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Abstract: We present a novel supersymmetric solution to a nonlinear sigma model coupled

to supergravity. The solution represents a static, supersymmetric, codimension-two object,

which is different to the familiar cosmic strings. In particular, we consider 6D chiral gauged

supergravity, whose spectrum contains a number of hypermultiplets. The scalar components

of the hypermultiplet are charged under a gauge field, and supersymmetry implies that they

experience a simple paraboloid-like (or 2D infinite well) potential, which is minimised when

they vanish. Unlike conventional vortices, the energy density of our configuration is not

localized to a string-like core. The solutions have two timelike singularities in the internal

manifold, which provide the necessary boundary conditions to ensure that the scalars do not lie

at the minimum of their potential. The 4D spacetime is flat, and the solution is a continuous

deformation of the so-called “rugby ball” solution, which has been studied in the context

of the cosmological constant problem. It represents an unexpected class of supersymmetric

solutions to the 6D theory, which have gravity, gauge fluxes and hyperscalars all active in the

background.
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1. Introduction

Sigma models in quantum field theory constitute one of the most interesting theories with

a wide range of applications in high energy physics. One of the most remarkable examples

of this is represented in the linear sigma model theories, by the (non)-abelian Higgs model,

where a complex scalar field has a Mexican hat potential. This theory has interesting static

solitonic solutions, which are the well known vortices (for a review, see e. g. [1]). When

coupled to gravity, these solitons give rise to codimension-two objects, or cosmic strings, which

have the effect of producing a conical singularity in spacetime, and which could have been

formed in early stages of the universe’s evolution, with important implications for cosmology

[2]. Recently, cosmic strings with a superstring origin have also been considered due to
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its relevance for possible connections between string theories and experiment [3]. In this

context, cosmic string solutions, or vortex solutions to (non)-abelian Higgs models coupled to

supergravity, have been considered recently, with interesting results [4]. Other global and local

supersymmetric codimension-two solutions to abelian Higgs models have been considered in a

different context in three dimensions [5, 6]. Moreover, string-like solutions in nonlinear sigma

models (i.e. those with non-canonical kinetic terms) have long been known to exist [7].

In this note, we would like to consider a particular nonlinear sigma model, which is

coupled to gauged 6D supergravity [8], and study new examples of static, codimension-two,

supersymmetric configurations, different from cosmic strings. Nonlinear sigma models appear

quite generically in this context, because once scalar fields (which can arise in matter or

supergravity multiplets) are coupled to supergravity, they always seem to form such structures

[9]. This allows an elegant geometrical treatment of what would otherwise seem a highly

intractable nonlinear system. Moreover, gauged supergravities are coming to the fore in recent

years, since they describe the low energy effective theory of string theory compactifications

with fluxes. There, the sigma model describes the moduli of the compactification, and the

fluxes gauge certain isometries of the sigma model manifold, inducing a scalar potential in

the theory. Indeed, in contrast to bosonic sigma models, where there is no unique way to

construct a gauge invariant potential, for supersymmetric theories, supersymmetry (SUSY)

is often powerful enough to determine the form of the potential uniquely. In general, it will

be different to the familiar Mexican hat shape.

In this paper, we concentrate our attention on six dimensional chiral gauged supergravity

[10, 11, 12, 13], in which a complex scalar field, φ, has a paraboloid-like potential with a min-

imum at φ = 0 [14]. We are interested in static configurations which represent codimension-

two objects in space-time and, moreover, preserve some fraction of the supersymmetry of the

original system.

The model under consideration

The 6D supergravity theory that we study here has received much attention in the past,

mainly due to its interesting phenomenological applications. For example, it shares many of

the features of 10D supergravity — and so also of string vacua — such as the existence of

chiral fermions [10] with nontrivial Green-Schwarz anomaly cancellation [15], as well as the

possibility of having chiral compactifications down to flat four dimensions [10].

In its minimal form, the bosonic spectrum contains the graviton, dilaton, and antisym-

metric two- and three-form field strengths. The gauging of a global R-symmetry, together

with supersymmetry, requires the presence of a positive definite potential for the dilaton, with

a Liouville form.

The presence of anomalies can be avoided by adding to the spectrum a number of hyper-

multiplets, suitably charged under the gauge group [10], rendering the theory consistent also

at the quantum level. The scalars of the hypermultiplets appear in the potential, which has

a minimum only when they vanish.

By switching on a magnetic monopole, the field equations admit a background solution
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of the form R4×S2, that preserves half of the supersymmetries of the vacuum, and stabilises

one of the moduli in the spectrum. This configuration was discovered by Salam and Sezgin

(SS) [16]. It represents one of the simplest examples of flux compactification down to four

dimensions, in which partial moduli stabilisation is achieved [17].

Moreover, it has been recently shown [18], that under certain assumptions, an important

property of this theory is that the SS flux compactification is unique. More precisely, the

authors of [18] showed that - for the minimal theory - if one limits one’s attention to vacua

of the form M4 ×M2, where M4 is a four dimensional space-time with maximal symmetry,

and M2 a compact, regular two dimensional manifold, then the theory admits a unique

supersymmetric configuration: the Salam-Sezgin one.

Thanks to the relative simplicity of the theory, it is interesting to ask whether, by re-

nouncing the assumptions of [18], other potentially interesting supersymmetric compactifi-

cations exist. For example, by considering different space-time factorisations, the authors

of [19] determined solutions of the form AdS3 × S3, as well as dyonic string configurations;

generalisations of the latter have been found in [14].

Interestingly, new classes of supersymmetric solutions can alternatively be found by re-

nouncing the hypothesis of regularity of the internal manifold. The simplest example is the

rugby ball vacuum, which is obtained by slicing a wedge from the sphere, and which allows

in this way the presence of conical singularities at the poles. This vacuum provides a setting

for the supersymmetric large extra dimensions (SLED) brane world scenario of [20]. Here,

the conical singularities are interpreted as codimension-two brane worlds, where the Standard

Model fields can be localized. The model has been introduced as a possible way to tackle

the cosmological constant problem [21] (for a non SUSY version, see [22]). More generally,

this construction shows how singular supersymmetric configurations can nevertheless be in-

teresting as settings for brane world models, in which supersymmetry may help to ensure the

stability of the bulk geometry, at least at the classical level.

Our results

By renouncing the hypothesis of regularity, we show that further supersymmetric vacua do

exist, preserving four dimensional maximal symmetry (they are 4D flat). They are obtained by

turning on the hyperscalars contained in the hypermultiplets, which are necessary for anomaly

cancellation. In this way, we have all kinds of fields in the theory active - gravity, gauge fields

and scalars - which are consistent with the symmetries of the problem. The hyperscalar action

corresponds to a nonlinear sigma model defined on a non-compact, quaternionic manifold.

