi.
6This can be quantified in explicit models. For large volumes the condition on the ratio ρ

is that 9.5(lnV)ρ < 1. As long as we restrict to reasonable values for the ai, this bounds the

volume at the minimum. To obtain inflation with correct density perturbations, the appropriate

volumes are O(105 − 107), which can be satisfied using sensible values for λi and ai.
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volume modulus will be stable during inflation. As we obviously require ρ < 1,
it follows that at least three Kähler moduli are necessary. While (18) can always
be satisfied by an appropriate choice of ai, this becomes easier and easier with
more Kähler moduli.

We illustrate the form of the resulting inflationary potential in figure 1, show-
ing the inflaton and volume directions.

Figure 1: Inflationary potential: the inflaton lies along the x-direction and the
volume along the y-direction.

3 Inflationary Potential and Parameters

Let us now quantify the resulting potential and compute the inflationary param-
eters. The inflationary potential is read off from (13) to be

Vinf = V0 −
4τnW0anAne−anτn

V2
, (19)

as the double exponential in (13) is irrelevant during inflation. During inflation
V0 is constant and can be parametrised as

V0 =
βW 2

0

V3
. (20)
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( 1
V3 is the scale of the potential during inflation). However, τn is not canonically

normalised, as to leading order in volume

Knn̄ =
3λ

8
√

τnV
. (21)

The canonically normalised field is

τ c
n =

√

4λ

3V τ
3

4

n . (22)

In terms of τ c
n, the inflationary potential is

V = V0 −
4W0anAn

V2

(

3V
4λ

)2/3

(τ c
n)4/3 exp

[

−an

(

3V
4λ

)2/3

(τ c
n)4/3

]

. (23)

This is similar, but not identical, to the textbook potential V = V0(1 − e−τ ).
Although τ c

n is canonically normalised, it has no natural geometric interpretation
and for clarity we shall express the inflationary parameters in terms of τn, the
cycle volume.

The slow-roll parameters are defined by

ǫ =
M2

P

2

(

V ′

V

)2

, (24)

η = M2
P

V ′′

V
, (25)

ξ = M4
P

V ′V
′′′

V 2
, (26)

with the derivatives being with respect to τ c
n. These can be evaluated to give

ǫ =
32V3

3β2W 2
0

a2
nA

2
n

√
τn(1 − anτn)2e−2anτn ,

η = − 4anAnV2

3λ
√

τnβW0

[

(1 − 9anτn + 4(anτn)2)e−anτn
]

, (27)

ξ =
−32(anAn)2V4

9β2λ2W 2
0 τn

(1 − anτn)(1 + 11anτn − 30(anτn)2 + 8(anτn)2)e−2anτn .

Then ξ << ǫ, η << 1 provided that e−anτn << 1
V2 .

Within the slow-roll approximation, the spectral index and its running are
given by

n − 1 = 2η − 6ǫ + O(ξ), (28)

dn

d ln k
= 16ǫη − 24ǫ2 − 2ξ. (29)
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The number of efoldings is given by

Ne =

∫ φ

φend

V

V ′
dφ, (30)

which may be expressed as

Ne =
−3βW0λn

16V2anAn

∫ τn

τend
n

eanτn

√
τn(1 − anτn)

dτn. (31)

Matching the COBE normalisation for the density fluctuations δH = 1.92× 10−5

requires
V 3/2

M3
P V ′

= 5.2 × 10−4, (32)

where the LHS is evaluated at horizon exit, Ne = 50 − 60 efoldings before the
end of inflation. This condition can be expressed as

(

g4
s

8π

)

3λβ3W 2
0

64
√

τn(1 − anτn)2

(

W0

anAn

)2
e2anτn

V6
= 2.7 × 10−7. (33)

We have here included a factor of g4
s

8π
that should properly be included as an overall

normalisation in V - see [14]. The condition (32) determines the normalisation of
the potential and in practice we use it as a constraint on the stabilised volume.

