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TOWARD LOGARITHMIC EXTENSIONS OF ŝℓ(2)k
CONFORMAL FIELD MODELS

A.M. SEMIKHATOV

ABSTRACT. For positive integerp= k+2, we construct a logarithmic extension of the
ŝℓ(2)k conformal field theory of integrable representations by taking the kernel of two
fermionic screening operators in a three-boson realization of ŝℓ(2)k. The currentsW−(z)
andW+(z) of aW-algebra acting in the kernel are determined by a highest-weight state
of dimension 4p−2 and charge 2p−1, and a(θ =1)-twisted highest-weight state of the
same dimension 4p−2 and charge−2p+1. We construct 2p W-algebra representations,
evaluate their characters, and show that together with thep−1 integrable representation
characters they generate a modular group representation whose structure is described as
a deformation of the(9p−3)-dimensional representationRp+1⊕ C2⊗Rp+1⊕Rp−1 ⊕
C

2⊗Rp−1⊕ C
3⊗Rp−1, whereRp−1 is theSL(2,Z) representation on integrable rep-

resentation characters andRp+1 is a(p+1)-dimensionalSL(2,Z) representation known
from the logarithmic(p,1) model. The dimension 9p−3 is conjecturally the dimen-
sion of the space of torus amplitudes, and theCn with n = 2 and 3 suggest the Jordan
cell sizes in indecomposableW-algebra modules. Under Hamiltonian reduction, theW-
algebra currents map into the currents of the tripletW-algebra of the logarithmic(p,1)
model.
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1. INTRODUCTION

Logarithmic conformal field theories in two dimensions [1, 2] are attracting some at-
tention from different standpoints: in the context closestto the subject of this paper,
in [3, 4, 5, 6] and, as regards the extended (W-)algebras, in [7, 8, 9, 10, 11, 12]; in
the context of boundary conformal field theories, in [13, 14, 15]; mathematically, var-
ious aspects of logarithmic conformal models and related structures in vertex-operator
algebras were considered in [16, 17, 18, 19]; relations to statistical-mechanics models
have been studied in [20, 21, 22]; various aspects of logarithmic models were elabo-
rated in [8, 23, 24, 10, 25, 26, 27, 28, 29, 30]; relations to quantum groups and a “non-
semisimple” extension of the Kazhdan–Lusztig correspondence [31] were investigated
in [11, 32, 33, 15]. Logarithmic conformal field theories can be viewed as an extension
of rational conformal field theories [34, 35, 36, 37] to the case involving indecomposable
representations of the chiral algebra. Identification of the chiral algebra itself requires
some care in logarithmic models: in the known examples, starting with the pioneering
works [7, 2, 8], the chiral algebra is not the “naive,” manifest symmetry algebra (e.g.,
Virasoro) but its nonlinear extension, i.e., someW-algebra (cf. [4, 10, 11, 12]).

A systematic way to define a logarithmic conformal field theory model is to take
the kernel of the differential in a complex associated with screening operators acting
in appropriate free-field spaces. Constructed this way, logarithmic models are a natural
generalization of rational ones (which are just the cohomology of the same differential,
cf. [38, 39]), but can also be defined in the case where the cohomology is trivial and there-
fore the rational model is empty [10]. Furthermore, defining logarithmic models in terms
of a kernel of screenings suggests chiralW-algebras of these models; in the known(p,1)
and(p,q) cases, theW-algebra that is the symmetry of the model is the maximum local
algebra acting in the kernel.

In this paper, the “screening-based” approach is used to logarithmically extend the
well-known ŝℓ(2)k minimal models of integrable representations. Part of the motivation
is in the general popularity of WZW-related models and the possibility of constructing
coset models in particular. But success is not guaranteed a priori.

Two relateddifficulties can be perceived in carrying the previously developed meth-
ods over to theories where the “naive” symmetry algebra (theone that is manifest before
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identifying theW-algebra) is an affine Lie algebra. First, the characters acquire a de-
pendence onν ∈ C, in addition to the modular parameterτ ∈ h; then, whenever the
W-algebra characters involve derivatives of theta-functions (which is a typical feature of
logarithmic conformal field theories), predictable complications with modular transfor-
mation properties occur. Second, representations multiply under the spectral flow action,
to infinity in general; this seems to take us even farther awayfrom the rational class
than the generous setting of logarithmic conformal field theory may allow. But the situa-
tion with infinitely many inequivalent representations produced by the spectral flow is in
fact already encountered in the more familiar setting of admissible representations [40]
of affine Lie algebras,̂sℓ(2) in particular. If the characters are understood in appropri-
ate analytic-continuation terms, the number of the resulting character functionsis finite
(cf. [41, 42, 43]) and, moreover, a finite-dimensional modular group representation is
realized on them. An extra complication occurring in the logarithmic/nonsemisimple
case is that the space of torus amplitudes is not exhausted bythe characters, and there-
fore some other functions, which are not characters, come into play. In the “ν-free”
cases studied previously, thesegeneralized characterstypically had the form of char-
acters times polynomials inτ, with the degree of the polynomials determined by the
Jordan cell size [12]; we have to see how this behavior is affected by the appearance
of a ν variable. Continuing with challenges encountered in the study of logarithmic
conformal field theories, we mention that theirW-symmetries are rather complicated
algebras whose representation theory is poorly understoodin general.

Our aim is to report that despite these complications, it is nevertheless possible to
achieve certain consistency in constructing logarithmic extensions of the minimal̂sℓ(2)
models following the strategy “screenings−→ kernel−→W-algebra−→ characters−→
generalized characters and modular transformations.” Consistencyhere refers to modu-
lar transformations, whose closure is a very strong consistency check for various struc-
tures in conformal field theory. It has been observed in somewhat different situations
in [42, 41] (and maybe elsewhere) that the closure of a set of characterfunctions un-
der the spectral flow tends to imply their closure under modular transformations. To a
certain extent, this is also the case with the proposed logarithmic ŝℓ(2) theory, where,
as in other logarithmic models, generalized characters occur in addition, but where also
“absorbing” the explicitν dependence requires introducing a matrix automorphy fac-
tor, i.e., changing a (right)SL(2,Z)-action γ : f (τ,ν) 7→ f (γτ,γν), γ ∈ SL(2,Z), into
γ : f (τ,ν) 7→ j(γ;τ,ν) f (γτ,γν), wherej is a function onSL(2,Z)×h×C (matrix-valued
if f is a vector) satisfying the cocycle condition

j(γγ ′;τ,ν) = j(γ ′;τ,ν) j(γ;γ ′τ,γ ′ν), j(1;τ,ν) = 1.

We start with screenings that single out theŝℓ(2) algebra as their centralizer in a three-
boson realization. There are two a priori inequivalent possibilities for this, involving
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either one bosonic and one fermionic or two fermionic screenings. The option chosen in
this paper is the one withtwo fermionic screenings. Two fermionic screeningsQ− and
Q+ give rise to complexes of a somewhat unusualЖ-shape
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which is anŝℓ(2) version of the butterfly resolution in [44] (also see [45]). The sites
denote twisted (and typically highly reducible)ŝℓ(2)k-modules.1 The two types of arrows,
north-east and south-east, correspond to the two fermionicscreenings, whose composition
gives the middle link.For positive integer k+2, the two screenings commute with each
other. Whenever the cohomology is nontrivial, it sits at the “right eye” (∗) and gives an
integrable representation. We also construct and use several acyclic butterfly complexes.