The scalar fields are coupled to gravity and to gauge fields, and have a potential with a

global minimum at zero 1. The study of sigma models in six dimensions, coupled only to

gravity, has been performed in [23, 24], both in the supersymmetric and non-supersymmetric

case. However, as far as we are aware, our solutions constitute the first supersymmetric

configurations in the full 6D gauged supergravity, in which the potential for the hyperscalar

fields, required by supersymmetry, is included. Given our field content, we are able to find the

1This result was first obtained in [14].

– 3 –



most general supersymmetric solution, which has maximal 4D symmetry and axial symmetry

in the internal 2D space.

Interestingly, the possibility to find a supersymmetric solution with the hyperscalars

turned on is naively not expected for this theory. Indeed, the potential has a global minimum

at the origin. Nevertheless, we show that a solution can be found, which preserves half of the

supersymmetries of the vacuum. Similar to conventional vortices, the hyperscalars generate

a configuration with a nonzero winding around the 2D manifold. As usual, this winding

is induced by the coupling to the gauge field, as we will discuss. However, there are also

significant differences to the smooth vortex solutions that are generated by a Higgs potential

and spontaneous symmetry breaking. In particular, vortices have a well-defined core, at the

center of which the scalar field sits at the top of its potential, where its amplitude is zero,

φ = 0. Far away from the core, the scalar takes its minimum energy value. Especially for

vortices generated by a local symmetry breaking, the energy density of the vortex is localized

near to the core. In contrast, in our solutions the energy density is not confined to a string-like

region, and the scalar field is nowhere vanishing, which here means that it does not reach

the minimum of its potential. Moreover, the smooth central core that arises in vortices, is

replaced by two singularities, which pinch off the internal manifold making its volume finite.

The singularities and winding are both needed for our configuration, since otherwise the

hyperscalars would lie at the minimum of their potential, where they vanish. The resulting

geometry is continuously connected to the rugby ball configuration, when the hyperscalars

are set to zero. When the hyperscalars are switched on, the geometry deforms, but maintains

nevertheless a Z2 reflection symmetry. The curvature singularities at the poles transform

from conical to more serious ones, which are the sources for the hyperscalar fields. Given the

novelty of this codimension-two supersymmetric configuration, we introduce a new name to

define it; we call this new object the SuperSwirl.

Outline

The paper is organized as follows. Section (2) contains a technical, but necessary discussion

of the explicit construction of the action for the 6D gauged supergravity. The hyperscalar

part of the action, in particular, depends on the choice of the quaternionic manifold that

the hyperscalars parameterise. The reader interested only in the final form of the sigma

model that we consider, can jump this section and go directly to Section (3). In Section (3)

we discuss in detail the 6D nonlinear sigma model that we are interested in. We analyse

the conditions necessary to preserve some of the supersymmetry, taking a general ansatz for

the fields involved. In Section (4) we derive the supersymmetric solution, and discuss its

properties. In Section (5) we discuss the physical implications of this configuration, and we

conclude.
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2. The Six Dimensional Theory

2.1 Lagrangian, equations of motion, and susy transformations

We consider the six-dimensional N = (1, 0) gauged supergravity constructed by Nishino-

Sezgin (NS) in [13]. The particle content of this theory consists of various fields: a gravity mul-

tiplet (eQM , Ψ
A
ML
, B−

MN ); a tensor multiplet (B+
MN , χ

A
R
, ϕ); Yang-Mills multiplets (AÎ

M , λ
ÎA
L

);

and the hypermatter multiplets (Ψa
R
, Φα); where A = 1, 2, a = 1, . . . , 2n, α = 1, . . . , 4n,

with n the number of hypermultiplets. Also, M = (µ ,m) are spacetime indices in d = 6

dimensions and Q = (µ̂ , q) are flat tangent indices. The gravitino, dilatino and gaugini are

all Sp(1) Majorana-Weyl spinors, and the hyperini are Sp(n) Majorana-Weyl spinors.

The bosonic part of the corresponding Lagrangian is given by [13]2

e−1LB =
1

4
R− 1

4
∂Mϕ∂

Mϕ− 1

2
Gαβ(Φ)DMΦαDMΦβ

− 1

12
e2ϕ GMNPG

MNP − 1

4
eϕ F Î

MNF
MN
Î

− 1

8
e−ϕ v(Φ) . (2.1)

Here as usual, e =
√−det g, where gMN is the 6D spacetime metric. The Kalb-Ramond field

strength is given by GMNP = (∂MBNP +F Î
MNA

Î
P − 1

3g
′f ijkAi

MA
j
NA

k
P − 1

3gf
IJKAI

MA
J
NA

K
P )+

2 perms. The index Î runs over the adjoint of Sp(n)× Sp(1), and so can be subdivided into

the adjoint of Sp(n): Î = I = 1, . . . , n(2n+1), and the adjoint of Sp(1): Î = i = 1 , 2 , 3 . The

structure constants of the gauge group are then labelled by f IJK and f ijk. Supersymmetry

requires that the hyperscalars parameterize a quaternionic manifold:

G

H
=

Sp(n, 1)

Sp(n)× Sp(1)
, (2.2)

whose metric is Gαβ(Φ). Thus the index α = 1, . . . 4n can be interpreted as the curved index

on this target space manifold.

The geometry of the target manifold can be described by the Maurer-Cartan form, which

is constructed from the coset-representative, L:

L−1∂αL = WX̂
α T

X̂ + V aA
α TaA . (2.3)

Here, T X̂ (X̂ = x ,X) and TaA are the anti-hermitian generators of Sp(n) × Sp(1) and the

coset, respectively. Then, WX̂
α transforms as the spin-connection on the target manifold G/H,

and V aA
α is the vielbein, carrying the tangent space indices a = 1, . . . , 2n and A = 1, 2, which

run over the fundamental of Sp(n) ⊂ H and Sp(1) ⊂ H respectively. The scalar potential

then takes the form

v = CxÎCxÎ (2.4)

with

CxÎ =

{

CxI = gWx
αξ

αI

Cxi = g′(Wx
αξ

αi − δxi)
. (2.5)

2See [13] for the fermionic part.
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This prepotential CxÎ can also be calculated directly from the coset representative [8, 25]

as follows:

CxÎ = 2 g′
(

L−1T ÎL
)

AB
T x
AB . (2.6)

The Killing vectors of the scalar manifold are ξαÎ(Φ) = T Îα
β Φβ (the T Îα

β are anti-hermitian

generators for the groups Sp(n) and Sp(1) in G). Finally, the covariant derivative of the

scalars is given by:

DMΦα = ∂MΦα − g′Ai
Mξ

αi − gAI
M ξ

αI (2.7)

Here, g′ is the gauge coupling of the Sp(1) group, and g that of the Sp(n) group. The

explicit definitions in terms of the scalars depends on the choice of coset representative, to be

discussed in the next subsection.

