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Fermioni zero modes on a toroidal osmi string
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Abstrat

We onsider a toroidal on�guration of osmi string in 3+1 dimensions in an abelian Higgs

model, a ompati�ation of the Nielsen-Olesen string. This objet is lassially unstable.

We expliitly ompute the number of permitted zero modes for majorana fermions oupled to

suh a string. As in the ase of inde�nitely long strings, there are |n| zero modes for winding

number setor n, and orrespondingly, indued fermioni harge n/2 whih anbe frational.

Aording to a previously proved result, this implies quantum mehanial stability for objets

with odd winding number. The result is of signi�ane to osmology in lasses of uni�ed

theories permitting suh osmi strings.

1 Introdution

Solitons are lassially stable solutions of �eld equations, made possible when the spontaneous

breaking of gauge symmetry premits topologially non-trivial boundary onditions. Examples of

suh solitons exist in one dimension [1℄ alled kinks, where the gauge �eld is absent, in two dimen-

sions [2℄ alled Nielsen-Olesen strings whih our in abelian gauge theories, in three dimensions

[3, 4℄, being `t Hooft-Polyakov monopoles ouring in Yang-Mills theories. More interesting sys-

tems are those in whih the interation of the fermi �elds with the soliton is also onsidered. Under

ertain onditions, existene of fermioni zero modes results in frational fermion number being

indued on the lassial solution [1, 5℄. Suh systems an not relax to trivial vauum in isolation

[6℄ due to Qunatum Mehanis. This possibility was �rst emphasised in [7℄ and its onsequenes

to possible partile like states in SO(10) Grand Uni�ed Theory were studied in [8℄. Frational

fermion number phenomenon is also of importane in ondensed matter systems like onduting

polymers [9℄.

In this paper, we study toroidal on�gurations of the Nielsen-Olesen string. From lassial

arguments, this objet an be shown to be unstable with respet to shrinking under its own

tension. However, it exists as an extremum of the ation in 3 + 1 dimensions and arries �nite

total energy, and an be of fundamental signi�ane to osmology. Here we have studied the

interation of this objet with a majorana fermion �eld and have shown the existene of fermioni

zero modes. Signi�ane of suh solutions to osmology was studied in [10℄ and more reently in

[11, 12, 13℄. We use the same fermioni oupling as was �rst studied by Jakiw and Rossi [14℄,

wherein the mass of the fermion is derived entirely from spontaneous symmetry breaking. Our

main result about relation between winding number and number of zero modes is the same as

[14℄, although some of the details are di�erent. Expliit arguments for the stability of objets with

frational fermion number were spelt out in [6℄, whih will essentially apply in the present ase as

well.

Several standard aveats apply to the present work. We treat the fermions as a qunatum

perturbation to a lassial bakground and ignore the bak reation of the fermions to the string.

While we study the highly symmetri objet, the torus, the result about zero modes should apply

in the general situation subjet to some modi�ations, whih however should not modify the main

results regarding indued stability. In partiular the �zero-energy� solutions will no longer be

so on a generi losed loop geometry, however the modes, if singleton, more generally in odd

number should remain so as long as the essential topologial aspets of the boundary onditions
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far from the string are not modi�ed. Finally we also assume the metastability of the loop to

ensure its existene over time sales long enough to treat zero-modes as ouring on essentially

stati bakground.

We solve the Majorana-Dira equation in toroidal oordinates, and for this purpose begin with

a review of the same in se. 2. In se. 3 the equations are formulated. The asymptoti form of the

fermioni wave funtion is studied in se. 4. In se. 5, the behaviour near the ore of the torus,

whih determines the number of zero-energy solutions is studied, and is found to reveal that the

number is the same as for the unompati�ed Nielsen-Olesen string. Se. 6 is devoted to summary

and onlusion.

2 Toroidal Coordinates

The oordinate transformations from the artesian to the toroidal o-ordiantes [16℄ are given by

the following relations

x =
a sinh v cosϕ

cosh v − cosu
(1)

y =
a sinh v sinϕ

cosh v − cosu
(2)

z =
a sinu

cosh v − cosu
(3)

where v ranges from 0 to ∞, u ranges from 0 to 2π and ϕ ranges from 0 to 2π. The parameter a
sets the size of the family of torii given by v =onstant. The variable ϕ parameterises the length

of the loop while u winds around any segment of the loop given by ϕ =onstant. The oordinates
have the property that as v tends to in�nity, we approah the ore of the loop. Spatial in�nity is

approahed when u and v simultaneously approah zero.

