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Abstract

We construct axially symmetric solutions of U(1) gauged Skyrme model. Possessing a nonvanishing
magnetic moment, these solitons have also a nonzero angular momentum proportional to the electric
charge.

Introduction.– Many nonlinear classical field theories on flat spacetime backgrounds admit soliton solu-
tions. These nonsingular solutions describe particle-like, localised configurations with finite energy. There
has been some interest in recent years in the issue of globally regular spinning soliton solutions. However,
to the best of our knowledge, to date no stationary and spinning solitons were found. (We describe single
lumps with angular momentum as spinning, and reserve rotating for more general (gravitating-) solutions,
including multilumps.) Notably, it is known that that finite energy solutions of the Yang-Mills-Higgs (YMH)
system with a nonvanishing magnetic charge have zero angular momentum [1, 2] 1. Moreover, as found in
[5], none of the known gauge field solitons with gauge group SU(2) (e.g. dyons, sphalerons, vortices) admit
spinning generalizations within the stationary, axially symmetric, one-soliton sector.

To date two types of spinning solitons have been found in the literature, a) Q-balls solitons in a com-
plex scalar field theory with a non-renormalizable self-interaction [6], which are nontopological solitons so
their stability is not guaranteed by a topological charge, and b) the electrically charged dipole monopole–
antimonopole pair [7] of the YMH system with vanishing topological charge, which is not topologically stable
even in the limit of vanishing angular momentum.

It is our purpose here to construct a soliton which has intrinsic angular momentum and presents a
topologically stable limit 2. Our definition for a ’soliton presenting a topologically stable limit’ is, a finite
energy spinning lump which is topologically stable in the limit of vanishing angular momentum. This
configuration corresponds to axially symmetric, electrically charged solutions of the U(1) gauged Skyrme
model.

Concerning the question of the existence of any given topologically stable solution, this is quite an intricate
matter that deserves a brief description. To start with, there must be a valid topological lower bound on
the energy, which may or may not be saturated, and for the Skyrmion it is not. Then there is the question
whether any given field configuration (the solution) does minimise the energy? For the Skyrme model, this
is a difficult problem for two reasons: a) because the sigma model fields are constrained, and b) because in
addition to the quadratic kinetic term there is also a quartic kinetic term. Thus for the 1-Skyrmion, the
existence proof is given by [9] and, [10], while for axially symmetric case, to the best of our knowledge, there
is no rigorous existence proof. So axially symmetric Skyrmions and their magnetically gauged counterparts
are supported only numerically.

In addition, when a nonvanishing electric field is present, as it is in the present work, the functional
misnimised is not the positive definite energy but the indefinite action. The proof of existence of such
solutions, namely that for YMH dyons, is given by [11], but again it is too hard to adapt this proof for the
gauged (and ungauged) Skyrme model. Thus the existence of the U(1) gauged axially symmetric solutions
of the present paper, and those of [8], are supported only numerically.

The model.– The Skyrme model has been proposed a long time ago [12] as an effective theory for nucleons
in the largeN limit of QCD at low energy [13, 14, 15], the baryon number being identified with the topological
charge. The classical as well as the quantum properties are in relatively good agreeement with the observed

1Also the axially symmetric spinning Einstein–Yang-Mills sphalerons, although predicted perturbatively [3], are unlikely to
exist [1, 4], but these are in anycase not topologically stable.

2An axially symmetric, spinning soliton of the ungauged Skyrme model, similarly presenting a topologically stable limit, has
been recently constructed in [8]. However, this is a Q-ball type of solution featuring time-dependent fields.
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features of small nuclei. The U(1) gauged Skyrme model was originally proposed by Callan and Witten to
study the decay of the nucleons in the vecinity of a monopole [16]. Axially symmetric solutions of this model
were constructed previously in [17], but the emphasis there was on the static properties of nucleons and not
the calculation of its classical spin.

We define our model in terms of the O(4) sigma model field φa = (φα, φA), α = 1, 2; A = 3, 4, satisfying
the constraint |φα|2 + |φA|2 = 1, the Lagrangean of the Maxwell gauged Skyrme model is (up to an overall
factor which we set equal to one)

L = −1

2
|Fµν |2 +

1

2
|Dµφ

a|2 − κ2

8
|D[µφ

a Dν]φ
b|2 (1)

in terms of the Maxwell field strength Fµν , and the covariant derivatives defined by the gauging prescription

Dµφ
α = ∂µφ

α + Aµ (εφ)
α , Dµφ

A = ∂µφ
A . (2)

The energy-momentum tensor which follows from (1) is

Tµν =

{

− 2

(

Fµλ F
λ
µ − 1

4
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τλ

)

+

(

Dµφ
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a − 1

2
gµν Dλφ
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)
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2

4

[

(

D[µφ
a Dλ]φ

b
)