The bosonic equations of motion derived from the corresponding action are:

�ϕ− 1

3
e2ϕGMNP G

MNP − 1

2
eϕ F Î

MNF
MN
Î

+
1

4
e−ϕ v(Φ) = 0

DM

(

e2ϕGMNP
)

= 0 (2.8)

DM

(

eϕ FMN
Î

)

− e2ϕGMPN FÎMP + ĝ gMN (DMΦα) ξαÎ = 0

DMDMΦα + Γα
βγD

MΦβDMΦγ − 1

8
Gαβ(Φ) vβ(Φ) e

−ϕ = 0

RMN − ∂Mϕ∂Nϕ− 2Gαβ(Φ)DMΦαDNΦβ − e2ϕGMPQGN
PQ

−2 eϕ F Î
MPFÎN

P +
1

2
(�ϕ) gMN = 0,

where vβ = ∂v
∂Φβ . Also, ĝ = g or g′ depending on the gauge sector. The supersymmetry

transformation rules for the fermions are (up to fermion bi-linears):

δχA = −1

2
∂MϕΓ

M ǫA +
1

12
eϕGMNLΓ

MNLǫA (2.9)

δΨA
M = DM ǫ

A +
1

24
eϕGNLRΓ

NLRΓM ǫ
A (2.10)

δλAÎ =
1

2
√
2
eϕ/2F Î

MNΓMNǫA − 1√
2
e−ϕ/2CxÎT xA

B ǫB (2.11)

δΨa = (DMΦα)V aA
α ΓM ǫA . (2.12)

Recall that all spinors are symplectic-Majorana Weyl. The gravitini, Killing spinor, gaugini,

and dilatini are all in the fundamental of Sp(1) ⊂ H, whereas the hyperini are in the funda-

mental of Sp(n) ⊂ H. The T xA
B are the generators of Sp(1) ⊂ H. The gaugini are also in the

adjoint of Sp(n)× Sp(1) ⊂ G.

The covariant derivative acting on the Killing spinor is given by:

DM ǫ
A = ∂M ǫ

A +
1

4
ωPQ
M ΓPQǫ

A + g′Ai
Mδ

ixT xA
B ǫB + (DMΦα)Wx

αT
xA
B ǫB (2.13)
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where, as before, P , Q are flat tangent indices on the spacetime manifold. Note also that

the last term, involving a coupling with the scalars, is due to the fact that the Killing spinor

behaves as a section on the Sp(1)-bundle of the target manifold.

2.2 Parameterization of the Target Manifold

We can express the scalars Φα (α = 1, . . . , 4n), as an n-component quaternionic vector, tp

(p = 1, . . . , n). So, for example, tp=1 = Φ11 + Φ2̂ı + Φ3j + Φ4k, where we use the following

2× 2 basis of quaternions:

ı̂ =

(

−i 0

0 i

)

= −iσ3 j =

(

0 −1

1 0

)

= −iσ2

k =

(

0 −i
−i 0

)

= −iσ1 1 =

(

1 0

0 1

)

(2.14)

We need to choose a specific parameterization of the target manifold, in order to have

explicit expressions for the metric, Gαβ(Φ), and potential, v(Φ), which appear in the field

equations. A choice of coset representative, L – where L is an Sp(n, 1) valued matrix – is

sufficient to define all necessary quantities. Following [13], we choose this matrix to be:

L = γ−1

(

1 t†

t Λ(t)

)

(2.15)

where

γ = (1− t†t)1/2 , Λ(t) = γ(I − tt†)−1/2 (2.16)

Here, I is the n × n unit matrix, and † refers to matrix transposition and quaternionic

conjugation (a + b̂ı + cj + dk → a − b̂ı − cj − dk). The Maurer-Cartan form (L−1∂αL) can

now be decomposed as:

L−1∂αL =

(

WAB
α V †Ab

α

V aB
α Wab

α

)

(2.17)

where WAB
α = Wx

αT
xAB and Wab

α = WX
α T

X ab are the Sp(1) and Sp(n) connections, and

V aB
α is the pullback of the vielbein. From these expressions it follows that:

WAB
α =

1

2
γ−2

(

∂αt
† t− t†∂αt

)

(2.18)

Wab
α = γ−2

(

−t∂αt† + Λ∂αΛ+
1

2
∂α(t

†t)I

)

V aA
α = γ−1

(

I − tt†
)−1/2

∂αt
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Choosing to turn on only two “real” components of the full quaternion (Φ1, Φ3), and

using the above relations, the relevant metric components can be calculated from:

Gαβ = V aA
α ǫabǫABV

bB
β (2.19)

and are given by:

G11 = V aA
1 V1aA =

2

(1−Φ2
1 − Φ2

3)
2

G33 = V aA
3 V3aA =

2

(1−Φ2
1 − Φ2

3)
2

G13 = V aA
1 V3aA = 0 (2.20)

Here, we have used that the flat indices are raised and lowered with the metric ǫAB = ǫAB =

[(0, 1), (−1, 0)] and ǫab. Also, we split the indices a = 1, . . . , 2n into a = pA′, with p = 1 . . . n

and A′ = 1, 2, and use ǫab = 1pq ⊗ ǫA′B′ .

In order to calculate the potential, we use an explicit form for the Killing vectors. For

simplicity, we will take the Sp(n) gauge coupling to zero in what follows, that is, g = 0.

Moreover, we consider only the gauging of the U(1) subgroup, that is, from now on we take

i = 1 . The Killing vectors are then:

ξ1α = T 1α
β Φβ

= T 1α
1 Φ1 + T 1α

3 Φ3 (2.21)

We choose the conventions for the relevant generator, T 1 α
β : T 1α

β = T 1A
B ⊗ 1

a
b , with T 1A

B =

1/2 ([0,−1], [1, 0]), A = 1, 3. Now, we can compute the C function from the definition in (2.5),

using the explicit values for Wx
α, obtained from (2.18) in terms of the two non zero fields,

(Φ1, Φ3). We find:

Cx1 = − g′

1− Φ2
1 − Φ2

3

for x = 1 ,

= 0 otherwise (2.22)

The potential is then

v = Cx1Cx1 =
g′2

(1− Φ2
1 −Φ2

3)
2
. (2.23)

We have found in this way all the quantities that characterize our nonlinear sigma model.