Finally, the tensor-to-scalar ratio is

r ∼ 12.4ǫ. (34)

3.1 Footprint of the Model

We now want to determine the inflationary predictions for the above model. In the
above model there are various undetermined parameters arising from the detailed
microphysics, such as the threshold correction A or tree-level superpotential W0.
In principle, these are determined by the specific Calabi-Yau with its brane and
flux configurations, but they can be prohibitively difficult to calculate in realistic
examples. However, it turns out that the most important results are independent
of these parameters. In particular, solving equations (28) to (34) numerically, we
find the robust results

η ≈ − 1

Ne

, (35)

ǫ < 10−12, (36)

ξ ≈ − 2

N2
e

. (37)
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These results are not so surprising given the similarity of the potential to the
textbook form V0(1 − e−τ ). Taking a range of Ne = 50 → 60, we obtain in the
slow-roll approximation

0.960 < n < 0.967, (38)

−0.0006 < dn
d lnk

< −0.0008, (39)

0 < |r| < 10−10, (40)

where the uncertainties above arise principally from the number of e-foldings. If
we go beyond the slow-roll approximation, the expression for n will receive O(ξ)
corrections - these are minimal and can be neglected.

To evaluate the inflationary energy scale, it is convenient to reformulate the
COBE normalisation of density perturbations δH = 1.92 × 10−5 as

V 1/4

ǫ1/4
= 6.6 × 1016GeV. (41)

Unlike the predictions for the spectral index, the required internal volume is
parameter-dependent. For typical values of the microscopic parameters this is
found numerically to take a range of values

105l6s ≤ V ≤ 107l6s , (42)

where ls = (2π)
√

α′. As the moduli stabilisation mechanism of [13, 14] naturally
generates exponentially large volumes, there is no difficulty in achieving these
values. The range of ǫ at horizon exit is 10−13 ≥ ǫ ≥ 10−15, and thus the
inflationary energy scale is rather low,

Vinf ∼ 1013GeV. (43)

This implies in particular that tensor perturbations would be unobservable in
this model.

There is no practical upper limit on the number of efoldings attainable. This
is large-field inflation and the potential is exponentially flat as the inflaton 4-cycle
increases in volume. A very large number of efoldings is achieved by a very small
variation in the inflaton and barring cancellations we would expect Ne,total >> 60
in these models.

In these compactifications, the lightest non-axionic modulus has a mass [14]

M ∼ MP

V3/2
. (44)

Thus even at the larger end of volumes M >> O(10)TeV and there is no cos-
mological moduli problem. As indicated earlier, there is also not a problem with
initial conditions for inflation. Given that the moduli attain their minimum, the

10



inflaton is simply the last Kähler modulus to roll down to the minimum. We
do not need to worry about interference from the evolution of the other mod-
uli. Once they roll down to the minimum they become heavy and will rapidly
decouple from inflationary dynamics.

We have nothing new to say on the cosmological overshoot problem. It is
difficult to see how progress may be achieved here without an adequate formula-
tion of initial conditions for the universe. This problem is amplified by the fact
that typical Calabi-Yaus have hundreds of both complex structure and Kähler
moduli; it is very difficult to give a well-motivated choice for the initial values
and evolution of so many moduli. (For the possibility that damping can remove
the overshoot problem see [26, 27, 28]).

3.2 Additional Corrections and Extensions

The inflationary mechanism presented here relies on the exponential flatness of
the τn direction at constant volume. This is unbroken by the tree-level Kähler
potential, the (α′)3 correction and the uplift term. Let us briefly discuss effects
that might spoil this.

