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Abstract

We discuss the mediation of supersymmetry breaking from closed to open strings, extending

and improving previous analysis of the authors in Nucl. Phys. B 695 (2004) 103 [hep-

th/0403293]. In the general case, we find the absence of anomaly mediation around any

perturbative string vacuum. When supersymmetry is broken by Scherk-Schwarz boundary

conditions along a compactification interval perpendicular to a stack of D-branes, the

gaugino acquires a mass at two loops that behaves as m1/2 ∼ g4m3
3/2 in string units,

where m3/2 is the gravitino mass and g is the gauge coupling.
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The purpose of this note is to extend the previous discussion [1] of mediation of

supersymmetry breaking between closed and open string sectors. At the same time, we

will also improve and clarify some computations presented in [1].

The mediation of supersymmetry breaking is (by definition) the mechanism responsi-

ble for communicating supersymmetry breaking from a hidden sector to the spectrum of

observable particles. Although there are several possible ways how such a mechanism may

be realized in low-energy effective field theory, most of its concrete implementations involve

non-renormalizable interactions, therefore the outcome can be sensitive to the ultraviolet

completion of the theory. Hence the finite superstring theory offers a valuable framework

for studying the effects of supersymmetry breaking while keeping the ultra-violet physics

under control.

One type of mediation possible in this context, is the so-called anomaly mediation [2],

providing a contribution to the gaugino mass that scales linearly with the gravitino mass:

m1/2 ∼ b0g
2m3/2, where g is the gauge coupling and b0 is the coefficient of the correspond-

ing one-loop beta-function. However, as explained in [1], this contribution is absent in any

perturbative string vacuum. The reason is that such a result should arise at one-loop level,

as dictated by the power of the gauge coupling, e.g. on a world-sheet with two boundaries

(annulus) or one boundary and a crosscap (Möbius strip). The corresponding string dia-

gram involving two left-handed gauginos at zero momentum vanishes though, due to the

U(1) charge conservation of the two-dimensional (2d) N = 2 superconformal symmetry.

Indeed, the massless gaugino vertex operator of definite chirality α, at zero momentum, in

the canonical −1/2-ghost picture, reads:

V (−1/2)
α (x) =: e−ϕ/2Sαe

i
√

3

2
H : , (1)

where x is a position on the boundary of the world-sheet, ϕ is the scalar bosonizing

the superghost system, H is the free 2d boson associated to the N = 2 U(1) current

J = i
√
3∂H, and we neglected the Chan-Paton gauge indices for simplicity. The two-point

function involves, besides the two gauginos of the same chirality at the boundary of the

world-sheet (annulus or Möbius strip), one picture changing operator (PCO). The latter

can provide at most −1 charge which is not sufficient for cancelling the +3 U(1) charge

of the gauginos and thus, the amplitude vanishes. Charge cancellation can be achieved at

higher order, requiring a Riemann surface of Euler characteristic at least equal to −1. An

example of such a surface contains one handle and one boundary and will be studied in

the example described below.
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The particular setup considered in [1] is the gravitational mediation from the closed

string sector with supersymmetry broken by Scherk-Schwarz [3] boundary conditions in

one of the compact directions, which plays the role of the hidden sector, to the “observable”

sector of open strings ending on D-branes perpendicular to the Scherk-Schwarz direction

[4]. The corresponding gauginos that remain massless at the tree level, acquire masses due

to the world-sheet diagram with one handle and one boundary – genus g = 1 Riemann

surface Σ with h = 1 boundary, i.e. with Euler characteristic −1, see Fig.1.

x x

Figure 1: Bordered g = 1 surface Σ with the two gaugino vertices inserted at the boundary

In Ref.[1], we discussed type II compactifications on T 2×K3, with the Scherk-Schwarz

circle of radius R embedded in T 2. Although the generic case can be studied to some extent,

the mass computations simplify enormously in the orbifold limit, with K3 represented as

the quotients T 4/Z2 or T 4/ZN . Unfortunately, in this case the mass is protected by the

orbifold symmetries – the remnants of the continuous internal rotations, or equivalently

R-symmetries of the low-energy effective field theory – hence the result is zero. We will

first review the origin of this result and then we will try to circumvent it by blowing up

the orbifold singularity of K3.

The gaugino mass is given by the following integral [1]:

m1/2 = g2s

∫

F (Σ)

dµ

∫

∂Σ

dxdy A(x, y), (2)

where dµ is the measure of the moduli space of Σ, with the integration extending over the

fundamental domain F (Σ), while the two-point function

A(x, y) = θ

[

0
1
2
~1

]

(x−∆)
σ(x)σ(y)

∏3,4,5
I<J E(zI , zJ)

∏5
I=3 σ

2(zI)

×
5
∏

I=3

θh−1

I

[

0
1
2
~1

]

(zI −∆) ∂XhI
(zI)Z.