Using the above relations, we can now write explicit expressions for the action, equations of

motion and supersymmetry transformations in terms of a single complex scalar field defined

as

φ = Φ1 + iΦ3 , φ⋆ = Φ1 − iΦ3 , (2.24)

We do this in the next section.
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3. The Model

The bosonic action for our 6D nonlinear sigma model (2.1), in terms of (2.24), reduces to

e−1LB =
1

4
R− 1

4
∂Mϕ∂

Mϕ− 1

(1− |φ|2)2 DMφD
Mφ⋆ − 1

4
eϕ FMNF

MN − 1

8

g′2 e−ϕ

(1− |φ|2)2 ,

(3.1)

The equations of motion for our system then become:

�ϕ =
1

2
eϕ FMNF

MN − g′2

4

e−ϕ

(1− |φ|2)2 ,

DM

(

eϕ FMN
)

=
ig′

2(1 − |φ|2)2 g
MN (φ⋆DMφ− φDMφ

⋆) ,

RMN = ∂Mϕ∂Nϕ+
2

(1− |φ|2)2 (DMφDNφ
⋆ +DMφ

⋆DNφ)

+ 2eϕ FMPF
P

N − 1

2
(�ϕ) gMN ,

DMDMφ+
2φ⋆

(1− |φ|2)D
MφDMφ =

g′2e−ϕ

4

φ

(1− |φ|2) . (3.2)

Here we also have to add an equation for the complex conjugate of the scalar field. In terms

of the complex field, the scalar manifold metric is:

dσ2 = 2
dφdφ⋆

(1 − |φ|2)2 . (3.3)

The covariant derivatives are given by3:

DMφ = ∂Mφ− ig′

2
AMφ , (3.4)

DMDMφ = ∇MDMφ− ig′

2
AM DMφ , (3.5)

where ∇M is the covariant derivative with respect to the metric:

∇MDMφ =
1√
g
∂M (

√
g gMN DN φ) , (3.6)

and equivalently for the complex conjugate field φ⋆.

The supersymmetry transformations (2.9-2.12) can be written as:

δχ = −1

2
∂MϕΓ

M ǫ (3.7)

3We computed the covariant derivatives for φ using first the definition of DMΦα in the previous section

and changing to φ, φ⋆ notation.
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δΨM = DM ǫ (3.8)

δλ =
eϕ/2

2
√
2
FMNΓMN ǫ+

i√
2

g′ e−ϕ/2

(1− |φ|2) ǫ (3.9)

δΨ =
1

2 (1 − |φ|2)DMφΓ
M ǫ . (3.10)

Here, all spinors are complex-Weyl and we have defined them as ǫ = ǫ1 + iǫ2.

3.1 Supersymmetry conditions

We consider the most general ansatz consistent with 4D maximal symmetry. Thus, we take:

ds2 = e2W (z,z̄) gµν dx
µdxν + e2B(z,z̄)dzdz̄ ,

F Î
MN = Fmn(z, z̄) , ϕ = ϕ(z, z̄) , φ = φ(z, z̄) . (3.11)

where gµν is the 4D metric on de Sitter, Minkowski or anti-de Sitter spacetime, and z, z̄ are

complex coordinates in the internal 2 dimensions. All other fields are zero.

We now look at the supersymmetry transformations, to find what conditions must be

satisfied by the fields in order to ensure that the system preserves some fraction of the total

supersymmetry. Since all the fermion fields vanish, we need only concern ourselves with the

transformation laws of the fermions.

δχ = 0: Plugging our ansatz above into the SUSY transformations, we see immediately from

the dilatino condition that the dilaton must be constant:

ϕ = ϕ0 = constant . (3.12)

δλ = 0: From the gaugino condition, we have:

1

2
FMNΓMN ǫ = −i g′ e−ϕ0

(1− |φ|2) ǫ . (3.13)

Writing Fqq̄ = if(z, z̄)εqq̄, with f = f⋆, and where q, q̄ are the internal, flat, complexified

indices and εqq̄ = εqq̄ = 1, gives us:

f(z, z̄)Γq̄q ǫ = −g
′ e−ϕ0

2

1

(1− |φ|2) ǫ . (3.14)

In order to satisfy this condition, we impose the following projections on the spinors

Γq̄q ǫ = ǫ , Γq̄q ǫ
⋆ = −ǫ⋆ (3.15)

which imply the following condition between the flux and the potential

f = −g
′

2

e−ϕ0

(1− |φ|2) (3.16)
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The projection condition (3.15), breaks one half of the 6D supersymmetries, thus leaving

N = 1 from a four dimensional point of view.

δΨ = 0: The SUSY condition for the hyperino, gives us immediately

Dz̄ φ ǫ = 0 , Dz φ
⋆ ǫ⋆ = 0 , (3.17)

where Dz̄φ = ∂z̄φ− i g
′

2 Az̄φ. Because we require non-vanishing spinors, this implies that the

complex scalar field must be covariantly holomorphic, that is

Dz̄ φ = 0 , Dz φ
⋆ = 0 (3.18)

δψM = 0: The last SUSY transformation is that for the gravitino. In order to compute this,

we need the values of the space-time spin connection. For example, when the non-compact

directions are Minkowski gµν = ηµν , the nonzero components are given by:

ωµ̂q
µ =

√
2 eW−BWz̄ δ

µ̂
µ , ωµ̂q̄

µ =
√
2 eW−BWz δ

µ̂
µ ,

ωq̄q
z = −Bz , ωq̄q

z̄ = Bz̄ , (3.19)

where µ̂ and q(q̄) are flat indices. Assuming that the spinor ǫ is a function only of z, z̄, from

the M = µ component of the gravitino equation;

ω PQ
µ ΓPQ ǫ = 0 , (3.20)

we can see that, for a 4D Minkowski solution,

W (z, z̄) = constant .

On the other hand, for de Sitter or anti-de Sitter 4D spacetimes, the condition (3.20) imposes

additional projection conditions on the Killing spinor, which break the remaining N = 1

supersymmetry in 4D. For example, for the AdS metric in Poincaré coordinates: ds2 =

e2W
(

l2/v2
) (

−dt2 + dv2 + dx2 + dy2
)

+ e2Bdzdz̄, we again arrive at W (z, z̄) = constant, but

furthermore find that we must impose:

Γµ̂v̂ǫ = 0 (3.21)

These projections break a further half of the original supersymmetries. In order to avoid this

situation, which would leave us with less than one supersymmetry at the four dimensional

level, we are forced to consider a flat 4D spacetime.

Now considering the M = m = z, z̄ components of the gravitino transformation, we find:

∂mǫ+
1

2
ω q̄q
m Γq̄q ǫ+

ig′Am

2
ǫ+

1

2 (1− |φ|2)
[

φDmφ
⋆ − φ⋆Dmφ

]

ǫ = 0 , (3.22)
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and its complex conjugate. One can see from these equations that

ǫ ǫ⋆ = constant . (3.23)

Equation (3.22) for ǫ is the last equation that must be satisfied in order to preserve

supersymmetry. To ensure that such a Killing spinor exists locally, it is sufficient to impose

the following integrability condition:

0 = [Dz,Dz̄ ] ǫ
A =

(

Bzz̄ +
DzφDz̄φ

⋆

(1− |φ|2)2
+

1

2
e2B+ϕ0 f2

)

ǫA , (3.24)

where in the last equality we have applied the conditions that emerge from the preceding

transformations. We must now check whether the above constraints are consistent with the

equations of motion.