Let us first focus on superpotential effects. The nonrenormalisation theorems
guarantee that the Kähler moduli cannot appear perturbatively in W . However,
the flatness could be spoiled if the gauge kinetic functions Ai depended poly-
nomially on the Kähler moduli. A term A(Tj)e

−Ti in the superpotential would
lead to an effective polynomial term for Tj once Ti was stabilised. However, the
Ai must be holomorphic in Ti and respect the axion shift symmetries, and so
this polynomial dependence on Ti cannot occur. Indeed, in models for which
the threshold corrections have been computed explicitly, there is no dependence
of the gauge kinetic functions on the Kähler moduli [19]. Combined with non-
renormalisation results, this means that the exponential flatness cannot be lifted
by superpotential effects.

The other possibility is that the exponential flatness may be lifted by correc-
tions to the Kähler potential that depend on τn. Considering first bulk terms,
both the tree-level Kähler potential and the O(α′3) correction computed in [18]
have the property that their contribution to the scalar potential is only a function
of the volume and has no explicit dependence on the moduli. These then do not
affect the constant volume flatness of the τn direction. It would be interesting,
but difficult, to determine whether this feature extends beyond the terms so far
computed.

There are also open string Kähler corrections such as those recently computed
in [19]. Of necessity, this computation is restricted to certain toroidal orientifolds
with D3 and D7 branes. The 1-loop corrections determined there are subdomi-
nant in the scalar potential to the O(α′3) corrections, although they give a larger
contribution to the Kähler potential. This counterintuitive result is due to the
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fact that a Kähler correction

K + δK = −2 ln(V) +
ǫ

V2/3

only gives in the scalar potential

δV

V
=

O(ǫ)

V4/3
.

Thus O(V−2/3) corrections to the Kähler potential are in fact subdominant in the
scalar potential to O(V−1) corrections. This result makes the volume stabilisation
mechanism of [13, 14] more robust. For the models for which the string loop
computation can be performed, there is no analogue of the τn blow-up field and
so it is unclear whether and in what fashion these might appear in the 1-loop
correction to the Kähler potential. There are however physical constraints: eK

appears in the scalar potential and so must behave sensibly in the limits of both
small and large τn.

There are also field theory loop corrections determined in [20]. These are
again subdominant in the scalar potential to the O(α′3) corrections used above
for volume stabilisation. This computation again does not have an analogue of
the blow-up modes we have used for the inflaton.

The upshot is that the exponential flatness of the τn direction is not broken by
any of the known corrections. In general, any correction that can be expressed
in terms of the overall volume will not alter the exponential flatness of the τn

direction. If corrections existed which did break this exponential flatness, it
would be necessary to examine their form and magnitude - it is not after all
necessary that the exponential flatness survive for all values of τn, but merely for
those relevant during the last sixty e-folds.

Finally, we have used an oversimplified form for the Calabi-Yau, picturing
it as simply a combination of a volume cycle and blow-up modes. This is not
necessary for the inflationary mechanism described here. Whilst in (8) we as-
sumed h1,1−1 moduli to be blow-ups whose only nonvanishing triple intersection
was with themselves, a single such modulus would be perfectly adequate as an
inflaton. Indeed, even this is not necessary - the minimal requirement is simply
a flat direction, which originates from the no-scale behaviour and is broken by
nonperturbative effects. The condition necessary to ensure the volume is stable
during inflaton will then be a generalisation of (18).

4 Discussion

We have presented a general but simple scenario of inflation in string theory that
does not require fine tuning of parameters, applies to a very large class of compact-
ifications and is predictive at the level that can be ruled out within a few years.
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This scenario realises large field inflation in a natural way. The main properties
of these models are the existence of flat directions broken by non-perturbative
effects. The flat directions have their origins in the no-scale property of the
Kähler potential and are generic for IIB Kähler moduli, as is the appearance
of instanton-generated nonperturbative superpotentials. The scenario is embed-
ded in the exponentially large volume compactifications of [13, 14] and requires
h2,1 > h1,1 and h1,1 > 2. This last requirement is necessary to ensure that the
volume is stabilised during inflation.

