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String theory requires additional degrees of freedom to maintain world–sheet repa-
rameterisation invariance at the quantum level. These are often interpreted as ex-
tra dimensions, beyond the 4 space-time. I discuss a class of quasi-realistic string
models in which all the untwisted geometrical moduli are projected out by GSO
projections. In these models the extra dimensions are fictitious, and do not cor-
respond to physical dimensions in a low energy effective field theory. This raises
the possibility that extra dimensions are fictitious in phenomenologically viable
string vacua. I propose that self-duality in the gravitational quantum phase–space
provides the criteria for the string vacuum selection.

1. Introduction

String theory, and its various modern incarnations, provides a consistent

and most developed framework to study the unification of all the observed

fundamental forces and interactions. This quest for unification is an ever-

lasting theme in modern physics. Early proponents included Newton who

unified celestial and terrestrial gravity; Maxwell who unified the electric and

magnetic forces; and Einstein who unified electromagnetism and mechan-

ics. In more recent times all the observed fundamental processes in nature

are described in terms of the electromagnetic, weak and strong, gauge in-

teractions; and in terms of gravitational general relativity. String theory

affords the inclusion of all of those in a consistent framework, and is the

reason for its continued appeal and interest. This, however, is not a speedy

enterprise. Adjudicating whether it succeeds or fails will likely require the
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efforts of more than one generation. One should consider, however, that

it took more than two millenia to reach a decisive conclusion on heliocen-

trism versus geocentrism. The reason being not merely the dogma of well

fashioned clergy, but rather the mundane interpretation of the available

data.

In the classical string we can always gauge fix the two dimensional

world–sheet metric to the flat metric. Preserving this property in the quan-

tised string requires that we embed it in 26 space–time dimensions in the

case of the bosonic string; and 10 in the case of the fermionic string. The

closed string allows for independent treatment of the left– and right–moving

modes on the string world–sheet. Hence, it gives rise to the heterotic–string

in which the left–movers are fermionic and the right–movers are bosonic.

In the real world, we only observe four space–time dimensions, and in-

ternal symmetries of the particle spectrum. The standard lore to rectify

this apparent discrepancy is to compactify the quantized string on an in-

ternal compactified manifold. In the case of the heterotic string 16 of the

right–moving dimensions are compactified on an even self–dual lattice with

fixed radii. Six right–moving coordinates, combined with six left–moving

dimensions, are compactified on a six dimensional real manifold, or on a

three dimensional complex manifold. The size and shape of this internal

compact manifold are parametrized by the moduli. At present there is no

known mechanism that selects and fix these moduli. Unravelling it is one

of the major hurdles facing string theory.

On the other hand, over the past two decades, phenomenological stud-

ies of string theory have continued in earnest, and numerous quasi–realistic

string models have been constructed. A natural question to ask therefore is

whether these phenomenological string vacua can offer a guide to the issue

of moduli selection and fixation. In this note I propose that the answer is

affirmative. The quasi–realistic heterotic string models in the free fermionic

formulation 1, which are associated with Z2×Z2 orbifold compactifications

at special points in the moduli space, points in the direction of the self–dual

point under T–duality as playing a special role in the vacuum selection, and

to the independence of the left–right moving modes as allowing for asym-

metric conditions, that result in fixation of all of the geometrical moduli,

as well as all of the twisted sector moduli 2

2. Moduli fixing in realistic string models

The general structure of the quasi–realistic free fermionic models and their

phenomenological characteristics have been amply discussed and reviewed

in the past 1. Here I focus on the question of moduli fixing in these mod-
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els. The relation of these models to Z2 × Z2 orbifold compactifications is

elaborated in 3. The untwisted sector of the Z2 × Z2 orbifold gives rise to

an SO(10) GUT gauge group, which is broken down further, by the string

boundary conditions, to one of its sub–group. The three twisted sectors

produce three spinorial 16 representations of SO(10) decomposed under

the unbroken SO(10) subgroup. In this manner the models give rise to

three generations, which possess the canonical SO(10) GUT embedding.

These models were primarily studied using the free fermionic formalism
4, in which all the string boundary conditions are given in terms of the

free fermion transformation properties on the string world–sheet. These

fermionic models correspond to bosonic compactifications, in which the

moduli are a priori fixed at a special point in the moduli space.