3.2 The equations of motion

The supersymmetry constraints allow us to obtain and satisfy the equations of motion. In-

deed, the equation for the dilaton, ϕ, requires:

1

2
FMNF

MN =
g′2

4

e−2ϕ0

(1− |φ|2)2 . (3.25)

Plugging the value of Fmn into the equation above gives us

f2 =
g′2

4

e−2ϕ0

(1− |φ|2)2 , (3.26)

which is precisely (3.16). The equation of motion for ϕ is consequently satisfied.

The equation of motion for the gauge field is:

1√
g
∂M (

√
g eϕ0FMN ) =

ig′

2(1 − |φ|2)2 g
MN (φ⋆DMφ− φDMφ

⋆) . (3.27)

Taking into account that F zz̄ = −2ife−2B ,
√
g = e2B/2, and using (3.18), we obtain

ifz =
g′ e−ϕ0

2i (1− |φ|2)2
[φ⋆Dzφ] , (3.28)

and its complex conjugate. Using the supersymmetry condition (3.18) on this equation we

find

fz = −g
′ e−ϕ0

2

1

(1− |φ|2)2 [φ
⋆φz + φφ⋆z] . (3.29)

which is just the derivative of (3.16).

It is straightforward to check that the Einstein equations for the components (µν), (z, z)

and (z̄, z̄) are automatically satisfied for covariantly holomorphic scalar fields, constant dila-

ton and no warping. On the other hand, the relation between the gauge function f and the

– 12 –



hyperscalars (3.16), together with the antiholomorphicity condition, implies that the hyper-

scalar equation of motion is also satisfied.

Finally, the (z, z̄) component of the Einstein’s equations gives us

1

2
Bzz̄ = − DzφDz̄φ

⋆

2 (1− |φ|2)2
− 1

4
e2B+ϕ0 f2 . (3.30)

This equation coincides with the integrability constraint (3.24), so once this equation is sat-

isfied, it ensures that supersymmetry is preserved. The equation provides a constraint on the

function B that must be satisfied in order to obtain a solution. So we have seen that all the

field equations can be obtained from the supersymmetry constraints.

We conclude this section by noticing that the supersymmetry constraints (3.16) and (3.18)

are analogous to the Landau-Ginzburg equations that describe linear sigma-model vortices

in a supergravity setting [4, 5, 6]. In our system, we are able to solve exactly the resulting

equations of motion. The important difference with the usual case is in the form of the

potential, which, in our case, is required by supersymmetry to have a minimum at the origin.

For this reason, the solutions that we will find have similarities but also significant differences

to the usual vortex solutions.

4. The SuperSwirl

4.1 Determining the solution

In the last section we obtained the constraints that the geometry and Killing spinors must

satisfy in order to have a supersymmetric configuration. We find that all the equations of

motion are automatically satisfied, once we impose the supersymmetry constraints and we

are left with only one nontrivial equation coming from the (z, z̄) component of the Einstein

equation:
1

2
Bzz̄ = − DzφDz̄φ

⋆

2 (1− |φ|2)2
− 1

4
e2B+ϕ0 f2 , (4.1)

while eq. (3.18) and its complex conjugate are:

∂z̄ φ =
ig′

2
Az̄ φ , ∂z φ

⋆ = − ig
′

2
Az φ

⋆ . (4.2)

Defining

φ = ψ
1
2 eiτ , (4.3)

the fields that we have to determine are τ , B, and ψ. We start by extracting some information

from (4.2). It is simple to show, starting from these formulae, that, whenever ψ 6= 0, the

following equations hold

∂zz̄ lnψ =
ig′

2
(∂zAz̄ − ∂z̄Az) =

ig′

2
Fzz̄ (4.4)

∂zz̄ τ =
g′

4
(∂zAz̄ + ∂z̄Az) (4.5)
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Notice that the following gauge transformation leaves invariant these two equations:

Az → Az + ∂zT , (4.6)

φ → eig
′ T/2φ . (4.7)

In terms of the fields ψ and τ the gauge transformation is4

ψ → ψ , (4.8)

τ → τ +
g′

2
T . (4.9)

Determining B

Remembering that

f = −g
′

2

e−ϕ0

(1− |φ|2)
(

= −2iFzz̄ e
−2B

)

, (4.10)

eq. (4.1) can be rewritten as

Bzz̄ = −∂zz̄ lnψ
(1− ψ)

− ∂zψ ∂z̄ψ

ψ (1− ψ)2
= ∂zz̄[ln (ψ

−1 − 1)] . (4.11)

Thus we can integrate this equation, to obtain:

eB =
(1− ψ)

ψ
F 1/2(z)F ⋆1/2(z̄) . (4.12)

In this way, we have found a direct relation between ψ and the metric function B, given

in (4.12). Alternatively, a relation between these two quantities is obtained comparing eq.

(4.10) and eq. (4.4). One finds

e2B =
8 eϕ0

g′2
(1− ψ) ∂zz̄ lnψ . (4.13)

Determining ψ

Comparing (4.12) and (4.13) one obtains the following differential equation for ψ, which must

be solved to obtain a SUSY solution:

8 eϕ0

g′2
∂zz̄ lnψ =

(1− ψ)

ψ2
F (z)F ⋆(z̄) . (4.14)

If regular enough, the function F can be re-absorbed into the two dimensional metric by a

rescaling of the coordinate z:

dz → F (z) dz .

4This shows that the phase τ can be absorbed by a gauge transformation, and we can identify the former

with the latter. In the following section, we will see that global constraints fix the structure of the function

T , and consequently the phase τ .
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For this reason we can set it equal to an arbitrary real integration constant, c̃, without loss

of generality. Thus we can rewrite (4.14) as

∂zz̄ lnψ = c
(1− ψ)

ψ2
, (4.15)

where the constant c is given by

c =
g′2 e−ϕ0 c̃2

8
. (4.16)

The most general supersymmetric solution with the matter content that we are considering,

preserving 4D maximal symmetry, corresponds to the most general solution to the modified

Liouville equation given in (4.15).

Determining ǫ

We can now integrate the Killing spinor equation (3.22) explicitly. Using (3.15, 3.18, 3.19)

and (4.12) as discussed above, this equation gives the solution:

ǫ(z, z̄) = eiτ(z,z̄) ǫ0 (4.17)

where ǫ0 is a constant spinor. This solution indeed satisfies (3.23).

The solution

An exact solution to equation (4.15) can be obtained by asking that ψ depends on some

real combination of (z, z̄), for example by 5

x ≡ z + z̄ .