That the resolution involveŝsℓ(2)-representations of arbitrarily large twists leads to
a number of problems (e.g., reasonably weighted sums of their characters diverge). In
following the “screenings−→ kernel−→W-algebra−→ . . . ” strategy, we therefore take
the kernels not in all the modules constituting the butterflyresolution but only in the
untwisted ones (those at the horizontal symmetry line). Accordingly, theW-algebra
that we identify maps only horizontally between theŝℓ(2)k-modules associated with the
sites in (1.1). The currentsW−(z) andW+(z) generating theW-algebra are determined
by singular vectors representing a highest-weight state ofdimension 4p−2 and charge
2p−1, and a (θ = 1)-twisted highest-weight state of the same dimension 4p−2 and
charge−2p+1, wherep = k+ 2. More precisely, we letEn andFn be theŝℓ(2) gen-
erators (with[Em, Fn] = kmδm+n,0+2Hm+n) and write|λ ;θ〉 for a highest-weight vector
with spin λ and twistθ (see Sec.2.1.2 for the details). Letλ+(r,s) = r−1

2 − ps−1
2 and

λ−(r,s) = − r+1
2 + ps

2. TheW-algebra currentsW−(z) andW+(z) are the operators cor-
responding to the states

|W−〉= (F−1)
3p−1(E0)

2p−1(F−1)
p−1(E0)

−1(F−1)
−p−1|λ+(p−1,3);1〉,(1.2)

|W+〉= (E−1)
3p−1|λ−(3p−1,1);0〉,(1.3)

1The butterfly resolution differs from Felder-type resolutions [38, 39] not only in its shape but also in
that the modules farther away from the horizontal symmetry axis of the butterfly have progressively higher
twists (parameters of spectral flow transformations). The spectral flow can be visualized to map vertically
in (1.1), with the result that the butterfly starts “flying.”
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where negative powers are to be understood as explained in [46].

For thisW-algebra, we construct 2p of its representations, denoted byY±r , 16 r 6 p,
evaluate their charactersχ ±

r (τ,ν), and study their spectral-flow and modular transfor-
mation properties. Because the representation theory of this W-algebra is largely unex-
plored,2 we actually use the spectral flow to generate a set of character functions on which
the modular group action may be expected to close if an appropriate number of general-
ized characters (involving polynomials inτ) are added. In a sense, we compensate for the
poorly knownW-algebra representation theory by seeking a modular group representa-
tion generated from a set of thoseW-algebra characters that we can explicitly evaluate by
honest representation theory. The precise result is as follows.

Main result. The modular group representation generated from W-algebracharacters
in the logarithmicŝℓ(2)k model with positive integer p= k+2 is a deformation, via a
matrix automorphy factor, of the direct sum

(1.4) Rp+1⊕C
2⊗Rp+1 ⊕ Rint(p)⊕C

2⊗Rint(p)⊕C
3⊗Rint(p),

whereRint(p) is the(p−1)-dimensional SL(2,Z) representation on the integrablêsℓ(2)k

characters,Rp+1 is a (p+1)-dimensional representation,C2 is the defining two-dimen-
sional representation, andC3 is its symmetrized square; the matrix automorphy factor
becomes equal to the identity matrix atν = 0.

Fulfilling the general expectation [9, 6], we next show (Theorem5.1) that the Hamil-
tonian reduction indeed relates the logarithmicŝℓ(2)k to the logarithmic(p= k+2,1)
models: the W-algebra generators in(1.2) and (1.3) map under the Hamiltonian re-
duction to generators of the triplet W-algebra[7, 2, 8] of the(p,1) logarithmic model,
which were defined in [10] in terms of a Virasoro screening. We note that theSL(2,Z)
representation on generalized characters in the logarithmic (p,1) model was evaluated
asRp+1⊕C2⊗Rint(p) in [11]; the Hamiltonian reduction argument, in particular, “ex-
plains” the occurrence ofRint(p) there.3

The total dimension 9p−3 of theSL(2,Z)-representation in (1.4) is a likely candidate
for the dimension of the space of torus amplitudes, if such a finite-dimensional space
can be constructed at all following one of the more direct approaches. Then = 2 and 3
in theCn tensor factors entering (1.4) suggest the Jordan cell sizes to be encountered in
indecomposableW-algebra modules.

2W-algebras in logarithmic models can be viewed as extensionsof “minimal” (e.g., Virasoro or, in our
case,̂sℓ(2)) algebras by (descendants of) certain vertex operators. Vertex-operator extensions have attracted
some general interest, e.g., in [47, 48, 49, 50, 51].

3Hamiltonian reduction at the level of conformal blocks (solutions of the Knizhnik–Zamolodchikov
equations, see [52] and the references therein) was studied in [9] to analyze logarithmic extensions of(p,q)
minimal models and, in particular, gave evidence in favor ofthe existence of aW-algebra in these models.
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Theν variable in the argument of the characters can in hindsight be seen to result in
producing deformations of direct sums ofSL(2,Z) representations. The

(
2p+(p−1)

)
-

dimensional space spanned by theW-algebra characters
(
χ ±

r (τ,ν)
)

16r6p and the inte-

grable ŝℓ(2)k-representation characters
(
χ r(τ,ν)

)
16r6p−1 is extended to the(9p−3)-

dimensional space in (1.4) due to two mechanisms. First, the spectral flow closes if 2p
functionsω±

r (τ,ν), 16 r 6 p, are added. We treat them on equal footing with characters,
although their representation-theory meaning is not discussed here. Second, as with the
“ν-free” characters of logarithmic conformal field theories known previously [11, 12],
certain combinations of theχ ±

r (τ,ν), χ r(τ,ν), ω±
r (τ,ν) become parts of multiplets, i.e.,

transform in representations of the formCn⊗π , whereπ is someSL(2,Z) representation
andCn is C2 or C3 realized on polynomials inτ of the respective degrees 1 and 2. But
it then turns out that the explicit occurrences of theν variable in modular transformation
formulas results not only in “mixing” different modular-group representations with each
other but also in proliferating the number of functions involved, as is already clear from
theν 7→ ν/(cτ +d) transformations introducing a fractional-linear factor.This behavior
can be “absorbed” into a matrix automorphy factor, isolating which leaves us just with
the representation in (1.4).4

Notation. We fix the levelk as any complex number not equal to−2 in Sec.2 and as
k ∈ {0,1,2, . . .} (and occasionallyk = −1) starting with3.2. We also use the notation
p = k+2, with the apologies for a certain lack of consistency, in that a formula or two
neighboring formulas may contain bothk andp. Similar negligence is shown regarding
another global notation,j = r−1

2 : both j andr are used interchangeably.

Remark. The paper contains quite a few pictures of the subquotient structure of the
relevant modules and maps between them. An alternative way of delivering the same
information would be a comparable abundance of formal notation, making sense out of
which would anyway require some visualization. The reader inclined to giving each
object a special name and a defining formula that makes all theparameters explicit must
be able to reconstruct the details from the numerous labels in the pictures (e.g., as in
Fig. 3.1(p. 16) below).

This paper is organized as follows. In Sec.2, we fix the notation and conventions
and recall standard facts about theŝℓ(2) algebra, the spectral flow, and singular vec-
tors in ŝℓ(2) Verma modules, and then introduce the bosonization and the corresponding
screenings to be used in what follows. In Sec.3, we construct the butterfly resolution

4The need to introduce a matrix automorphy factor in order to extract a finite-dimensionalSL(2,Z)-
representation of course reflects certain “pathologies” inherent in the adopted setting, where the number of
free fields (3) is larger than the number of screenings (2). Ascan be seen in [53], a more natural object
from the “screening/quantum-group” standpoint may be given by the cosetŝℓ(2)/u(1), but we leave its
“logarithmization” for the future.
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of integrable representations and several acyclic butterfly complexes. This gives enough
information for constructing theW-algebra generatorsW±(z) and representationsY±r ,
1 6 r 6 p, and evaluating the characters of the latter in Sec.4. We also study the
spectral-flow and modular transformation properties of thecharacters (extended by other
functions) in Sec.4. In Sec.5, we evaluate the Hamiltonian reduction of theW±(z)
generators, showing that they map into the generators of thetripletW-algebra of the log-
arithmic(p,1)-models. Section6 is a list of things that have not been done in this paper
but are potentially interesting, even if some of them prove impracticable.

AppendixA pertains entirely to Sec.3 and serves to recall the embedding structure
of ŝℓ(2)k Verma modules; most readers may ignore it altogether. Appendix B sets the
notation and summarizes some facts about theta-functions,extensively used in Sec.4.
AppendixC contains a rather explicit description of extensions amongSL(2,Z) repre-
sentations in their “functional” realization, which occurin Sec.4.

2. THE ŝℓ(2) ALGEBRA

In this section, we set the notation for thêsℓ(2) algebra, its twisted modules, and sin-
gular vectors in Verma modules. We then introduce the three-boson realization of̂sℓ(2)
and the corresponding screenings.