In the following it is onvenient to introdue ξ = (u+ iv)/2 and alulate the metri elements

hv = |∂~r/∂v| both in terms of u, v and ξ, ξ̄

hu =
a

cosh v − cosu
=

a

2 sin ξ sin ξ̄
(4)

hv =
a

cosh v − cosu
=

a

2 sin ξ sin ξ̄
(5)

hϕ =
a sinh v

cosh v − cosu
=

a sinh v

2 sin ξ sin ξ̄
(6)

The expression for the gradient takes the form,

∇ = v̂
1

hv

∂

∂v
+ û

1

hu

∂

∂u
+ ϕ̂

1

hϕ

∂

∂ϕ
(7)

3 Formulation of the Equation

The Abelian Higgs model with gauge �eld Aµ and a harged salar �eld φ has the Lagrangian

L = (Dµφ)
∗(Dµφ)−

1

4
FµνF

µν −
λ

4
(|φ|2 − η2)2 (8)

with Fµν = ∂µAν − ∂νAµ and the ovariant derivative

Dµ = (
∂

∂xµ
− iqhµAµ) (9)
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and the salar �eld φ is taken to have harge q = e. This Lagrangian an be extended for the

purpose of studying to zero modes [14℄[15℄, to inlude majorana fermions of harge q = 1
2e,

Lfermion = ψ̄iσµDµψ −
1

2
[igY ψ̄φψ

c + (h.c.)] (10)

where σµ = (−I, σi), I being the 2× 2 identity matrix; ψc = iσ2ψ∗
is the harge onjugate of ψ ,

and gY denotes the Yukawa oupling.

Sine ψ will be reserved for later use, we begin by writing the �eld equation in terms of the

variable ψ̃
σµDµψ̃ − gY φψ̃

c = 0 (11)

We begin by writing the equations of motion of the fermion in usual ylindrial polar oordinates,

(r, ϕ, z) with the string loop of radius a and with ross-setion≪ a2laid out symmetrially around

the origin in the z = 0 plane. The ϕ oordinate remains the same upon transforming to the

toroidal oordinates. In 2-omponent notation,

[

−eiϕ[Dr +
i
rDϕ] Dz +Dt

Dz −Dt e−iϕ[Dr −
i
rDϕ]

] [

ψ̃1

ψ̃2

]

= gY φ

[

ψ̃∗
1

ψ̃∗
2

]

(12)

Sine we are looking for zero modes i.e. time independant solutions we take the bakgorund

�elds to possess the ansatz A0 = 0. Further, the lowest energy and therefore the most symmetri

bakground solution an be assumed ϕ independent, and we hoose Aϕ = 0. However ϕ expliitly

appears in the equations for ψ̃ and fatoring out this dependene requires us to introdue the

ansatz ψ̃1 = e−iϕ/2ψ1 and ψ̃2 = eiϕ/2ψ2. This amounts to anti-periodi boundary ondition

appropriate to a fermion as we traverse the length of the loop. Then the equations obeyed by ψ1

and ψ2 are

[

−[Dr +
1
2r ] Dz

Dz [Dr +
1
2r ]

] [

ψ1

ψ2

]

= gY φ

[

ψ∗
1

ψ∗
2

]

(13)

Thus the problem of solving fermioni equations is restrited essentially to the half plane of the

ylindrial polar oordinates, r ∈ [0,∞) and z ∈ (−∞,∞). Substituting ψ1 = iψ2 = iψ redues

the two equations to the omplex equation

[Dr + iDz]ψ +
1

2r
ψ = gY φψ

∗
(14)

We now transform to the toroidal oordinates. Sine ∂r and Ar transform identially. Thus,

transforming to toroidal oordinates the equation looks as follows,

[sin2 ξ̄(Du + iDv) + i
sin ξ sin ξ̄

2 sinh v
]ψ =

φ

2i
agY ψ

∗
(15)

A useful substituion now is ψ = f(u, v) sin ξ, whih leads to the equation for f ,

[sin ξ sin ξ̄(Du + iDv) + i
sin2 ξ

2 sinhv
]f =

φ

2i
agY f

∗
(16)

We work in the vauum setor of winding number n, i.e., given any segement of the loop, the

salar �eld φ hanges phase by 2πn around it. In toroidal oordinates this amounts a dependene

einu. While topologially this is not distint from trivial vauum, it has restrited topologially

stability against breaking of any segment of the loop. Only the shrinking of the loop as a whole

an ontinuously onnet it to the trivial vauum. Thus if latter deformation is forbidden the on-