(

D[νφ
a Dλ]φb

)

− 1

4
gµν

(

D[τφ
a Dλ]φ

a
)

(

D[τφa D
λ]φb

)

]

}

. (3)

Here we note that the Skyrmion gauged with the purely magnetic U(1) field is a topologically stable soliton.
This is stated in terms of topological lower bound on the static energy density functional of the purely
magnetically gauged system, namely the Ttt component of (3) with At = 0,

Ttt = E = |Fij |2 + |Diφ
a|2 + κ2

4
|D[iφ

a Dj]φ
b|2 . (4)

Defining the gauge invariant topological charge density as

̺ =
1

4π
εijkε

abcd Diφ
a Djφ

b Dkφ
c φd +

3

8π
εijk Fij ε

AB φB ∂kφ
A (5)

=
1

4π
εijkε

abcd ∂iφ
a ∂jφ

b ∂kφ
c φd − 3

4π
εijk∂k

(

Ai ε
AB ∂jφ

A φB
)

(6)

the gauge invariance of ̺ is manifest from (5), while it is easily checked that the finite energy conditions lead
to the vanishing of the surface integral term in (6), as a result of which the topological is simple the volume
integral of the first term, namely the winding number n or, Baryon charge.

As was shown in [17] in detail, the energy density functional (4) is bounded from below by

E ≥ κ
√

1 + 9
4κ

̺ . (7)

The ansatz.– In a cylindrical coordinate system, we parametrise the axially symmetric Maxwell connection
as

At = b(ρ, z) , Aα =
a(ρ, z)− n

ρ
εαβ x̂β , Az = 0 , (8)

a(ρ, z) and b(ρ, z) corresponding to the electric and magnetic potentials, with n a positive integer - the
winding number, and the polar parametrisation of the chiral field in terms of the two functions f(ρ, z) and
g(ρ, z) as

φα = sin f sin g nα, φ3 = sin f cos g, φ4 = cos f, (9)
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where ρ =
√

|xα|2, α = 1, 2, and z = x3. In the following we will find it convenient instead to work with
spherical coordinates (r, θ), i.e. ρ = r sin θ and z = r cos θ. After replacing this ansatz in (1), one finds the
reduced lagrangeean

L = r2 sin θ

{

2

r2 sin2 θ

(

a2,r +
1

r2
a2,θ

)

− 2

(

b2,r +
1

r2
b2,θ

)

+

[(

f2
,r +

1

r2
f2
,θ

)

+

(

g2,r +
1

r2
g2,θ

)

sin2 f +
a2 − r2 b2 sin2 θ

r2 sin2 θ
sin2 f sin2 g

]

+ (10)

+ κ2 sin2 f

(

1

r2
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2
+
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[(
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1

r2
f2
,θ

)

+

(
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1

r2
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)

sin2 f

]

sin2 g

)

}

.

The Euler-Lagrange equations arising from the variations of this Lagrangean have been integrated by impos-
ing the following boundary conditions, which respect finite mass-energy and finite energy density conditions
as well as regularity and symmetry requirements. We impose

f |r=∞ = 0, g,r|r=∞ = 0, a|r=∞ = n, b|r=∞ = V, (11)

at infinity, and
f |r=0 = π, g,r|r=0 = 0, a|r=0 = n, b,r|r=0 = 0, (12)

at the origin. For solutions with parity reflection symmetry (the case considered in this paper), the boundary
conditions along the z-axis are

f,θ|θ=0 = g|θ=0 = 0, a,θ|θ=0 = b,θ|θ=0 = 0, (13)

and agree with the boundary conditions on the ρ-axis, except for g(r, θ = π/2) = π/2.
It may appear from the boundary conditions (11)-(13) that the natural condition a|θ=0,π = n is not

imposed. This is not done since its imposition in addition to (11)-(13) would be an an overdetermination.
We have nontheless checked that a = n is satisfied on the z-axis by the numerical solutions.

The constant V appearing in (11) corresponds to the magnitude of the electric potential at infinity and
has a direct physical relevance. In the pure Maxwell theory, one can set set V = 0 (or any other value)
without any loss of generality. In the U(1) gauged Skyrme model, however, such a gauge transformation
would render the whole configuration time-dependent.