2.1. The algebra, spectral flow, and twisted Verma modules.The level-k affine alge-
bra ŝℓ(2)k is defined by the commutation relations

(2.1)
[Hm, En] = Em+n, [Hm, Fn] =−Fm+n, [Hm, Hn] =

k
2

mδm+n,0,

[Em, Fn] = kmδm+n,0+2Hm+n,

with m,n ∈ Z. In terms of the currentsX(z) = ∑n∈ZXnz−n−1, X = E, H, F , the above
commutation relations are reformulated as the OPEs

(2.2)
H(z)E(w) =

E(w)
z−w

, H(z)F(w) =
−F(w)
z−w

,

E(z)F(w) =
k

(z−w)2 +
2H(w)
z−w

, H(z)H(w) =
k/2

(z−w)2 .

and the Sugawara energy-momentum tensor is given by the standard expression

TSug(z) =
1

k+2

(
1
2

E(z)F(z)+
1
2

F(z)E(z)+H(z)H(z)
)

(here and below, normal ordering is understood; for brevity, we sometimes writeAB(z)
instead of the normal-ordered productA(z)B(z)). Generators of the Virasoro algebra with

central chargec=
3k

k+2
are then introduced viaTSug(z) = ∑n∈ZLnz−n−2.

For eachθ ∈ Z, there is an̂sℓ(2)k automorphism given by the so-called spectral flow
transformation (see [54])

(2.3) Uθ : En 7→ En+θ , Fn 7→ Fn−θ , Hn 7→ Hn+
k
2

θδn,0
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Spectral-flow transforming anŷsℓ(2)-moduleC givestwistedmodulesUθ C= C;θ .5

For anyŝℓ(2)k-moduleC, its character is

(2.4) χ C(q,z) = Tr
C

(
qL0− c

24 zH0
)
.

We let χ C

;θ (q,z) denote the characterχ C;θ (q,z) of twisted modules. In what follows, we
frequently use the following elementary result.

2.1.1. Lemma([41]). LetC be anŝℓ(2)k-module. Then

(2.5) χ C

;θ (q,z) = q
k
4θ 2

z−
k
2θ χ C(q,zq−θ ).

2.1.2. Twisted Verma modules.We next fix our conventions regarding twisted Verma
modules. Forλ ∈ C and θ ∈ Z, the twisted Verma moduleMλ ;θ is freely generated
by E6θ−1, F6−θ , andH6−1 from a twisted highest-weight vector|λ ;θ〉 defined by the
conditions

E>θ |λ ;θ〉= H>1 |λ ;θ 〉= F>−θ+1 |λ ;θ〉= 0,
(
H0+

k
2

θ
)
|λ ;θ〉= λ |λ ;θ〉.

(2.6)

It follows that

L0 |λ ;θ〉= ∆λ ;θ |λ ;θ〉, ∆λ ;θ =
λ 2+λ
k+2

−θλ +
k
4

θ2.

For kθ 6= 0, we must therefore distinguish between the eigenvalue ofH0 on a twisted
highest-weight state and the spectral-flow-independent parameterλ (which, e.g., deter-
mines the existence of singular vectors inMλ ;θ ). We say that the eigenvalue of H0 is the
chargeand λ is thespin of |λ ;θ〉. Settingθ = 0 gives the usual (“untwisted”) Verma
modules. We write|λ 〉= |λ ;0〉 and, similarly,Mλ =Mλ ;0.

We write|α〉 .
= |λ ;θ〉 whenever conditions (2.6) are satisfied for a state|α〉.

The character of a twisted Verma moduleMλ ;θ can be conveniently written in terms of
h= λ − k

2 θ , the eigenvalue ofH0 in (2.6), as

(2.7) χ M

λ ;θ (q,z) = (−1)θ q
(h−θ+1

2)
2

k+2 − 1
8 zh−θ

ϑ1,1(q,z)

(see (B.3) for ϑ1,1).

Twists, although producing nonequivalent modules, do not alter the submodule grid
structure, and we can therefore reformulate a classic result as follows.

2.2. Theorem([55, 46]). A singular vector exists in a twisted̂sℓ(2) Verma moduleMλ ;θ
if and only ifλ can be written asλ = λ+(r,s) or λ = λ−(r,s) with r,s∈ N, where

5An automorphismα of an algebraa maps ana-moduleM into a moduleαM on which the algebra
acts asa.(α m) = α(α−1(a).m), a∈ a, m∈ M. Thea-representations onM andαM arenot equivalent in
general.
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λ+(r,s) =
r−1

2
− (k+2)

s−1
2

,

λ−(r,s) =− r+1
2

+(k+2)
s
2
.

Wheneverλ = λ+(r,s), the singular vector is given by

(2.8) |MFF+(r,s;θ |λ )〉= (F−θ )
r+(s−1)(k+2)(Eθ−1)

r+(s−2)(k+2)(F−θ )
r+(s−3)(k+2) . . .

· (Eθ−1)
r−(s−2)(k+2)(F−θ )

r−(s−1)(k+2)|λ ;θ〉.
Wheneverλ = λ−(r,s), the singular vector is given by

(2.9) |MFF−(r,s;θ |λ )〉= (Eθ−1)
r+(s−1)(k+2)(F−θ )

r+(s−2)(k+2)(Eθ−1)
r+(s−3)(k+2) . . .

· (F−θ)
r−(s−2)(k+2)(Eθ−1)

r−(s−1)(k+2)|λ ;θ〉.

We recall that these formulas yield polynomial expressionsin the currents via repeated
application of (the spectral-flow transform of) the formulas

(F0)
α Em =−α(α −1)Fm(F0)

α−2−2αHm(F0)
α−1+Em(F0)

α ,

(F0)
α Hm= αFm(F0)

α−1+Hm(F0)
α ,

(E−1)
α Fm =−α(α −1)Em−2(E−1)

α−2−kα δm−1,0(E−1)
α−1(2.10)

+2αHm−1(E−1)
α−1+Fm(E−1)

α ,

(E−1)
α Hm=−αEm−1(E−1)

α−1+Hm(E−1)
α ,

which can be derived for positive integerα and then continued to arbitrary complexα.

2.2.1. Fors= 1, singular vectors (2.8) and (2.9) do not require any algebraic rearrange-
ments and take the simple form

(2.11) |MFF+(r,1;θ |λ )〉= (F−θ )
r |λ ;θ〉, |MFF−(r,1;θ |λ )〉= (Eθ−1)

r |λ ;θ〉.

2.2.2. Another special case to be used in what follows occurs for positive integerp =

k+2 andλ = λ+(p,s). From (2.8), we then have

(2.12) |MFF+(p,s)〉= (F0)
sp(E−1)

(s−1)p|λ 〉.
If s= 1, we return to (2.11), but if s> 2, then the corresponding state|λ 〉 with λ =

p− ps+1
2 also admits the singular vector|MFF−(p(s−1),1)〉, through which|MFF+(p,s)〉

is actually seen to factor in (2.12).

Similarly, if λ = λ−(p,s), the corresponding singular vector becomes

(2.13) |MFF−(p,s)〉= (E−1)
sp(F0)

(s−1)p|λ 〉,
which factors through|MFF+(p(s−1),1)〉 whenevers> 2.
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2.3. Integrable representation characters.For positive integerk+2, the characters of
the integrable representationsIr , r = 1, . . . ,k+1, are given by

(2.14) χ r(q,z)≡ χ I

r (q,z) =
θr,p(q,z)−θ−r,p(q,z)

Ω(q,z)
, r = 1, . . . , p−1

where

(2.15) Ω(q,z) = q
1
8z

1
2 ϑ1,1(q,z).

The integrable representation characters are holomorphicin z∈ C and transform under
the spectral flow asχ r;1(q,z) = χ p−r(q,z).

2.4. Bosonization and fermionic screenings.We keep the levelk fixed, temporarily
at any complex value not equal to−2. We introduce the well-known bosonization of
the ŝℓ(2)k algebra associated with two fermionic screenings, following the conventions
in [53] (where two ŝℓ(2) bosonizations are discussed from a unified standpoint and a
more general case is also considered; the bosonization chosen here is termedsymmetric
in [53], for the reasons that become quite obvious when it is compared with the other,
nonsymmetric bosonization also discussed there).