�guration beomes stable. As a diret generalisation of the Nielsen-Olesen string, the bakground

�eld on�guration is taken to have the ansatz

φ = ik(u, v)ηeinu (17)
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Aµ = −n
g(u, v)

ae
δµu sin ξ sin ξ̄ (18)

where g(u, v) and k(u, v) are real funtions whose behaviour is g, k → 0 near the loop, i.e., as

v → ∞ so that the solution is regular in ore of the loop, and g(u, v), k(u, v) → 1 at spatial

in�nity given by the simultaneous limit u, v → 0. Note that sin ξ sin ξ̄reprodues the well known
behaviour 1/r for usual in�nitely long string in ylindrial oordinates and beomes pure gauge

far from the ore of the string. We denote gY η = m where m is the mass of the free fermions far

from the string. After substituting above salar and gauge ansatz, eq. (16) takes the form

[sin ξ sin ξ̄(
∂

∂ξ̄
− i

n

2
g) + i

sin2 ξ

2 sinh v
]f =

1

2
akmeinuf∗

(19)

Using the tehnique of Jakiw and Rossi, we try the following ansatz for f .

f = Xeil(ξ+ξ̄) + Y ∗ei(n−l)(ξ+ξ̄)
(20)

and equating oe�ients of eilu and ei(n−l)u
we get two separate equations.

[sin ξ sin ξ̄(
∂

∂ξ̄
− i(

n

2
g − l)) + i

sin2 ξ

2 sinh v
]X =

1

2
akmY (21)

[sin ξ sin ξ̄(
∂

∂ξ̄
− i(

n

2
g − (n− l))) + i

sin2 ξ

2 sinh v
]Y ∗ =

1

2
akmX∗

(22)

taking omplex onjugate of the Eq. (22),

[sin ξ sin ξ̄(
∂

∂ξ
+ i(

n

2
g − (n− l)))− i

sin2 ξ̄

2 sinh v
]Y =

1

2
akmX (23)

4 Asymptoti analysis

In the asymptoti limit, as mentioned above, g and k an be approximated by 1. So in the

asymptoti limit the equations (21) and (23) respetively beome,

[ξξ̄(
∂

∂ξ̄
− ip)−

1

2

ξ2

(ξ − ξ̄)
]X =

1

2
amY (24)

[ξξ̄(
∂

∂ξ
− ip) +

1

2

ξ̄2

(ξ − ξ̄)
]Y =

1

2
amX (25)

where p = (n2 − l). We substitute, X = A
√

4iξξ̄
ξ−ξ̄

similarly Y = B
√

4iξξ̄
ξ−ξ̄

. The equations are

simpli�ed to,

ξξ̄(
∂

∂ξ̄
− ip)A =

1

2
amB (26)

ξξ̄(
∂

∂ξ
− ip)B =

1

2
amA (27)

ombining Eq. (26) and (27) we get,

[ξξ̄(
∂

∂ξ
− ip)ξξ̄(

∂

∂ξ̄
− ip)]A = (ma/2)2A (28)

Substituting ξ = t−1eiθ, Eq. (28) is simpli�ed to

[
∂2

∂t2
+ (

2ip

t2
−

1

t
)
∂

∂t
− (

p2

t4
+

2ip

t3
+ (

ma

2
)2) +

1

t2
(
∂2

∂θ2
+ 2i

∂

∂θ
)]A = 0 (29)

4



This, in asymptoti limit, i.e. as |ξ| → 0, i.e. as t→ ∞, beomes

[
∂2

∂t2
−

1

t

∂

∂t
− (

ma

2
)2]A = 0 (30)

this seond order di�erential equation an be solved to yield an exponentially onverging solution,

whose asymptoti behaviour is ∼ e−mat/2
. Inorporating sin ξ fator, the asymptoti behaviour

of the fermioni wave-funtion ψ ∼ (e−mat/2)/t making it normalisable.