The geometrical moduli are the untwisted Kähler and complex structure

moduli of the six dimensional compactified manifold. Additionally, the

string vacua contain the dilaton moduli whose VEV governs the strength

of the four dimensional interactions. The VEV of the dilaton moduli is a

continuous parameter from the point of view of the perturbative heterotic

string, and its stabilization requires some nonperturbative dynamics, or

some input from the underlying quantum M–theory, which is not presently

available. The problem of dilaton stabilization is therefore not addressed in

this work, as the discussion here is confined to perturbative heterotic string

vacua. Additionally, the models contain twisted sector moduli. Since the

moduli fields correspond to scalar fields in the massless string spectrum, the

moduli space is determined by the set of boundary condition basis vectors

that define the string vacuum and encodes its properties. The first step

therefore is to identify the fields in the fermionic models that correspond to

the untwisted moduli. The subsequent steps entail examining which moduli

fields survive successive GSO projections and consequently the residual

moduli space.

The four dimensional fermionic heterotic string models are described

in terms of two dimensional conformal and superconformal field theories

of central charges CR = 22 and CL = 9, respectively. In the fermionic

formulation these are represented in terms of world–sheet fermions. A con-

venient starting point to formulate such a fermionic vacuum is a model in

which all the fermions are free. The free fermionic formalism facilitates the

solution of the conformal and modular invariance constraints in terms of

simple rules 4. Such a free fermionic model corresponds to a string vac-

uum at a fixed point in the moduli space. Deformations from this fixed

point are then incorporated by including world-sheet Thirring interactions

among the world–sheet fermions, that are compatible with the conformal
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and modular invariance constraints. The coefficients of the allowed world–

sheet Thirring interactions correspond to the untwisted moduli fields. For

symmetric orbifold models, the exactly marginal operators associated with

the untwisted moduli fields take the general form ∂XI ∂̄XJ , where XI ,

I = 1, · · · , 6, are the coordinates of the six–torus T 6. Therefore, the un-

twisted moduli fields in such models admit the geometrical interpretation

of background fields, which appear as couplings of the exactly marginal op-

erators in the non–linear sigma model action. The untwisted moduli scalar

fields are the background fields that are compatible with the orbifold point

group symmetry.

It is noted that in the Frenkel–Kac–Segal construction of the Kac–

Moody current algebra from chiral bosons, the operator i∂XI is a U(1)

generator of the Cartan sub–algebra. Therefore, in the fermionic formalism

the exactly marginal operators are given by Abelian Thirring operators of

the form J i
L(z)J̄

j
R(z̄), where J i

L(z), J̄
j
R(z̄) are some left– and right–moving

U(1) chiral currents described by world–sheet fermions. Abelian Thirring

interactions preserve conformal invariance, and are therefore marginal op-

erators. One can therefore use the Abelian Thirring interactions to identify

the untwisted moduli in the free fermionic models. The untwisted mod-

uli correspond to the Abelian Thirring interactions that are compatible

with the GSO projections induced by the boundary condition basis vec-

tors, which define the string models.

I now turn to examine the moduli space in concrete free fermionic con-

structions. The models are constructed recursively by adding additional

boundary condition basis vectors, which imposes GSO projections, trun-

cating the existing spectrum, and adding new sectors and new states. The

maximal moduli space of the N = 4 vacuum at the free fermionic point is

the coset space SO(6, 22)/(SO(6)×SO(22)). Applying the Z2×Z2 projec-

tions truncates the untwisted moduli space to SO(2, 2)/(SO(2) × SO(2)),

which correspond to three complex structure and three Kähler structure

moduli. These moduli fields are always present in symmetric Z2 × Z2

orbifolds. The realistic free fermionic models are constructed by adding

additional boundary condition basis vectors, beyond the Z2 × Z2 twist-

ings. The additional vectors break the SO(10) gauge symmetry down to

a subgroup and reduce the number of generations to three. Their effect

on the untwisted moduli space is extracted by focussing on the boundary

conditions of the internal world–sheet fermions that correspond to the six

dimensional compactified coordinates. The three generation free fermionic

models give rise to the possibility of assigning asymmetric boundary con-

ditions to the left and right–movers. These assignments are reflected in
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the combinations of the real internal world–sheet fermions into complex

fermions, or into Ising model world–sheet fermions. The second case cor-

responds to symmetric assignment of boundary conditions, whereas the

first corresponds to asymmetric assignments, that distinguish between the

left– and right–moving fermions. This possibility of assigning asymmetric

boundary conditions has important phenomenological consequences. For

example, for the problem of proton stability and the string doublet–triplet

splitting mechanism 5.