(3)

is integrated over the boundary. In the mass formula (2), gs = g2 is the string coupling.

The additional points, zI , labeled by the internal planes I = 3, 4, 5, take values in the set of
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the insertion points, za, a = 1, 2, 3, of PCOs, and the above expression should be summed

over all permutations {zI(a)}. Although a priori arbitrary, the PCO insertion points are

subject to the constraint
I=5
∑

I=3

zI = y + 2∆ . (4)

as a result of a gauge choice made in arriving to (3). Here, ∆ is the Riemann θ-constant.

Although the above gauge choice is formally not allowed [5], it can be used throughout the

computations. Indeed, by inserting another vertex of an open string Wilson line, one can

use an appropriate gauge condition and show that the amplitude can be written as the

variation with respect to the Wilson line of the original one, evaluated by formally using

the condition (4).

After summing over all 6 permutations, the two-point function (3) should become

manifestly independent of the PCO insertion points. In Eq.(3), ∂XhI
are the zero modes

(instanton contributions) twisted by the orbifold group elements hI while the position-

independent factor Z includes the lattice partition function as well as all non-zero mode

determinants. Finally, σ is the one-differential with no zeroes or poles and E is the prime

form. The crucial property of the prime form is the antisymmetry E(zI , zJ) = −E(zJ , zI).

As a result, the permutation sum amounts to antisymmetrizing the factor

θh−1

3

[

0
1
2
~1

]

(z3 −∆) ∂Xh3
(z3) K(z4, z5), K(z4, z5) =

5
∏

I=4

θh−1

I

[

0
1
2
~1

]

(zI −∆) ∂XhI
(zI)

(5)

in the positions za. Note that, for the T 2 × K3 compactification under consideration,

h3 = 1 while h4 = h, h5 = h−1, where h is the element of the K3 orbifold group ZN .

Clearly, in the case of Z2, h = h−1, hence the result vanishes upon antisymmetrization.

As shown in [1], similar conclusion holds for arbitrary ZN , at least up to terms that are

exponentially suppressed in the large Scherk-Schwarz radius limit. As announced before,

we will try to avoid this conclusion by blowing up the orbifold singularity. This can be

achieved by switching on the vacuum expectation value of one of the blowing-up modes.

Thus the amplitude will now include an additional insertion of the vertex operator creating

the twisted blowing-up mode B at zero momentum. Note that this additional vertex must

be inserted in the 0-ghost picture in order to preserve the balance of the background ghost

charge.
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In the −1-ghost picture, the zero momentum vertex of a blowing-up mode B associated

to the twisted sector (h, h−1), with h = e2iπǫ and ǫ = k/N , reads:

V
(−1,−1)
B (ζ, ζ̄) =: e−iǫH4e−i(1−ǫ)H̃4σ4,1−ǫ

−− e−i(1−ǫ)H5e−iǫH̃5σ5,ǫ
−− : , (6)

where σ−− is the corresponding twist field of conformal dimension ǫ(1− ǫ)/2 in both left

and right movers. Here, (H4, H5) and (H̃4, H̃5) are the scalars bosonizing the left- and

right-moving fermionic coordinates of K3, respectively.1 In order to change the picture,

we use the supercurrents

TL =
∑

I=4,5

(∂XIe−iHI + ∂X̄IeiHI ) TR =
∑

I=4,5

(∂̄XIe−iH̃I + ∂̄X̄IeiH̃I ). (7)

We use the OPE rules [6]

σI,ǫ
−−(z, z̄)∂X̄I(w̄) ∼ (z − w)−ǫσI,ǫ

+−(z, z̄) σI,ǫ
−−(z, z̄)∂̄X̄I(w̄) ∼ (z̄ − w̄)−1+ǫσI,ǫ

−+(z, z̄)

σI,ǫ
−−(z, z̄)∂XI(w) ∼ (z − w)−1+ǫσI,ǫ

+−(z, z̄) σI,ǫ
−−(z, z̄)∂̄XI(w) ∼ (z̄ − w̄)−ǫσI,ǫ

−+(z, z̄)

(8)

with the further short-distance expansion

σI,ǫ
−+(z, z̄)∂X̄I(w̄) ∼ (z − w)−ǫσI,ǫ

++(z, z̄) σI,ǫ
+−(z, z̄)∂̄X̄I(w̄) ∼ (z̄ − w̄)−1+ǫσI,ǫ

++(z, z̄)

σI,ǫ
−+(z, z̄)∂XI(w) ∼ (z − w)−1+ǫσI,ǫ

++(z, z̄) σI,ǫ
+−(z, z̄)∂̄XI(w) ∼ (z̄ − w̄)−ǫσI,ǫ

++(z, z̄)