In this case, it is simple to show that (4.15) can be reduced to a first order differential

equation

(

d

dx
lnψ

)2

= c

(

2ψ − 1

ψ2

)

+ α2 , (4.18)

where α2 is a positive real constant 6. Eq. (4.18) can be reassembled in the following way

α2
(

ψ +
c

α2

)2
−
(

d

dx
ψ

)2

=

(

c+
c2

α2

)

(4.19)

At this point, it is easy to show that the general solution for the equation (4.19) is given by

ψ =
1

eαx
[

M +N eαx + P e2αx
]

, (4.20)

5This choice is equivalent to asking that the solution is axially symmetric, as we discuss in the next Section.
6The case in which α2 is negative is discussed in the following.
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where the real numbers M , N , P are integration constants 7 that satisfy the condition

N = − c

α2
=

1

2

(

1−
√
1 + 16MP

)

. (4.21)

Since ψ is real and positive, this implies that M, P ≥ 0.

4.2 Properties of the SuperSwirl

4.2.1 Axial symmetry

The general supersymmetric solution above, eq. (4.20), can be seen to constitute the most

general axially symmetry solution that preserves supersymmetry, and maximal space-time

symmetry in 4D. This becomes evident after performing the following change of coordinates

e2z = reiθ , e2z̄ = re−iθ .

that allows one to identify the variable x of the previous section with ln r. The general

solution depending on the variable x, determined in the previous section, in these coordinates

depends only on the radial coordinate r, and, consequently, it is axially symmetric.

More explicitly, a simple calculation shows that in terms of these new coordinates, the

solution 8 now reads (a ′ means derivative along r)

ds26 = ηµν dx
µdxν + e2B(r)

(

dr2 + r2dθ2
)

, (4.22)

φ = ψ
1
2 ei g

′ T/2 , (4.23)

ϕ = ϕ0 , (4.24)

Frθ = −g
′ e−ϕ0 c̃2

8

(1− ψ)

r ψ2
, (4.25)

Aθ = − r

g′
ψ′

ψ
+ ∂θT . (4.26)

with the definitions and constraints (notice that we have redefined the function B as the

conformal factor for the internal metric in polar coordinates; e2Bdzdz̄ → e2B(dr2 + r2dθ2)):

e2B =
c̃2

4

(1− ψ)2

r2 ψ2
, (4.27)

ψ =
1

rα

(

M − c

α2
rα + P r2α

)

, (4.28)

c =
g′2 e−ϕ0 c̃2

8
=

α2

2

(√
1 + 16MP − 1

)

. (4.29)

7One can also consider a physically distinct solution in which α, M , P are complex numbers, in a way that

ensures that ψ is real. For example, in expression (4.20) one can take α = iα̃, M = A + iB, P = A − iB,

with α̃, A, B and N real numbers. This corresponds to the case α2 negative mentioned earlier. The global

properties of the resulting solution are identical to the one we are going to analyze, and for this reason we do

not consider this solution in the following.
8Here we are using the gauge freedom to choose τ = g′ T/2 (see eq. (4.8)).

– 16 –



4.2.2 Singularity structure

The singularity structure can be read from the metric function e2B given in formula (4.45).

When the hyperscalars are turned on, the solution has unavoidable (see Appendix), timelike

singularities (the scalar invariants diverge) at the points at which this function vanishes, or

diverges. This occurs at the positive zeros of the function 1 − ψ = 0, where the conformal

factor e2B vanishes. These are located at

rα± =
1

2P

√

1 +
√
1 + 16MP

2





√

1 +
√
1 + 16MP

2
± 1



 (4.30)

=
1

2P

√

1 +
c

α2

(
√

1 +
c

α2
± 1

)

. (4.31)

The presence of these singularities is perhaps not surprising, since the 6D potential and target-

space metric, blow up at these positions. The physical space-time lies in the coordinate range

r− ≤ r ≤ r+. Let us now show how the singularities arise in this spacetime. Consider for

example the limit r → r−. The relevant part of the metric is

ds22 = e2B(r)
(

dr2 + r2 dθ2
)

, (4.32)

with e2B given in eq. (4.45). Performing the coordinate transformation

rα =
√
ρ

√

4

c̃

α rα−
(

rα+ − rα−
) + rα− , (4.33)

brings the metric (4.32), for ρ→ 0 (that is, r → r−), to the form

ds22 ∼ dρ2 + γ ρ dθ2 , (4.34)

with γ = 4 c̃ α rα−(r
α
− − rα+). This implies that near r− the metric does not have a conical

singularity, but a more serious one.

Notice that the space still closes off on approaching the singularity, in the sense that a

circumference that surrounds the singularity reduces its radius when approaching it. The

same is true for the limit r → r+. Moreover, a simple calculation shows that the internal

manifold has a finite volume.

The singularities constitute sources for the hyperscalars. Indeed, the field ψ and its first

derivative do not vanish on approaching the end of the space at the singularities r+, r−:

consequently, a source producing these fields, with the right boundary conditions, should be

located at the position of the singularities.

4.2.3 Global constraints

One can see from the expressions for the solution in eq. (4.26) that the gauge field strength

vanishes at the position of the singularities. This indicates that the sources are not coupled
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to the magnetic field. We therefore ask that the gauge potential also be vanishing at the

singularities. The gauge field is given by

Aθ(r) = − r

g′
ψ′

ψ
+ a , (4.35)

where a is an integration constant corresponding to the gauge freedom, that is, choosing the

function T in (4.26) as

T = a θ + 2b/g′ , (4.36)

with a and b real numbers.

In order to have a gauge field vanishing

ψ  = 0’

r−

Singularities

r+ 
ψ  = 1 ψ  = 1

ψ  = ψ
Equatorial symmetry:

ψ  = 0’

0

Figure 1: Pictorial representation of the internal

two dimensional geometry of the superswirl. The

two points at the ends of the space are singular.

These are located at the positions where ψ = 1.

The first derivative – or speed – of the scalar field,

does not vanish ψ′
± 6= 0 at these points. There is

an equatorial symmetry at the position r0, where

the scalar field’s first derivative vanishes ψ′
0 = 0.

This picture can also be understood from the point

of view of the potential, in an interesting way, see

fig. (2).

at both r = r±, it must be defined locally

over two overlapping patches, with two dif-

ferent integration constants:

a+ =
r+
g′
ψ′(r+) ; a− =

r−
g′
ψ′(r−) .