Notice that the volumes required to obtain inflation, while large, are not
extremely large as the string scale is only a few orders of magnitude below the
Planck scale. The necessary volumes of O(105 − 107) in string units can be
obtained by natural choices of the exponential parameters ai (a ∼ 2π

3
in the

simplest cases) [14].
Although there are many moduli, the inflationary period reduces to a single-

field case. This is because the inflaton is simply the last modulus to roll down to
its minimum, and once other moduli attain their minimum they rapidly become
heavy and decouple from inflationary dynamics. In principle there are at least
two other fields that may have a nontrivial role during the cosmological evolution.
One is the axion partner of the inflaton field. We have chosen this to sit at the
minimum of its oscillatory potential, at least for the last sixty efolds. This is not
a strong assumption - because the inflaton direction is so flat, there is a lot of
time for the axion to relax from a possibly non-zero inital value to its minimum
before the last sixty efolds start. (Remember that depending on initial conditions
the total number of efolds may be many orders of magnitude larger than 60.) It
would nonetheless be interesting to study a multiple field inflation configuration
in which both fields contribute to the density perturbations [29].

There is also a second direction which is extremely flat, corresponding to
the axionic partner of the overall volume modulus. This field is so light, with
m << 10−300 GeV [14] both during and after inflation, that it will not play a role
in the cosmological evolution.

We have considered inflation as occurring at the top of a waterfall, and infla-
tion ending as the moduli roll down to the waterfall. It may also be interesting
to consider the case where there are multiple waterfalls. By appropriately tuning
the uplift we could arrange that the current vacuum energy corresponds to the
top of a waterfall rather than the bottom. As the field would be slowly rolling
this would then correspond to quintessence.

Another open question concerns reheating. Note that unlike brane inflation,
in which reheating is driven by tachyon condensation [6] requiring non-trivial
string theory dynamics to be understood [30], in our case, as in racetrack in-
flation, reheating is a pure field theory problem that only requires the study of
the matter/inflaton couplings. In this respect, if the standard model lies on D7
branes wrapping the four-cycle whose size is determined by the inflaton field, the
inflaton can decay directly to the gauge fields of the standard model through the
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coupling τnF µνFµν . This can give rise to efficient reheating as discussed in e.g.
[31]. If the standard model lies elsewhere, the inflaton will couple to standard
model fields through higher dimension operators and a more detailed analysis is
required. (For a recent analysis of reheating in brane-antibrane inflation see [32]).

It is worth comparing aspects of this mechanism with other inflationary mod-
els obtained from string theory. Besides the issue of fine tuning, it differs from
racetrack inflation and tachyon driven inflation in that it corresponds to large field
rather than hill-top inflation. In principle our scenario is closer to brane separa-
tion inflation, but we do not need a second field to end inflation and in particular
do not predict the existence of remnant cosmic strings from the reheating era.
Numerically, our predictions are close to racetrack inflation although with the
spectral index within a more comfortable range. The exponentially flat direction
resembles the mechanism of [8], with the advantage that moduli stabilisation is
now derived and not assumed.

Let us finally discuss the generality of our scenario. The main technical
assumption we have used is the direct expression for the volume in terms of
the Kähler moduli (8). This was overkill - the only part of the assumption we
actually used was that the inflaton modulus appears alone in the volume as
V = . . . − (Tn + T̄n)

3

2 . As indicated above, we can relax even this: the abso-
lute minimal requirement is simply the existence of a flat direction broken by
nonperturbative effects. There may be several possible inflationary directions -
in the above model, τ2, . . . , τn are all good candidates - with the particular one
chosen determined by which Kähler modulus is last to attain its minimum. In
each case we expect similar physics to emerge with a robust prediction on the
spectral index of density perturbations. It is very exciting that such a simple
string scenario has the basic properties needed for a realisation of cosmological
inflation with predictions that can be confirmed or ruled out in the near future.
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