(9)

Using the N = 2 world-sheet supercurrent, one finds the blowing-up vertex operator in

the 0-ghost picture:

V
(0,0)
B (ζ, ζ̄) = : σ4,1−ǫ

+− ei(1−ǫ)H4e−i(1−ǫ)H̃4 σ5,ǫ
−+e

−i(1−ǫ)H5ei(1−ǫ)H̃5

+ σ4,1−ǫ
−+ e−iǫH4eiǫH̃4 σ5,ǫ

+−e
iǫH5e−iǫH̃5

+ σ4,1−ǫ
++ ei(1−ǫ)H4eiǫH̃4 σ5,ǫ

−−e
−i(1−ǫ)H5e−iǫH̃5

+ σ4,1−ǫ
−− e−iǫH4e−i(1−ǫ)H̃4 σ5,ǫ

++e
iǫH5ei(1−ǫ)H̃5 :

(10)

The modification of the amplitude due to the the insertion of the blowing-up vertex

operator
∫

d2ζV
(0,0)
B (ζ, ζ̄) can be obtained by repeating step by step the derivation of (3)

1 Since the following paragraph corrects several (accumulative) misprints contained in [1], we

deliberately change the notation and repeat the computation of the vertex operator from the

scratch.
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presented in [1]. The only change is in the K3 part of the amplitude where, for a given

spin structure s, the following correlators appear:

〈

σ4,1−ǫ
+− (ζ, ζ̄)∂X4(z4)

〉〈

eiH4/2(x)eiH4/2(y)e−iH4(z4)e
i(1−ǫ)H4(ζ)e−i(1−ǫ)H̃4(ζ̄)

〉

s
×

〈

σ5,ǫ
−+(ζ, ζ̄)∂X

5(z5)
〉〈

eiH5/2(x)eiH5/2(y)e−iH5(z5)e
−i(1−ǫ)H5(ζ)ei(1−ǫ)H̃5(ζ̄)

〉

s

+
〈

σ4,1−ǫ
−+ (ζ, ζ̄)∂X4(z4)

〉〈

eiH4/2(x)eiH4/2(y)e−iH4(z4)e
−iǫH4(ζ)eiǫH̃4(ζ̄)

〉

s
×

〈

σ5,ǫ
+−(ζ, ζ̄)∂X

5(z5)
〉〈

eiH5/2(x)eiH5/2(y)e−iH5(z5)e
iǫH5(ζ)e−iǫH̃5(ζ̄)

〉

s

∼ θs,h4

(

1

2
(x+ y)− z4 + (1− ǫ)(ζ − ζ̄)

)

θs,h5

(

1

2
(x+ y)− z5 − (1− ǫ)(ζ − ζ̄)

)

×
[

E(z4, ζ̄)E(z5, ζ)

E(z4, ζ)E(z5, ζ̄)

]1−ǫ
1

E(ζ, ζ̄)2(1−ǫ)2

〈

σ4,1−ǫ
+− (ζ, ζ̄)∂X4(z4)

〉〈

σ5,ǫ
−+(ζ, ζ̄)∂X

5(z5)
〉

+ θs,h4

(

1

2
(x+ y)− z4 − ǫ(ζ − ζ̄)

)

θs,h5

(

1

2
(x+ y)− z5 + ǫ(ζ − ζ̄)

)

×
[

E(z4, ζ)E(z5, ζ̄)

E(z4, ζ̄)E(z5, ζ)

]ǫ
1

E(ζ, ζ̄)2ǫ2

〈

σ4,1−ǫ
−+ (ζ, ζ̄)∂X4(z4)

〉〈

σ5,ǫ
+−(ζ, ζ̄)∂X

5(z5)
〉

,

(11)

Note that due to the H4,5 internal charge conservation, there are no correlators involving

σ++ twist fields. The spin structure sum can be performed using the same gauge condition

(4), with the result that the factor K of Eq.(5) is replaced by:

K(z4, z5) →
∫

d2ζ Kǫ(z4, z5, ζ, ζ̄) =

∫

d2ζ θh−1

4

[

0
1
2
~1

]

(

z4 − ǫ(ζ − ζ̄)−∆
)

θh−1

5

[

0
1
2
~1

]

(

z5 + ǫ(ζ − ζ̄)−∆
)

×
[

E(z4, ζ)E(z5, ζ̄)

E(z4, ζ̄)E(z5, ζ)

]ǫ
1

E(ζ, ζ̄)2ǫ2

〈

σ4,1−ǫ
−+ (ζ, ζ̄)∂X4(z4)

〉〈

σ5,ǫ
+−(ζ, ζ̄)∂X

5(z5)
〉

+ (4 ↔ 5, ǫ ↔ 1− ǫ) ,

(12)

The above expression is no longer symmetric in z4 ↔ z5 (except for ǫ = 1/2 Z2 twist)

therefore it can survive the antisymmetrization. Next, we will estimate the magnitudes of

the antisymmetric part and of the corresponding gaugino mass term.