By examining concrete three generation free fermionic models it is noted

that some models employ boundary conditions that are fully symmetric 2.

The moduli space of such quasi–realistic models therefore contains the three

complex and three Kähler structure moduli of the original Z2×Z2 orbifold.

In these models the internal six dimensional manifold admit a classical

geometrical interpretation. However, there also exist quasi–realistic free

fermionic models that employ fully asymmetric boundary conditions. In

these models all the six internal real coordinates have the asymmetric iden-

tifications

XL +XR → XL −XR (1)

As a consequence all the geometrical untwisted moduli fields are projected

out in these models. The additional dimensions in these compactifications

are therefore frozen at the enhanced symmetry point. These quasi–realistic

string vacua therefore do not contain additional classical dimensions, which

are therefore fictitious in these models. Namely the extra dimensions exist

as organizing principle at some level in the string partition function, but

are not reaslized physically in the low effective field theory. The situation is

similar to the way in which gauge symmetries are broken in string theory by

Wilson lines. Also in this case the models contain a GUT gauge symmetry

at some level of the string partition function, which is broken by Wilson

lines and is not an explicit symmetry of the low energy effective field theory.

It is of interest to note that in the quasi–realistic heterotic–string models

discussed here the moduli that arise from the twisted sectors are projected

out as well 2. The reason is that the models correspond to (2,0) rather than

(2,2) compactification. In the (2,2) models the sectors that complement the

16 representation of SO(10) to 27 of E6, also at the same time produce the

twisted moduli. In the (2,0) models these sectors give rise to vectorial

16 representations of the hidden SO(16) gauge group and the moduli are

projected out together with the 10+1 representations that are embedded

in the 27 of E6. It should, however, be emphasized that the models may

contain additional moduli. Additional moduli may arise from flat directions
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of the superpotential and from charged moduli. What is noted here is that

the moduli that are identified as coefficients of exactly marginal operators,

and are therefore interpreted as geometrical moduli, are projected out from

the massless spectrum. Hence the geometrical coordinates in these models

are frozen at the enhanced symmetry point. In these models there is no

apparent classical geometry that underlies the additional degrees of freedom

that are required to restore the world–sheet reparameterisation invariance.

In the three generation free fermionic models with the fully asymmetric

identification all the extra dimensions are frozen at the maximally enhanced

symmetry point, which up to a rotation is the same as the self–dual point

under T–duality 6. The attractive phenomenological structure of these

models and the relation between the maximally enhanced symmetry point

and the self–dual point under T–duality raises the intriguing possibility

that the self–duality criteria is pivotal to the vacuum selection.

3. Phase–space self–duality and trivial selection

To illustrate further this possibility I discuss the association of a self–dual

state with a “vacuum” state in a completely unrelated mathematical set-

ting. Duality and self–duality also play a key role in the recent formulation

of quantum mechanics from an equivalence postulate 7. An important facet

of this formalism is the phase–space duality, which is manifested due to the

involutive nature of the Legendre transformation. In the Hamilton–Jacobi

formalism of classical mechanics the phase–space variables are related by

Hamilton’s generating function p = ∂qS0(q). One then obtains the dual

Legendre transformations 7,

S0 = p∂pT0 − T0

and

T0 = q∂qS0 − S0,

where T0(p) is a new generating function defined by q = ∂pT0. Because of

the undefinability of the Legendre transformation for linear functions, i.e.

for physical systems with S0 = Aq + B, the Legendre duality fails for the

free system, and for the free system with vanishing energy. We can associate

a second order differential equation with each Legendre transformation 7.