2.4.1. “Symmetric” three-boson realization. Let ξ,ψ−, andψ+ be three vectors inC3

with the scalar products

ξ .ξ= 0, ξ .ψ− = 1, ξ .ψ+ =−1,

ψ− .ψ− = 1, ψ− .ψ+ = k+1,(2.16)

ψ+ .ψ+ = 1

(the determinant of the Gram matrix is equal to−2(k+ 2), and hence the vectors are
defined uniquely modulo an overall rotation). We introduce atriple of scalar fieldsϕ =

(ϕ1,ϕ2,ϕ3), in the standard basis, with the OPEs

∂ϕi(z)∂ϕ j(w) =
δi, j

(z−w)2 ,

where∂ f (z) = ∂ f (z)
∂z . For anya∈ C3, let a . ∂ϕ (as well asa .ϕ) denote the Euclidean

scalar product.

It is easy to verify that the currents

E(z) =ψ+ .∂ϕ(z)eξ.ϕ(z),

H(z) =
1
2
(kξ+ψ−−ψ+) .∂ϕ(z),

F(z) =ψ− .∂ϕ(z)e−ξ.ϕ(z)

(2.17)

satisfy theŝℓ(2)k OPEs. We refer to these formulas as the three-boson realization (bosoniza-
tion) of ŝℓ(2)k (its relation to the Wakimoto representation [56, 57] is established by
bosonizing the first-orderβγ system involved in the Wakimoto representation). The
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bosonized form of the Sugawara energy-momentum tensor is given by a standard for-
mula involving the inverse of the Gram matrix ofξ, ψ−, andψ+ [53]. We keep the
notationLn for the corresponding Virasoro generators.

2.4.2. Screenings.The bosonization in (2.17) is associated with two fermionic screen-
ings

(2.18) Q− =
∮

eψ−.ϕ , Q+ =
∮

eψ+.ϕ .

Simple calculation shows that they indeed commute with theŝℓ(2)k currents in (2.17).

In what follows, we no longer use the components(∂ϕ1,∂ϕ2,∂ϕ3) of ∂ϕ, and instead
sometimes use the notation

∂ϕ−(z) =ψ− .∂ϕ(z), ∂ϕ+(z) = ψ+ .∂ϕ(z), ∂ϕ0(z) = ξ .∂ϕ(z).

3. TWISTED WAKIMOTO -TYPE MODULES AND BUTTERFLY COMPLEXES

The bosonization of̂sℓ(2)k introduced in2.4 gives rise to Wakimoto-type free-field
modules [56, 57]. The aim of this section is to construct complexes of twisted free-field
modules using the two fermionic screenings. We begin in3.1 with defining the relevant
vertex operators and give simple formulas for the action ofŝℓ(2) generators on them; these
formulas are then used in evaluating singular vectors in terms of the above bosonization
and screenings. A foregone conclusion is that “half” the singular vectors in Wakimoto-
type modules vanish. The emerging pattern can then be rephrased as the existence of the
desired complexes. In3.2, we construct the butterfly resolutions of integrable representa-
tions, with the cohomology concentrated in the “right eye.”The complexes in3.3and3.4
are acyclic.

The reader may wish to skip this long and rather technical section and come back to
the results in it when they are actually needed, and proceed directly to Sec.4.

3.1. Vertex operators and states.We introduce the family of vertex operators

(3.1) Uλ ,h,θ−,θ+(z) = e(hξ+( λ
k+2−θ−)ψ−+( λ

k+2−θ+)ψ+).ϕ(z)

and the corresponding states|λ ,h,θ−,θ+〉〉. The parameterization is redundant, the vertex
being unchanged under

(3.2) λ 7→ λ + pα, θ± 7→ θ±+α

for arbitraryα. When we restrict to positive integerk+2 in what follows, we take 2λ +

1∈ {1, . . . ,2(k+2)}, h∓λ ∈ Z, andθ± ∈ Z, with θ− andθ+ of the same sign (hence the
two, not four, wings of the butterfly).

The|λ ,h,θ−,θ+〉〉 states are Virasoro primaries and, moreover,ŝℓ(2)k relaxed highest-
weight states: the Verma-module highest-weight conditions in (2.6) are relaxed to
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E>θ+1|λ ,h,θ−,θ+〉〉= 0,

F>−θ+1|λ ,h,θ−,θ+〉〉= 0,(3.3)

H>1|λ ,h,θ−,θ+〉〉= 0, θ = θ−−θ+

(which, strictly speaking, requiresθ−−θ+ ∈ Z); moreover, as is easy to verify,

(3.4)
Eθ−−θ+|λ ,h,θ−,θ+〉〉= (λ −h−θ−(k+1)−θ+)|λ ,h+1,θ−,θ+〉〉,
Fθ+−θ−|λ ,h,θ−,θ+〉〉= (λ +h−θ−− (k+1)θ+)|λ ,h−1,θ−,θ+〉〉.

It also follows that
H0|λ ,h,θ−,θ+〉〉= h|λ ,h,θ−,θ+〉〉

(and thereforeh is the charge of the state, in accordance with with the terminology intro-
duced in2.1.2).

The reader is invited to appreciate the significance of the factors(λ −h−θ−(k+1)−
θ+) and(λ +h−θ−− (k+1)θ+) in (3.4) in “strengthening” the relaxed highest-weight
conditions in (3.3) to the twisted highest-weight conditions (2.6) by appropriately choos-
ing the parameters (e.g.,h). We now elaborate on this and several other simple technical
details (the next subsection may be skipped until its results are actually used).

3.1.1. First, it is obvious that

Eθ−−θ+|λ ,h,θ−,θ+〉〉= 0 ⇐⇒ Q+Uλ ,h,θ−,θ+(z) = 0.

Moreover, when this condition is satisfied, the state|λ ,h+1,θ−,θ+〉〉 is mapped byQ+

(see2.4.2) into a twisted highest-weight state with the twistθ− − θ+ + 1. This is an
immediate consequence of the OPE

eψ+.ϕ(z)Uλ ,h,θ−,θ+(w) = (z−w)−h+λ−θ−(k+1)−θ+eψ+.ϕ(z)Uλ ,h,θ−,θ+(w)

(with the normal ordered product in the right-hand side). Properly developing this obser-
vation shows that

(3.5) (Eθ−−θ+−1)
NUλ ,λ−θ−(k+1)−θ+,θ−,θ+(z) =

= (−1) . . .(−N)Q+Uλ ,λ−θ−(k+1)−θ++N,θ−,θ++1(z).

For theU operator in the left-hand side, we have

(3.6) Uλ ,λ−θ−(k+1)−θ+,θ−,θ+
.
= |λ − (k+2)

θ−+θ+
2

;θ−−θ+〉.
It also follows that the “top”F-mode acts on it as

(3.7) (Fθ+−θ−)
NUλ ,λ−θ−(k+1)−θ+,θ−,θ+(z) =

=
Γ(2λ +1− (θ−+θ+)(k+2))

Γ(2λ +1−N− (θ−+θ+)(k+2))
Uλ ,λ−N−θ−(k+1)−θ+,θ−,θ+(z).

The ratio ofΓ-functions here is of course a simple product ofN factors as they fol-
low from (3.4). But (3.7) can be analytically continued to complex values ofN, con-
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sistently with the continuation underlying the construction of the MFF singular vectors
(see (2.10)). Formula (3.5) can be continued similarly, up to an (inessential) sign, ifN! is
replaced with theΓ-function.

Similarly, Fθ+−θ− |λ ,h,θ−,θ+〉〉= 0 ⇐⇒ Q−Uλ ,h,θ−,θ+(z) = 0 and

(3.8) (Fθ+−θ−)
MUλ ,−λ+θ−−1+(k+1)θ+,θ−−1,θ+(z) =

= (−1) . . .(−M)Q−Uλ ,−λ+θ−−1−M+(k+1)θ+,θ−,θ+(z).