5 Counting the number of solutions

To ount the total number of fermion zero modes present on soliton in n vortex setor, we observe

the v dependane of the solution near the loop i.e. as v → ∞. As mentioned above g and k both

tend to zero as we approah the loop. So substituting g = 0 = k the equations (21) and (23), near

the loop, respetively beome,

(
d

dv
+ l)X = 0 (31)

(
d

dv
+ (n− l))Y = 0 (32)

So, X ∼ e−lv
and Y ∼ e−(n−l)v

. And so the behaviour of ψ near the loop is,

ψ = sin ξ(Xeilu + Y ∗ei(n−l)u) = sin ξ(C1e
2ilξ + C2e

2i(n−l)ξ) (33)

In the limit v → ∞ the right hand side of eq. (33) is dominated by the terms

ψ −→
1

2i
(C1e

i2(l− 1

2
)ξ + C2e

i2[(n−1)−(l− 1

2
)]ξ) (34)

Realling ξ = (u + iv)/2 and denoting l − 1
2 by l′, and requiring ψ to remain �nite near the loop

i.e. as v → ∞, we need,

0 ≤ l′ ≤ (n− 1) (35)

This gives us total of n omplex normalisable solutions, the same result as [14℄ for the in�nitely

long string. It should be noted that we have the ϕ dependene e±iϕ
. If the length parameter along

the loop is denoted z̃, this an be written as e±iz̃/2πa
. This expliit dependene on z̃ disappears in

the limit a→ ∞and we reover the translation invariant ansatz for the zero modes utilised in [14℄.

Taking l′ to be integer (rather than half-integer) gives larger number of solutions and makes the

latter single valued as funtions of u, whih also aords with the treaatment for in�nitely long

string. So the ompati�ation of Nielsen-Olesen string has not altered the number of zero modes

it arries.

6 Conlusion

We have proved the existene of |n| fermioni zero modes on a stati toroidal string with topologial

winding n. Unlike the non-ompat Nielsen-Olesen strings whih are in�nitely long and often

treated as essentially 2 + 1 dimensional solitons, toroidal strings are genuinely 3 + 1 dimensional

on�gurations of �nite energy. So the existene of the latter and the existene of related zero

modes are very important from the point of view of osmology. Our result shows that the toroidal

geopmetry supports the same number of zero modes as the in�nitely long string and reassures

us that the unbounded string an be reovered as a limiting ase of the toroidal on�gurations

onsidered here.

The boundary ondition implied by the behaviour e±iϕ/2
with azimuthal angle ϕ shows that

for small loops, when the loop is indistinguishable form a partile, its wave fundtion obeys the

same boundary onditions as an elementary fermion of spin 1/2. Physially suh states should be

5



disovered as heavy fermions of spin 1/2. Further, the ourene of zero modes would imply, just

as in the ase of unbounded string, that the loop aquires fermioni harge |n|/2. If this harge

is half-integral, it would be impossible for the loop to disintegrate in isolation without on�iting

with Quantum Mehanis. The arguments detailed in [6℄ apply without signi�ant modi�ation.

When these onsiderations are further applied to the olletive dynamis of the string, new

situations need to be addressed. Consider a loop of large radius whih folds and begins to ross

itself. In the absene of experimental evidene and absene of onlusive theoretial alulation

two possibilites are usually onsidered, one where the two olliding segments pass through and

the other where they inter-ommute, produing two smaller loops. Sine the winding number of

the two hild strings would be the same as the parent string the number zero modes on eah of

the hild strigns would be the same as the parent string. If therefore the parent string had half-

integer fermion number, the �nal state would have integer fermion number. To avoid on�it with

quantum mehanial priniples we must insist that the inter-ommuting proess annot our for

the strings with odd number of zero-modes.

In [6℄ it was expliitly shown that a single non-ompat string annot deay in isolation even

if metastable. However no onlusion ould be reahed about formation of loops formed by self-

intersetion of a non-ompat string. With the results of the present paper we an onlude that

formation of loop a by suh a proess is also forbidden for non-ompat strings with odd number

of zero-modes, for the same reason as in preeeding paragraph.

Loops stabilised by quantum mehanial onsiderations would be extremely important to Cos-

mology, where suh loops an onstitute Cold Dark Matter [17℄[18℄. We may assume that the

proess of shrinking of the loop under its own tension an ontinue till some small radius is

reahed, presumably of the order of the Compton wavelength of the fermions. Provided that

fermions are muh lighter, suh a length would be large ompared to the ross-setion of the string

haraterised by gauge boson and salar masses. Suh a state would then be indistinguishable

for lassial purposes from a fundamental partile. While all the mutually interating partiles

would deay into the lightest available partile state subjet to onserved quantum numbers, heavy

states suh as stabilised string loops would persist and serve as Dark Matter. Conversely, uni�ed

theories implying unaeptable abundane of suh stabilised loops would be ruled out by suh

onsiderations.
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