(4.37)

Since the hyperscalars are charged under

the gauge field (4.6), they must also be lo-

cally defined: φ± = ψ1/2(r)eiτ
±

, with τ± =

g′a± θ/2+b . Since φ must be single-valued

over the period θ = (0, 2π), there is a con-

straint on the integration constants:

g′

2
a± = n± ; n± ∈ Z . (4.38)

Inserting the values for a± in (4.37) into this

expression, we find a topological condition

on the parameters of the solution:

α

2

√

1 +
c

α2
= n+ = −n− . (4.39)

We thus see that the total winding inside

the internal space vanishes as it should. More-

over, we also require that A±(r) (and φ±(r, θ))

are related in the overlap by a single-valued

gauge transformation:

A+ = A− + ∂θΛ (4.40)

φ+ = φ− ei
g′

2
Λ , (4.41)
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which leads to a Dirac quantization condition. Given (4.38), we see that the conditions above

are indeed satisfied:

a− − a+ =
2m

g′
, (4.42)

where m ∈ Z. From here we immediately find that m = 2n+.

The previous discussion indicates that the global constraints on the gauge fields generate

a winding of the hyperscalars around the singularities. These fields, on each side of the

equator are given by

φ± = ψ(r)1/2 ei(n
±θ+b) , (4.43)

with n± integer numbers, and they smoothly join at the equator where ψ′ vanishes.

We conclude this subsection returning to the issue of supersymmetry for our solution.

Plugging the superswirl solution with the global constraints we have just discussed, into

(4.17), we obtain the explicit solution for the Killing spinor, which is given by:

ǫ = ǫ0 e
i(n±θ+b) , (4.44)

where ǫ0 is, again, a constant spinor. From this expression, we explicitly show that the Killing

spinor for our configuration is single valued, since after an interval of 2π (the period of the θ

coordinate) the spinor (4.44) returns to itself.

4.2.4 The rugby ball limit

We now show that in the limit when the hyperscalars go to zero in a proper way, we recover

the rugby ball solution [16, 21]. Such a limit, ψ → 0, is obtained by properly sending M , c

and P to zero. The function e2B can be rewritten as

e2B =
2 c eϕ0

MP g′2
1

r2

(

rα −M + c
α2 r

α − Pr2α
)2

[

(

M
P

)
1
2 − c√

MP α2
rα +

(

P
M

)
1
2 r2α

]2 (4.45)

From eq.(4.21) we learn that, when M and P → 0,

c→ 0 ,
c√
MP

→ 0 ,
c

MP
→ 4α2 . (4.46)

So eq. (4.45) becomes, if M and P → 0 at the same rate,

e2B =
8 eϕ0 α2

g′2
1

r2
1

[

(

r
r0

)α
+
(

r
r0

)−α
]2 , (4.47)

with

r0 =

(

M

P

) 1
2α

, (4.48)
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and this is nothing but the rugby ball in non-standard coordinates. In order to see this

explicitly, one makes the change of coordinates:
(

r

r0

)α

= tan
χ

2
. (4.49)

In these coordinates the two dimensional metric becomes:

ds2 = a20(dχ
2 + α2 sin2 χdθ2) (4.50)

where a20 = 2eϕ0/g′2 is the radius of the 2-sphere and α is related to the deficit angle. One

can similarly check that the gauge field also acquires the right monopole limit 9.

4.2.5 Equatorial symmetry

Although singular, our solution enjoys an equatorial symmetry similar to the rugby ball one:

the solution has a reflection symmetry on a hypersurface that we can call the equator. For the

rugby ball in the coordinates of eq. (4.47), it is simple to see that the equatorial symmetry is

translated to the symmetry r → r20
r . The point r0 is the position of the equator, and is a fixed

point for the reflection symmetry. In our case exactly the same is true. It is indeed simple to

show that both the scalar (4.28) and the metric (4.32) are invariant under the operation

r → r20
r
, (4.51)

with the same r0 given in (4.48). We illustrate the global structure of the solution in Fig.

(1).

4.2.6 Energy

We can now compute explicitly the energy per unit four dimensional volume of the superswirl.

As expected, the energy turns out to diverge, due to the contributions from the boundaries.

Indeed, the energy can be computed from (see e.g. [4])

E =

∫

dr dθ
√
g

[

1

4
R+

DmφD
mφ⋆

(1− |φ|2)2 +
1

4
eϕ0FmnF

mn +
1

8

g′2 e−ϕ0

(1− |φ|2)2
]

+
1

2

(∫

dθ
√
hK|r=r+ −

∫

dθ
√
hK|r=r−

)

, (4.52)

where K is the extrinsic curvature of the surfaces r = constant, whose metric is h. In our

case these surfaces are the “boundaries” at r±. For our solution (4.22-4.25) this energy can

be expressed in a Bogomol’nyi type form as follows:

E =
1

2

∫

dr dθ
1

r

[

| r Drφ+ iDθφ |2
(1− |φ|2)2 + eϕ0

(

f +
g′ eϕ0

2 (1− |φ|2)

)2
]

+
1

2

(
∫

dθ r B′|r+ −
∫

dθ r B′|r−
)

. (4.53)

9In the rugby-ball limit in which the hyperscalars go to zero, supersymmetry is generally broken by the

presence of the deficit angle, due to the global constraints discussed above. See [21] for details.

– 20 –



Here we have used the (z, z̄) component of Einstein’s equations (or the gravitino integrability

constraint) to express R in terms of the matter fields. From this expression is clear that the

supersymmetry constraints (3.16) and (3.18) in terms of the (r, θ) coordinates, imply the

vanishing of the first two terms of the energy. Thus the energy is given entirely by the last

two terms. These are given by

E = −π
(

r ψ′

1− ψ
+
r ψ′

ψ

)

∣

∣

∣

∣

∣

r+

+ π

(

r ψ′

1− ψ
+
r ψ′

ψ

)

∣

∣

∣

∣

∣

r−

. (4.54)

Here we have used the explicit expression for the derivative of B in terms of ψ. It is simple

to see that, at the boundaries where the curvature singularities are located, this quantity

diverges, since there ψ = 1. This signals the necessity to include explicit source terms for the

hyperscalars, placed at the boundaries. Their presence can contribute with new terms to the

calculation of the energy, rendering it finite by compensating the infinite contributions.

5. Discussion

ψ ’ = 0

τ = +θ(n    + b)

ψ

ψ
τ

= 0

ψ 1

ψ ’ = 00

ψ τV(    ,    )

Figure 2: The structure of the superswirl solution

in terms of the potential.

We have determined and studied a static,

supersymmetric, codimension-two configu-

ration for a nonlinear sigma model, in the

context of six dimensional gauged super-

gravity. For the matter content considered

(whose bosonic part is a U(1) gauge field,

and a complex scalar field), it is the most

general supersymmetric solution consistent

with 4D maximal symmetry and axial sym-

metry in the internal space. The solution

can be regarded as a deformation of the

classical spherical compactification of Salam-

Sezgin, due to a non trivial profile for the

hyperscalars in the internal manifold. Al-

though the internal manifold is non-compact,

since the presence of hyperscalars produces singularities at the poles 10 of the geometry, it

has a finite volume. The configuration is everywhere locally supersymmetric, except at the

position of the singularities, r±.