Up to a sign, this can be continued to complexM by replacingM! with the Γ-function.
For the operator in the left-hand side of (3.8), we have

(3.9) Uλ ,−λ+θ−−1+(k+1)θ+,θ−−1,θ+
.
= |−λ −1+(k+2)

θ−+θ+
2

;θ−−θ+〉.
It also follows that the “top”E-mode acts on this state as

(3.10) (Eθ−−θ+−1)
NUλ ,−λ+θ−−1+(k+1)θ+,θ−−1,θ+ =

=
Γ(2λ +1− (θ−+θ+−1)(k+2))

Γ(2λ +1−N− (θ−+θ+−1)(k+2))
Uλ ,−λ+N+θ−−1+(k+1)θ+,θ−−1,θ+.

3.1.2. The above formulas provide a bridge between the MFF singularvectors and the
screenings, in accordance with the well-known fact that “half” the singular vectors in
Wakimoto modules vanish. For example, ifλ is chosen asλ = r−1

2 with a positive inte-
gerr, the|MFF+(r,θ−+θ++1;θ−−θ+)〉 singular vector can be constructed on the state
in (3.6). Recalling (2.8), we then evaluate the action of the first (rightmost) operator fac-
tor (F−θ−+θ+)

r−(θ−+θ+)(k+2) using (3.7). As noted above, Eq. (3.7) is applicable for any
complexk 6=−2 and hence a complex exponentr−(θ−+θ+)(k+2). The result vanishes
when evaluated atN = r − (θ−+θ+)(k+2).

Butterfly complexes

From now on, we assume thatp= k+2∈ {1,2, . . .} and consider̂sℓ(2) modules whose
elements are given by the vertices (3.1) and their descendants with

(3.11) 2λ +1∈ {1, . . . ,2p}, h−λ ∈ Z

and integerθ±.

The first consequence of restricting to integerk>−1 is that the two fermionic screen-
ingsQ− andQ+ become local with respect to each other and, moreover, (super)commute.
Indeed, we have the regular operator producteψ−.ϕ(z)eψ+.ϕ(w) ∝ (z−w)k+1.

The range of 2p different values ofλ in (3.11) is covered in what follows by consid-
eringλ = r−1

2 with r = 1, . . . , p−1 in 3.2 (with the spins of integrable representations),
λ = p

2 +
r−1

2 in 3.3, and two remaining values in3.4.
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3.2. Butterfly resolutions of integrable representations.The aim of this subsection is
to construct resolutions of integrable representations ofform (1.1), with the map in the
center given by the compositionQ− ◦Q+.

In each wing, the modules are labeled by two integers of the same sign. With a “global”
numbering of all of them (e.g., withθ− andθ+ ranging from minus to plus infinity), those
in one of the wings would be labeled with negative integers; but analyzing the structure
of modules dependent on expressions like−θ− − θ+ − 1 with negativeθ− and θ+ is
somewhat counter-intuitive, and we therefore choose a “local” numbering in each wing,
with positive integers in either case:

m,n> 1 in the left wing,

m,n> 0 in the right wing,
(3.12)

but with the notation for right-wing objects acquiring a prime.

3.2.1. Left wing. For compactness of the formulas, we use the notation

(3.13) j =
r −1

2
.

For positive integerm andn, we define the operator

(3.14) Um,n[r](z) = e
([n−1+m(k+1)− j ]ξ+ j

k+2(ψ−+ψ+)−nψ−−mψ+).ϕ(z)

(which isU j ,n−1+m(k+1)− j ,n,m(z) in the nomenclature of3.1) and letUm,n[r] denote the

corresponding Wakimoto-type module, i.e., theŝℓ(2)k-module on the free-field space gen-
erated fromUm,n[r] (abusing the terminology, we sometimes say for brevity thatUm,n[r]
is “generated” fromUm,n[r]). The extremal diagram of the module (tilted in accordance
with the twistn−m) can be represented as

(3.15)

•

Rm,n[r]

kerQ−•

En−mUm,n[r]

•

Fm−n

Vm,n[r]

•

Lm,n[r]

kerQ+

As follows from3.1, Um,n[r] defines a relaxed highest-weight state,6

En−m+1Um,n[r] = Fm−n+1Um,n[r] = 0,

and acting onUm,n[r] with (Fm−n)
(m+n)(k+2)−(2 j+1) gives the operator/state

Lm,n[r](z) = e
([ j−n(k+1)−m]ξ+ j

k+2(ψ−+ψ+)−nψ−−mψ+).ϕ(z)(3.16)

.
=
∣∣∣ r−1

2
− (k+2)

m+n
2

;n−m
〉
,

6For notational simplicity, we no longer distinguish between operators and the corresponding states. We
also omit nonzero factors in the normalization of states.
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a twisted highest-weight state with the spinλ+(r,n+m+1) = λ−((m+n+1)(k+2)− r,
1). TheEn−m andFm−n arrows in (3.15) map into twisted highest-weight states (“charged”
singular vectors): for example, as is easy to verify,

En−mUm,n[r]≡ Rm,n[r](z) = e
([n+m(k+1)− j ]ξ+ j

k+2(ψ−+ψ+)−nψ−−mψ+).ϕ(z)(3.17)
.
= |λ+((m+n+1)p− r,1);n−m+1〉.

We also note the OPEeψ+.ϕ(u)Lm+1,n[r](z) = reg, whenceQ+Lm,n[r](z) = 0; it follows
similarly thatQ−Rm,n[r](z) = 0.

Sugawara dimensions of the operatorsLm,n[r] andRm,n[r] are

∆Lm,n[r] =
( j −n(k+2))( j −n(k+2)+1)

k+2
− 1

2
(m−n)(m−n+1),

∆Rm,n[r] =
( j −m(k+2))( j −m(k+2)+1)

k+2
− 1

2
(m−n−1)(m−n).

The subquotient structure of the moduleLm,n[r] “generated” fromLm,n[r] is shown in
the well-known picture in Fig.3.1. We use the same convention as in AppendixA to
direct arrows toward submodules. The embedding structure of Lm,n[r] can be considered
a result of the vanishing of “half” the singular vectors in the free-field realization (2.17).
The filled dots in the figure represent operators of the form

(3.18) P[∂ϕ(z)]e(
hξ+ j

k+2(ψ−+ψ+)−nψ−−mψ+).ϕ(z)
,

whereP is a differential polynomial (in the three currents∂ϕ0(z), ∂ϕ−(z), and∂ϕ+(z))
andthe values of h are shown in square brackets at the corresponding nodes. In particular,
for the operators/states labeledK+

b , b= 2,3, . . . , in Fig. 3.1, we have

K+
b (z) = Pb[∂ϕ(z)]e(hbξ+

j
k+2(ψ−+ψ+)−nψ−−mψ+).ϕ(z)

,

where

(3.19) hb =




− r+1

2 +n+ b
2 +
(
m+ b

2

)
(k+1), b even,

r−1
2

+n+ b−1
2 +

(
m+ b−1

2

)
(k+1), b odd.

The character of the irreducible subquotientKb corresponding toK+
b follows from

(A.4), (A.5), and (2.5): for b> 1, we have (with the dependence onm andn indicated as
a subscript)

(3.20) χ K2b
m,n (q,z) =

(−1)n−m

q
1
8 ϑ1,1(q,z)

(
∑
a>0

+ ∑
a6−n−m−2b

)(
q

p
(

r
2p−(m+b+a)

)2

z−
r+1

2 +(m+b+a)p

−q
p
(

r
2p−(n+b+a)

)2

z
r−1

2 −(n+b+a)p
)
,
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•

•

• •

• •

• •

(p−r,m+n+2)+;n−m

(p−r,m+n+4)+;n−m (p−r,m+n+3)−;n−m

((m+n+1)p−r,1)−;n−m

((m+n+1)p+r,1)−;n−m

((m+n+3)p−r,1)−;n−m

((m+n+3)p+r,1)−;n−m

Lm,n[r][ r−1
2 −n(k+1)−m]

[− r+1
2 −n(k+1)−m]

[ r−1
2 −(n+1)(k+1)−(m+1)]

[− r+1
2 −(n+1)(k+1)−(m+1)]

[ r−1
2 −(n+2)(k+1)−(m+2)]

K+
2

[− r+1
2 +n+1+(m+1)(k+1)]

K+
3

[ r−1
2 +n+1+(m+1)(k+1)]

K+
4

[− r+1
2 +n+2+(m+2)(k+1)]

FIGURE 3.1. Subquotient structure of the left-wing twisted Wakimoto module
Lm,n[r]. For visual clarity, the view is “rotated back” by the spectral flow with
θ = m− n (in the original view, the horizontal arrows are tilted by the angleα
such that tanα = n−m). The values ofh for operators (3.18) are shown in square
brackets (one of these is underlined for later reference). The (a,1)−;n−m arrows
represent nonvanishing singular vectors|MFF−(a,1;n−m)〉, given by simple for-

mula (2.11).