Integration over all space of the energy density E yields the total mass-energy, E =
∫

Ttt

√−gd3x. The
total angular momentum is given by J =

∫

Tϕt

√−gd3x, where

Ttφ = 2

(

a,r b,r +
a,θ b,θ
r2

)

+ a b sin2 f sin2 g

(

1 + κ2

[(

f2
,r +

f2
,θ

r2

)

+

(

g2,r +
g2,θ
r2

)

sin2 f

])

. (14)

However, by using the field equations, the volume integral of the above quantity can be converted into a
surface integral at infinity in terms of Maxwell potentials

J = 4π lim
r→∞

∫ π

0

dθ sin θ r2a br. (15)

The field equations imply the asymptotic behaviour of the electric potential b ∼ V −Q/(2r) +O(1/r2), the
parameter Q corresponding to the electric charge of the solutions. Therefore the following relation holds

J = 4πnQ, (16)

which resembles the case of a monopole-antimonopole configuration in a YMH theory [7]. Note that the
solutions discussed here possess also a magnetic dipole moment [17] which can be read from the asymptotics
of the U(1) magnetic potential, Aϕ ∼ µ sin θ/r2.
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Figure 1a.
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Figure 1. The energy E and the angular momentum J of U(1) gauged Skyrmion are shown as a function on the

parameter V (Figure 1a) and the parameter κ (Figure 1b) for a baryon number n = 1.

Numerical solutions.– Subject to the above boundary conditions, we solve numerically the set of four
Maxwell-Skyrme equations. The numerical calculations are performed by using the program CADSOL [18],
based on the iterative Newton-Raphson method. As initial guess in the iteration procedure, we use the
spherically symmetric regular solutions of the pure Skyrme model. The typical relative error is estimated to
be lower than 10−3.
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Figure 2. The components Tϕt and Ttt of the energy momentum tensor are shown for a typical n = 1 solution, with

κ = 0.72, V = 0.067.

For a given Baryon number, the solutions depend on two continuos parameters, the values V of the electric
potential at infinity and the Skyrme coupling constant κ. Here we consider solutions in the one baryon
sector only, although similar results have been found for n > 1. The solutions with V = 0 have b = 0 and
correspond to static dipoles discussed in [17]. A nonvanishing V leads to rotating regular configurations,
with nontrivial functions f, g, a and b. Rotating solutions appear to exist for any value of κ. As we increase
V from zero while keeping κ fixed, a branch of solutions forms. Along this branch, the total energy and
the angular momentum increase continuously with V . The ration J/E increases also, but remains always
smaller than one. At the same time, the numerical errors start to increase and we obtain large values for
both E and J , and for some Vmax the numerical iterations fail to converge. An accurate value of Vmax is
rather difficult to obtain, especially for large values of κ. Alternatively, we may keep fixed the magnitude of
the electric potential at infinity and vary the parameter κ.

In Figure 1 we present the properties of typical branches of solutions. In Figure 1a, the angular momentum
and the energy are parametrised by V for several fixed value of κ, while in Figure 1b these quantities are
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parametrised with κ for several fixed values of V , including V = 0 corresponding to the non-spinning soliton.
The energy bound in the purely magnetically gauged case with V = 0 is not saturated, as is the case also
for the ungauged Skyrmion. We expect likewise that this numerically constructed solution is topologically
stable, but cannot estimate the energy excess above the lower bound analytically.

One can see from Figure 1b that, for a given value of κ, the energy of the spinning soliton is always
smaller than the energy of the ungauged Skyrmion, but is larger than the energy of the corresponding non-
spinning static gauged solution. The latter is gauged only with the magnetic field and minimises the energy
functional, while the spinning system gauged with both the magnetic and the electric fields minimises the
non-positive definite Lagrangian density, and the additional electric field does not feature in the topological
lower bound. As a result, the spinning, electrically charged, solutions have higher energies than the static
ones. The situation here is identical with that of the Julia-Zee dyon, in this respect.

In Figure 2a we plot the energy density E = Ttt, and in Figure 2b the angular momentum density Tϕt of
a typical n = 1 solution as a function of the coordinates ρ, z, for κ = 0.72, V = 0.067. We notice that the
energy density ǫ = Ttt does not exhibit any distinctly localised individual components, a surface of constant
energy density being topologically a sphere. However, this is a deformed sphere such that the profiles of
E = Ttt(r, θ) versus r for each value of θ are distinct and non overlapping. It presents a peak on the symmetry
axis, and the density profiles decrease monotonically with r.

Also, the electrically charged U(1) gauged Skyrmion rotates as a single object and the Tϕt–component
of the energy momentum tensor associated with rotation presents a maximum in the z = 0 plane and no
local extrema (see Figure 2b).

Conclusions.– We have presented here the first example of spinning solution residing in the one-soliton
sector of the theory which has a topologically stable limit. These solutions of the U(1)-gauged Skyrme model
carry mass, angular momentum, electric charge and a magnetic dipole momentum. The electric charge is
induced by rotation and equals the total angular momentum.

Similar qualitative results have been found by adding to the Lagrangean (1), a self-interaction potential
of the O(4) scalar field representing the pion mass. Nonzero pion masses lead to larger values for the energy
and angular momentum.

Also, we have found that similar to the ungauged case, the spinning Skyrmions admit gravitating gener-
alisations, which are currently under study. These solutions satisfy also the generic relation (16).
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