There exist therefore a set of solutions, labelled by pq = const, which are

simultaneous solutions of the two sets of differential equations. These are

the self dual states under the phase–space duality.

The Legendre phase–space duality and its breakdown for the free sys-

tem are intimately related to the equivalence postulate, which states that
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all physical systems labelled by the function W (q) = V (q) − E, can be

connected by a coordinate transformation, qa → qb = qb(qa), defined by

Sb
0
(qb) = Sa

0
(qa). This postulate implies that there always exist a coordinate

transformation connecting any state to the state W 0(q0) = 0. Inversely,

this means that any physical state can be reached from the state W 0(q0)

by a coordinate transformation. This postulate cannot be consistent with

classical mechanics. The reason being that in Classical Mechanics (CM)

the state W 0(q0) ≡ 0 remains a fixed point under coordinate transforma-

tions. Thus, in CM it is not possible to generate all states by a coordinate

transformation from the trivial state. From the Classical Hamilton–Jacobi

Equation (CHJE) it is seen that S0 = Aq + B is the solution associated

with V (q) = 0 & E = const, that is the state for which the Legendre

duality breaks down. Consistency of the equivalence postulate therefore

implies that S0(q) is not a solution of the CHJE, but rather a solution of

the Quantum Stationary Hamilton–Jacobi Equation (QSHJE),

(1/2m)
(

∂qS0

)2

+ V (q)− E + (~2/4m){S0, q} = 0,

where {, } denotes the Schwarzian derivative. The remarkable property of

the QSHJE, which distinguishes it from the classical case, is that it admits a

non–trivial solution also for the trivial state, W (q) ≡ 0. In fact the QSHJE

implies that S0 = constant is not an allowed solution. The fundamental

characteristic of quantum mechanics in this approach is that S0 6= Aq+B.

Rather, the solution for the trivial state, with V (q) = 0 and E = 0, is given

by

S0 = i~/2 ln q,

up to Möbius transformations. Remarkably, this quantum trivial state so-

lution coincides with the self–dual state of the Legendre phase–space trans-

formation and its dual. We have that the quantum self–dual state plays a

pivotal role in ensuring both the consistency of the equivalence postulate

and definability of the Legendre phase–space duality for all physical states.

Furthermore, it is noted that the self–dual state under phase–space duality

is associated with the state with V (q) = 0 and E = 0. Hence providing

another hint at the association between self–duality and trivial states in

the space of all allowed states.

4. Conclusions

Existence of quasi–realistic string vacua in which all the untwisted and

twisted sectors moduli are projected out was demonstrated. In such models
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the extra dimensions are fictitious. This may indicate that extra dimen-

sions are fictitious in phenomenologically viable string vacua. This is an

appealing proposition. While string theory requires additional degrees of

freedom, beyond the four space–time, the interpretation of those as extra

physical dimensions is naive. Extra dimensions provide an organizing prin-

ciple for the string symmetries, but are not realized as physical dimensions

in the low energy effective field theory. It is the intrinsic left–right indepen-

dence of the closed string modes, which allows for asymmetric boundary

conditions, and results in the projection of all the Kähler and complex

structure moduli. Thus, string theory, which needs the extra degrees of

freedom for its consistency, also provides the intrinsic mechanism to fix the

moduli. The mechanism afforded utilises the quantum nature of the extra

dimensions, and therefore may indicate the limitation of the effective field

theory analysis. It may also point to the possibility that dilaton fixation

may have to await the quantum formulation of M–theory.

It is proposed further that phase–space duality is the guiding property

in trying to formulate quantum gravity. In this respect T–duality is a key

property of string theory. We can think of T-duality as a phase–space du-

ality in the sense that we are exchanging momenta and winding modes in

compact space. We can turn the table around and say that the key feature

of string theory is that it preserves the phase–space duality in the compact

space. Namely, prior to compactification the wave–function of a point par-

ticle Ψ ∼ Exp(iPX) is invariant under p ↔ x. However, in the ordinary

Kaluza–Klein compactification this invariance is lost due to the quantiza-

tion of the momentum modes. String theory restores this invariance by

introducing the winding modes. It is further argued that the self–dual

points under phase–space duality are intimately connected to the choice of

the vacuum.
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