(3.21) χ K2b+1
m,n (q,z) =

(−1)n−m

q
1
8 ϑ1,1(q,z)

(
∑
a>0

+ ∑
a6−n−m−2b−1

)(
q

p
(

r
2p+m+b+a

)2

z
r−1

2 +(m+b+a)p

−q
p
(

r
2p+n+b+a

)2

z−
r+1

2 −(n+b+a)p
)
.

Similarly, and with the same conventions, the subquotient structure of the twisted Waki-
moto moduleRm,n[r] “generated” fromRm,n[r] is shown in Fig.3.2. In the figure, the
overall twist is “undone” by the same amount as for theLm,n[r] module; therefore, in
describing the moduleUm,n[r] with the extremal diagram in (3.15), the two diagrams in
Figs.3.1and3.2must be placed next to each other, in accordance with the grades, which
means placing the top node ofRm,n[r] (m+n)p− r +1 units of charge to the right of the
top node ofLm,n[r]. It then follows that starting with the embedding level ofK+

2 , each
node ofLm,n[r] has a corresponding node ofRm,n[r] as the nearest right neighbor.
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•

•

• •

• •

• •

((m+n+1)p−r,1)+
;n−m+1

(p−r,m+n+3)+
;n−m+1

(p−r,m+n+2)−
;n−m+1

(p−r,m+n+4)−
;n−m+1

((m+n+1)p+r,1)+
;n−m+1

((m+n+3)p−r,1)+
;n−m+1

((m+n+3)p+r,1)+
;n−m+1

Rm,n[r]

[ r+1
2
−(n+1)(k+1)−(m+1)]

[− r−1
2
−(n+1)(k+1)−(m+1)]

[ r+1
2
−(n+2)(k+1)−(m+2)]

[− r−1
2

+n+m(k+1)]

[ r+1
2

+n+m(k+1)]

[− r−1
2

+n+1+(m+1)(k+1)]

[ r+1
2

+n+1+(m+1)(k+1)]

[− r−1
2

+n+2+(m+2)(k+1)]

FIGURE 3.2. Subquotient structure of the left-wing twisted Wakimoto module
Rm,n[r]. For the ease of comparison with Fig.3.1, the picture is “rotated” by the
spectral flow withθ = m−n. As in Fig.3.1, the values ofh are shown in square
brackets (one of these is underlined for later reference).

The moduleUm,n[r] is an extension ofLm,n[r] andRm,n[r]. We do not describe all of
its structure, which we do not need, but describe the occurrence of the kernel of the two
screenings below. For this, we first consider the maps provided by the screenings.

There arêsℓ(2)k-homomorphisms

Q+ : Rm+1,n[r]→ Lm,n[r],(3.22)

Q− : Lm,n+1[r]→ Rm,n[r],(3.23)

whose construction can be outlined as follows. At the level of extremal states (see (3.15)),
we have seen thatLm+1,n[r](z) is annihilated byQ+, but the nearest-neighbor state

Vm+1,n[r] = e
([ j−n(k+1)−m]ξ+ j

k+2(ψ−+ψ+)−nψ−−(m+1)ψ+).ϕ

is mapped underQ+ as

Q+Vm+1,n[r](z) = e
([ j−n(k+1)−m]ξ+ j

k+2(ψ−+ψ+)−nψ−−mψ+).ϕ(z)
= Lm,n[r](z).

Further acting withEn−m−1 gives (up to a nonzero factor)

(3.24) Q+Rm+1,n[r](z) =

= (E−1+n−m)
(m+n+1)(k+2)−r e

([ j−n(k+1)−m]ξ+ j
k+2(ψ−+ψ+)−nψ−−mψ+).ϕ(z)

,
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•

•

• •

• •

• •

(p−r,m+n+2)+;n−m

(p−r,m+n+4)+;n−m (p−r,m+n+3)−;n−m

((m+n+1)p−r,1)−;n−m

((m+n+1)p+r,1)−;n−m

((m+n+3)p−r,1)−;n−m

((m+n+3)p+r,1)−;n−m

Lm,n[r][ r−1
2
−n(k+1)−m]

[− r+1
2
−n(k+1)−m]

[− r+1
2

+n+1+(m+1)(k+1)]

[ r−1
2

+n+1+(m+1)(k+1)]

◦

◦

• ◦

• ◦

((m′+n+1)p−r,1)+
;n−m′+1

(p−r,m′+n+2)−
;n−m′+1

((m′+n+1)p+r,1)+
;n−m′+1

((m′+n+3)p−r,1)+
;n−m′+1

Rm′
,n[r]

[ r+1
2
−(n+1)(k+1)−(m′+1)]

[− r−1
2
−(n+1)(k+1)−(m′+1)]

[− r−1
2

+n+m′(k+1)]

[ r+1
2

+n+m′(k+1)]

[− r−1
2

+n+1+(m′+1)(k+1)]

[ r+1
2

+n+1+(m′+1)(k+1)]

Q+

FIGURE 3.3. The left-wing mapQ+ : Rm+1,n[r] → Lm,n[r]. Filled dots in the
Rm+1,n[r] module denote subquotients that are in the kernel ofQ+.

which is just the|MFF−((m+n+1)(k+2)− r,1;n−m)〉 singular vector constructed on
theLm,n[r] state.

Figure3.3shows further details that make up the definition ofQ+ :Rm+1,n[r]→Lm,n[r].
In the figure, we reproduce the pictures of theLm,n[r] andRm′,n[r] modules, the latter
shown just as in Fig.3.2 for the ease of comparison, but withm′ to be taken equal to
m+ 1. Therefore, the twist ofRm′,n[r] is n−m′ − 1 = n−m− 2, with the result that
the tilted((m′+n+ i)p± r,1)+-arrows in the lower part of the figure (shown boldfaced)
should be drawn horizontally in the conventions applicableto the upper part (we repeat
that the moduleRm′,n[r] is just copied from Fig.3.2). But the map byQ+ places these
tilted ((m′+n+ i)p± r,1)+-arrows just over the horizontal arrows inLm,n[r] (also bold-
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•

•

• •

• •

• •

((m+n+1)p−r,1)+
;n−m+1

(p−r,m+n+3)+
;n−m+1

(p−r,m+n+2)−
;n−m+1

(p−r,m+n+4)−
;n−m+1

((m+n+1)p+r,1)+
;n−m+1

((m+n+3)p−r,1)+
;n−m+1

((m+n+3)p+r,1)+
;n−m+1

Rm,n[r]

[ r+1
2
−(n+1)(k+1)−(m+1)]

[− r−1
2
−(n+1)(k+1)−(m+1)]

[ r+1
2
−(n+2)(k+1)−(m+2)]

[− r−1
2

+n+m(k+1)]

[ r+1
2

+n+m(k+1)]

[− r−1
2

+n+1+(m+1)(k+1)]

[ r+1
2

+n+1+(m+1)(k+1)]

◦

◦

◦ •

◦ •

(p−r,m+n′+2)+
;n′−m

((m+n′+1)p−r,1)−
;n′−m

((m+n′+1)p+r,1)−
;n′−m

((m+n′+3)p−r,1)−
;n′−m

Lm,n′ [r]

[ r−1
2
−n′(k+1)−m]

[− r+1
2
−n′(k+1)−m]

[ r−1
2
−(n′+1)(k+1)−(m+1)]

[− r+1
2
−(n′+1)(k+1)−(m+1)]

[− r+1
2

+n′+1+(m+1)(k+1)]

[ r−1
2

+n′+1+(m+1)(k+1)]

Q−

FIGURE 3.4. The left-wing mapQ− : Lm,n+1[r] → Rm,n[r]. Filled dots in
Lm,n+1[r] denote subquotients that are in the kernel ofQ−.

faced for this reason), which are oppositely directed because of the vanishing singular
vectors; therefore, the tiltedRm′,n[r]-arrows point to the kernel ofQ+.