We are interested in the limit of large Scherk-Schwarz radius R, i.e. the limit of low

gravitino mass m3/2 ∼ 1/R in string units. As explained in [1], in the R → ∞ limit, the

dominant contribution to the gaugino mass comes from the τ2 → ∞ region of the moduli
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space describing the handle degeneration limit. In this limit, Σ degenerates into a disk

with two punctures left-over from the handle. As usual, the disk can be mapped into the

upper half of the complex plane. Then the distance between the punctures is controlled

by the remaining (real) modulus l of Σ. The gaugino mass has the form [1]:

m1/2 ∼ g4
∫

dτ2

∫

dl

(e2πl − 1)

Γ

(τ2 − l)3/2

∑

m

mR2

(τ2 + l)2
exp(−m2πR2

τ2 − l
) . (13)

Here, the sum is over the winding modes on the Scherk-Schwarz circle, and the factor

(τ2 − l)−3/2 includes (τ2 − l)−1 from the corresponding zero modes and (τ2 − l)−1/2 from

the partition function. The factor (τ2 + l)−2 originates from the the non-compact zero

modes (four-dimensional momenta). The factor (e2πl − 1)−1 is the combined effect of

the integration measure and of non-zero mode determinants. We denote by Γ any addi-

tional moduli-dependence that may appear as a result of antisymmetrizing Kǫ(z4, z5, ζ, ζ̄),

Eq.(12). Note that the integral over the modulus l is dominated by the l → 0 region. In

fact, if Γ does not vanish in this limit, the logarithmic divergence may give rise to the

additional τ2 dependence due to the cutoff l > e−πτ2 [1]. Thus the key question is the

τ2 → ∞, l → 0 behavior of Γ – its “double degeneration limit” i.e. the limit of two

coalescing punctures on the disk.

In order to extract the leading l → 0 behavior of Kǫ(z4, z5, ζ, ζ̄), we can set ζ = ζ̄ = 0

inside the arguments of the theta functions in Eq.(12). Furthermore, the twist correlators

are evaluated on the disk, and they are completely determined by the SL(2, R) covariance:

〈

σǫ
+−(ζ, ζ̄)∂X(z)

〉

=
(ζ − ζ̄)ǫ

2

(z − ζ)2

(

z − ζ

z − ζ̄

)ǫ

,
〈

σ
(1−ǫ)
−+ (ζ, ζ̄)∂X(z)

〉

=
(ζ − ζ̄)ǫ

2

(z − ζ̄)2

(

z − ζ̄

z − ζ

)ǫ

(14)

After taking the corresponding limit of the prime-forms, E(w1, w2) → (w1 − w2)
−1, we

obtain

Kǫ(z4, z5, ζ, ζ̄) → θh−1

4

[

0
1
2
~1

]

(z4 −∆) θh−1

5

[

0
1
2
~1

]

(z5 −∆)
1

(z4 − ζ̄)2(z5 − ζ)2
+ (4 ↔ 5)

(15)

Note that the ǫ-dependence has disappeared in this limit. The above function vanishes

upon antisymmetrization, thus Γ = O(l) and the l-integral in (13) converges at l = 0. The

dominant τ2 → ∞ region yields

m1/2 ∼ g4
∫

dτ2

τ
7/2
2

∑

m

mR2 exp(−m2πR2

τ2
) . (16)
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After rescaling τ2 → τ2R
2, the above expression yields2

m1/2 ∼ g4

R3
∼ g4m3

3/2 . (17)

The mass (17) can be understood within the effective field theory by looking at a

generic one-loop graph involving a gravitational exchange. Each vertex brings one power

of the Planck massMP in the denominator and is quadratically divergent in the ultraviolet,

thus m1/2 ∼ m3/2Λ
2
UV /M

2
P , where ΛUV is the ultraviolet cutoff. This cutoff is should be

of order of the supersymmetry breaking scale [7],3 ΛUV ∼ m3/2, hence m1/2 ∼ m3
3/2/M

2
P

[8]. The result (17) confirms this expectation.

To summarize, the mediation of supersymmetry breaking from closed to open string

sectors provides a superstring realization of the so-called gravitational mediation [9]. An-

other type of mediation, the anomaly mediation [2] discussed in the beginning and in [1],

is absent, at least at the leading O(gs) ∼ O(g2) order. Moreover, it is also absent at the

O(g4) order, as follows from the result (17). A new type of non-gravitational mediation

between open string sectors has been recently discussed in [5].
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