The presence of the singularities is an essential ingredient that allows the solution to exist:

the singularities behave, indeed, as sources for the hyperscalar fields. Without these singular-

ities, the complex hyperscalar field, by continuity, would need to vanish at the position of the

poles of the compact manifold. This is because at the poles, the angular coordinate, along

which the hyperscalar winds, is ill-defined. The presence of sources where the singularities

10By poles we mean the points in which the (θθ) component of the metric vanishes.
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are located, instead, allows for more general boundary conditions for the hyperscalars at the

poles, and permits supersymmetry to be preserved away from the sources.

The exact supersymmetric solution that we have found has some similarities with the

Landau-Ginzburg (LG) vortices studied in [5, 6] in 3 dimensions, as well as with the recent D-

strings in 4 dimensions studied in [4]. Indeed, the conditions required to preserve some fraction

of the supersymmetry, have the very same structure (see eqs. (3.16) and (3.18)). However,

there are important differences between the LG vortices, the D-strings and our configuration.

In the former cases, the sigma model considered is a linear one, and corresponds to the (non)-

abelian Higgs model with a Mexican hat potential. This allows one to find smooth string

solutions, with a well defined size for the core of the string, which depends on the inverse

of the vacuum expectation value for the Higgs field. The scalar that generates the vortex

vanishes by continuity at the origin, where the maximum of the potential is located, and

asymptotically, it approaches the minimum of the potential outside the core of the vortex.

The field has a winding around the symmetry axis, parameterized by an integer number n.

This measures the tension of the string as seen from infinity, and represents a topological

charge that ensures the stability of the system. Moreover, the tension of these strings is

finite, as the boundary terms provide a finite contribution to it. Indeed, cosmic strings do

not have any sources for the scalar fields, and thus, they are completely smooth and stable.

Our solution shares the property of the winding of the vortex. Here, the winding of the

hyperscalars around the symmetry axis is parameterized by two integers n±, which define the

phase of the field, τ . The integers n± are related to the Dirac quantization condition that

the gauge potentials must satisfy, and they are equal and opposite. Thus, the total winding

number vanishes, indicating a cancellation of the total charge inside the 2D internal space.

This is also analogous to what happens in systems with vortex-anti-vortex pairs, in compact

spaces.

Beyond the winding, however, the configuration constructed in this paper, has a some-

what different physical interpretation to conventional vortices. The underlying potential has

a minimum at the origin, and has a paraboloid-like shape, diverging when |φ| = ψ
1
2 = 1 (see

figure (2)). The hyperscalar configuration that we determined, consequently does not have

a core at the origin, but it is instead generated by the sources at the ends of the space, r±,

corresponding to the circle at ψ = 1 where the potential diverges. It extends from ψ = 1 to

a value ψ0 ≡ ψ(r0) < 1, which is characterized by the fact that ψ′(r0) = 0 (ψ′ changes sign

at r0). In some sense, at that point the hyperscalar turns back and returns up the potential

towards the source. The point r0 corresponds, not surprisingly, to the position of the equator

of the two dimensional internal manifold M2. Indeed, we have shown that our system, with

the hyperscalars included, is Z2 symmetric at the equator.

Finally, another important difference in our solution is the fact that the energy (per unit

volume) is infinite, since it is proportional to the boundary terms computed at the singular

points. This again indicates the fact that our system, contrary to the usual vortices, should

have boundary source terms that cover the singularities. These should regularise the latter,

rendering the total energy finite. For these reasons, our configuration, although similar in
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many aspects to the usual supersymmetric vortices/strings, possesses important differences.

Given its novelty, we name it: the SuperSwirl.

This new solution constitutes a new class of supersymmetric vacua for 6D chiral gauged

supergravity, with possible implications for a deeper understanding of the theory itself, in par-

ticular its origin from higher dimensional supergravities or string theories. A string realization

of the Nishino-Sezgin (NS) gauged supergravity [13] has been found in [29]. Unfortunately,

the hypermultiplet sector of the theory was not considered in their analysis. An alterna-

tive route for obtaining NS gauged supergravity is being developed in [30]. In any case, it

would be nice to understand whether the superswirl has an interesting higher dimensional

interpretation in terms of extended objects.

In the context of 6D brane world scenarios, the superswirl can provide a natural setting for

a thick version of a codimension-two brane world, along the lines proposed in [26, 27, 28]. In

this case, the singularities would be covered by a sort of thick three-brane. A possibility would

be to place, at the position of the singularities or slightly before them, a four-brane on which

the space ends, characterized by the fact that one of its spatial dimensions is compactified on

a circle with small size. The fields living on the four-brane would be described by an action

suitably coupled to the bulk fields, that can in principle be constructed along the lines of

[31]. In terms of the SLED proposal for the cosmological constant problem, the superswirl

is interesting since it provides another class of 4D flat solutions to which the system can

evolve, and moreover the only other explicit supersymmetric solution known, apart from

that of Salam-Sezgin. Bulk supersymmetry represents, naturally, a very important property

of this model, since it contributes to maintaining the bulk stable. In general, we expect

supersymmetry to nevertheless be broken at the position of the branes, as in the original

codimension-two SLED proposal. It would be interesting to determine whether our model

enables the construction of a brane action that preserves the bulk supersymmetry, for example

along the lines of [32].
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A. Appendix

Let us show that it is not possible to find, in our system, regular configurations, with hyper-

scalars turned on, without sources for these fields. We proceed by contradiction. Consider

eq. (4.12). This equation, remember, is obtained under the hypothesis that the ψ field is not

zero. The equation can be written as (q is a positive constant)

q

(1− ψ)
= e−2B∂z∂z̄ lnψ (A.1)

The right hand side of this equation can be written

e−2B∂z∂z̄ lnψ = ∇M∇M lnψ (A.2)

where the indices M run through z, z̄.

Now, suppose that we find a solution for our system that describes a compact, everywhere

regular manifold with no sources for the hyperscalar fields. This means that you can integrate

both sides of (A.1) over the manifold. The RHS is zero, since, by (A.2), it is an integral of a

total derivative over a regular, boundary-less space. The equation becomes

∫

dzdz̄
√
g

q

(1− ψ)
= 0 (A.3)

Now, recalling that ψ = |φ|2 cannot be negative, equation (4.12) shows that the quantity

(1− ψ) must be positive, or at most null, everywhere.

Now, let us return to the integral (A.3). Since
√
g = e2B is also everywhere positive,

the argument of the integral must be positive. So the integral cannot be equal to zero, as

required. Therefore, the initial hypothesis that we can find a compact manifold everywhere

regular leads us to a contradiction.
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