The mapQ− : Lm,n+1[r]→ Rm,n[r] can be described similarly (see Fig.3.4). We have

Q−Um,n+1[r](z) = e
([n+m(k+1)− j ]ξ+ j

k+2(ψ−+ψ+)−nψ−−mψ+).ϕ(z)
= Rm,n[r](z)

and

(3.25) Q−Lm,n+1[r](z) = (Fm−n−1)
(m+n+1)(k+2)−rRm,n[r](z),
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• • • •

◦ ◦

• • • •

((m+n+1)p−r,1)−;n−m

((m+n+1)p−r,1)+
;n−m+1

Um,n[r] Rm,n[r]Lm,n[r]

K+
2

K−

2

[− r+1
2

+n+1

+(m+1)(k+1)]

[ r+1
2
−(m+1)

−(n+1)(k+1)]

FIGURE 3.5. In the left-wing moduleUm,n[r], the first embedding level where
kerQ−∩kerQ+ is nonzero.

which is just the|MFF+(r ′,1;θ)〉 singular vector withr ′ = (m+n+1)(k+2)− r andθ =

n−m+1, constructed onRm,n[r]. TheLm,n′ [r] module is shown in Fig.3.4 just as in
Fig. 3.1, with n′ to be set equal ton+1. The tiltedLm,n′ [r] - arrows point to the kernel
of Q−.

In a “linear combination” of the notations used in Eq. (3.15) and Figs.A.1 andA.2, the
extremal diagram ofUm,n[r] and the structure within the first several embedding levels are
as shown in Fig3.5. (We donot fully describe the structure of the first embedding level.
There occurs a submodule in the kernel ofQ− and a submodule in the kernel ofQ+, but
the intersection of the kernels is zero.) As before, expressions in square brackets indicate
theh parameter of the corresponding operators (3.18). The arrows pointing atK+

2 andK−
2

from the respective nearest-neighbor states indicate thatthere is asubmodulegenerated
from either of the operators at the target nodes of these arrows,

(3.26) K+
2 = P+

2 e
([− r+1

2 +n+1+(m+1)(k+1)]ξ+ j
k+2(ψ−+ψ+)−nψ−−mψ+).ϕ

= (En−m−1)
(m+n+1)(k+2)−re

([ j−n(k+1)−m]ξ+ j
k+2(ψ−+ψ+)−nψ−−mψ+).ϕ

and

(3.27) K−
2 = P−

2 e
([ r+1

2 −m−1−(n+1)(k+1)]ξ+ j
k+2(ψ−+ψ+)−nψ−−mψ+).ϕ

= (Fm−n−1)
(m+n+1)(k+2)−r e

([n+m(k+1)− j ]ξ+ j
k+2(ψ−+ψ+)−nψ−−mψ+).ϕ

,

whereP±
2 are differential polynomials of degree(k+2)(m+n+1)− r. This submodule

is in the intersection of the kernels kerQ− ∩ kerQ+. Moreover, at each next embed-
ding level, kerQ− ∩kerQ+ is generated by the corresponding operators, which for even
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embedding levels are given by

K+
2i = P+

2ie
([− r+1

2 +(n+i)+(m+i)(k+1)]ξ+ j
k+2(ψ−+ψ+)−nψ−−mψ+).ϕ

,(3.28)

K−
2i = P−

2ie
([ r+1

2 −(m+i)−(n+i)(k+1)]ξ+ j
k+2(ψ−+ψ+)−nψ−−mψ+).ϕ

.(3.29)

We actually need the socle socUm,n[r] of Um,n[r] and the kernel

(3.30) Km,n[r] = kerQ−∩kerQ+

∣∣
socUm,n[r]

=
⊕

b>1

K2b.

In what follows, we need the characters of the kernels in the diagonal casem= n; it then
follows from (3.20) that

(3.31) χ Km,m[r](q,z) = ∑
b>1

χ K2b
m,m(q,z) =

=
1

q
1
8 ϑ1,1(q,z)

[
∑

a>m+1
(a−m)+ ∑

a6−m−1
(−a−m)

]
qp( r

2p−a)2(z− r+1
2 +ap−z

r−1
2 −ap).

3.2.2. Right wing. The structure of the right-wing modules is essentially dualto that of
the left-wing modules. We recall the labeling in (3.12). For each pair of nonnegative
integersm andn, the key operators in the extremal diagram of the(m,n)th module are

L′
m,n[r](z) = e

([− j−1−n−m(k+1)]ξ+ j
k+2(ψ−+ψ+)+nψ−+mψ+).ϕ(z)

,(3.32)

V ′
m,n[r](z) = e

([− j−n−m(k+1)]ξ+ j
k+2(ψ−+ψ+)+nψ−+mψ+).ϕ(z)(3.33)

.
= |λ+(p− r,m+n+1); m−n+1〉,

U ′
m,n[r](z) = e

([ j+m+n(k+1)]ξ+ j
k+2(ψ−+ψ+)+nψ−+mψ+).ϕ(z)(3.34)

.
= |λ+(r + p(m+n),1); m−n〉,

R′
m,n[r](z) = e

([ j+n(k+1)+m+1]ξ+ j
k+2(ψ−+ψ+)+nψ−+mψ+).ϕ(z)

,(3.35)

where we recall thatj = r−1
2 . The extremal diagram (tilted in accordance with the twist

m−n) is “turned inside out” compared with (3.15):

(3.36)

•

•

•

•

Em−n

Fn−m

U
′

m,n[r]

V
′

m,n[r]

L
′

m,n[r]

R
′

m,n[r]

The spin of the twisted highest-weight stateU ′
m,n[r] is λ+(r + p(n+ m),1). The an-

gles are drawn in accordance with the conventions in Appendix A, to indicate twisted
highest-weight states. The submodule “bordered by the two angles” is in kerQ−∩kerQ+:
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• •

• •

• •

• •

(p−r,n+m+1)−;m−n

(p−r,n+m+3)−;m−n

(p−r,n+m+2)+;m−n

(p(n+m+1)+r,1)−;m−n

(p(n+m+3)−r,1)−;m−n

(p(n+m+3)+r,1)−;m−n

(p−r,n+m+4)+;m−n

L′m,n[r]

[ r−1
2 −(m+1)(k+1)−n−1]

[− r+1
2 −(m+1)(k+1)−n−1]

[ r−1
2 −(m+2)(k+1)−n−2]

U ′

m,n[r]=K′+
0

K′+
1

[− r+1
2 +(n+1)(k+1)+m+1]

K′+
2

[ r−1
2 +(n+1)(k+1)+m+1]

K′+
3

[− r+1
2 +(n+2)(k+1)+m+2]

FIGURE 3.6. Subquotient structure of the right-wing twisted Wakimoto moduleL′
m,n[r].

as is easy to see, there are regular OPEseψ−.ϕ(z)U ′
m,n[r](w) ∝ (z− w)(m+n)p+r−1 and

eψ+.ϕ(z)U ′
m,n[r](w) ∝ (z−w)0, and hence

Q−U ′
m,n[r](w) = Q+U ′

m,n[r](w) = 0.

Next, we haveQ+R′
m,n[r](w)=U ′

m+1,n[r](w) and, similarly,Q−L′
m,n[r](w)=V′

m,n+1[r](w),
which is the right-neighbor state ofL′

m,n+1[r](w), as shown in (3.36). It is then not diffi-
cult to consecutively trace the maps of the lower-lying subquotients under bothQ− and
Q+. About “half” the subquotient structure is shown in Fig.3.6.

It follows that kerQ− ∩ kerQ+ in U′
m,n[r] is spanned by the irreducible subquotients

K′
b generated from the states labeledK′+

b , b = 0,1,2, . . . , in Fig. 3.6. Their characters
are readily found as (with the dependence onm andn indicated as a subscript and the
dependence onr suppressed for notational simplicity)

χ K′
2b

m,n (q,z) =χ K2b+1
n,m (q,z), b> 0,(3.37)

χ K′
2b−1

m,n (q,z) =χ K2b
n,m (q,z), b> 1(3.38)

(see (3.20)–(3.21)). In particular, settingb= m= n= 0 in (3.37) gives the character of
the integrable representationIr (see2.3)

(3.39) χ K′
0

0,0(q,z) = χ r(q,z).

The character of the kernel

(3.40) K′
m,n[r] = kerQ−∩kerQ+

∣∣
socU′

m,n[r]
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for each diagonal right-wing site(m,m) is given by

(3.41) χ K′
m,m[r](q,z) = ∑

b>1

χ K′
2b−1

m,m (q,z) =

=
1

q
1
8 ϑ1,1(q,z)

[
∑

a>m+1
(a−m)+ ∑

a6−m−1
(−a−m)

]
q(

r
2p−a)2(z− r+1

2 +ap−z
r−1

2 −ap).

3.2.3. The middle. The two-wing creature is obtained by joining the two wings via the
map

Q+ ◦Q− : U1,1[r]→ U′
0,0[r].

At the “corner” of the right wing, in the moduleU′
0,0[r], theU ′[r] operator (3.34) is given

by

U ′
0,0[r](z) = e( jξ+ j

k+2(ψ−+ψ+)).ϕ(z).

At the corner of the left wing, the corresponding operator isthe one in (3.14) with m=

n= 1. Evidently,

Q−U1,1[r](z) = e((k+1− j)ξ+ j
k+2ψ−+( j

k+2−1)ψ+).ϕ(z)

and it then follows from (3.5) that

(−1)p−r(p− r)!Q+e
((k+1− j)ξ+ j

k+2(ψ−+ψ+)−ψ+).ϕ(z)
= (E−1)

p−r e
( jξ+ j

k+2(ψ−+ψ+)).ϕ(z)
.

Thus,

Q+Q−U1,1[r](z) =
1

(p− r)!
|MFF−(p− r,1; j)〉 ∈ U′

0,0[r](z).

The irreducible quotient generated fromU′
0,0[r] is in the cohomology. It is not difficult to

trace the action ofQ+Q− on the subquotients inU1,1[r].

The maps constructed above finally give the butterfly resolution of integrable represen-
tations.

3.3. Acyclic butterfly complexes.We next consider the free-field modules whose el-
ements are (the states associated with) operators descendant from (3.1) for 2λ + 1 ∈
{p+1, . . . ,2p−1} (about the second half of the range in (3.11)); we parameterize the
λ as

λ =
p
2
+

r −1
2

,

with r ∈ {1,2, . . . ,k+1}. We keep the notation in(3.13).

The required modules can then be constructed by replacingj 7→ j + p
2 in the formulas

in 3.2. In accordance with (3.2), this is equivalent to the shiftsm 7→ m− 1
2, n 7→ n− 1

2 for
each module in the left wing. Consequently, we can describe each left-wing module just
as in Eqs. (3.14)–(3.15) and Figs.3.1and3.2, but with

(3.42) m,n∈ {1
2
,

3
2
, . . .} in the left wing.
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Takingboth mandn half-integer leads to no conflict because onlym+n has to be integer
(see Figs.3.1 and3.2, where all the arrows (singular vectors) depend only onm+n; in
particular, the module at the “corner” of the left wing is theone withm= n = 1

2 and
hencem+n= 1). From (3.20), the character ofKm,m[r] = kerQ−∩kerQ+

∣∣
socUm,m[r]

for
half-integerm is given by

(3.43) χ Km,m[r](q,z) = ∑
b>1

χ K2b
m,m(q,z)

=
1

q
1
8 ϑ1,1(q,z)

[
∑

a>µ+1
(a−µ)+ ∑

a6−µ
(1−a−µ)

]
qp( r

2p−a+ 1
2)

2

×
(
z−

r+1
2 +(a− 1

2)p−z
r−1

2 −(a− 1
2)p
)
,

whereµ = m+ 1
2 takes positive integer values in the left wing.

In the right wing, similarly, the modules corresponding to the spinλ = p
2 +

r−1
2 can be

described by formulas in3.2.2with the shiftm 7→ m+ 1
2, n 7→ n+ 1

2, and hence

(3.44) m,n∈ {1
2
,

3
2
, . . .} in the right wing.

The kernel kerQ− ∩ kerQ+ in the socle is given by the sum ofK′
2b−1 for b > 1, and its

character is easily expressed as in (3.43).

As the result of passing to half-integerm andn, the resolution becomes acyclic.7 It
turns out thatU ′

1
2 ,

1
2
[r] is now in the image ofQ− ◦Q+: in the moduleU 1

2 ,
1
2
[r], we consider

the states at the levelr relative to the top and at the grades− r+1
2 − p

2 +1, . . . , r+1
2 + p

2 −1.
In superimposing the pictures forLm,m[r] in Fig. 3.1andRm,m[r] in Fig. 3.2as explained
in 3.2.1, these are the states in between the nodes whose grades are underlined in Figs.3.1
and Fig.3.2, for m= n = 1

2. A codimension-1 submodule in this grade is in the kernel
of Q− ◦Q+, but the one-dimensional quotient is mapped onto the statesbetween (and
including)V ′

1
2 ,

1
2
[r] andU ′

1
2 ,

1
2
[r] in (3.36).

3.4. “Steinberg” modules.

3.4.1. λ = (k+1)/2. This case corresponds to settingr = p in the operators considered
in 3.2. As a result, each of the diagrams in Figs.3.1and3.2collapses into a single embed-
ding chain, in accordance with the degenerations of the MFF singular vectors discussed
in 2.2.2. The details are quite standard, and we omit them. The kernelkerQ− ∩ kerQ+

is spanned by irreducible subquotients whose highest-weight vectors have the charges
n+b+m(k+1+b)+ k+1

2 , b> 0. The character of the kernel in the socle of the left wing
is given by

7It is difficult to resist invoking a superficial analogy and referring to this case as a Neveu–Schwartz one
(recall that in the previous case, the cohomology occurred in the “zeroth” module, which is now absent
because of half-integer-valued labels).
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(3.45) χ Km,n[p](q,z) =

=
(−1)n−m

q
1
8 ϑ1,1(q,z)

∑
b>0

(
qp(m+b+ 1

2)
2
z

p−1
2 +(m+b)p−qp(n+b+ 1

2)
2
z−

p+1
2 −(n+b)p

)
.

In the socle of the right wing, a somewhat different, but easily reproducible subquotient
structure results in the character of kerQ−∩kerQ+ given by

(3.46) χ K′
m,n[p](q,z) =

=
(−1)n−m

q
1
8 ϑ1,1(q,z)

∑
b>0

(
qp(n+b+ 1

2)
2
z

p−1
2 +(n+b)p−qp(m+b+ 1

2)
2
z−

p+1
2 −(m+b)p

)
.

It is worth seeing how the middle of the resolution restructures compared with the case
in 3.2(making the complex acyclic). In the “corner” of the left wing, we have the operator

U1,1[p](w) = e

(
k+1

2 ξ+ k+1
2(k+2) (ψ−+ψ+)−ψ−−ψ+

)
.ϕ(w)

.

It develops a first-order pole in the OPE witheψ−.ϕ(u) and the resulting operator, more-
over, has a first-order pole witheψ+.ϕ(z); therefore,

Q+Q−U1,1[p](w) = e

(
k+1

2 ξ+ k+1
2(k+2) (ψ−+ψ+)

)
.ϕ(w)

=U ′
1,1[p](w).

3.4.2. λ = (2k+3)/2. Forr = 2p, the structure ofUm,n[p] also degenerates; in particular,
for m= n= 1, (the states corresponding to) the operators

L1,1[p](z) = e

(
− 1

2ξ− 1
2p(ψ−+ψ+)

)
.ϕ(z)

and R1,1[p](z) = e

(
1
2ξ− 1

2p(ψ−+ψ+)
)
.ϕ(z)

are “facing each other,” i.e., have no extremal states between them in a picture similar
to (3.15). We omit the details to avoid further lengthening this already long section.

4. W-ALGEBRA, ITS REPRESENTATIONS, CHARACTERS, AND MODULAR

TRANSFORMATIONS

The aim of this section is to establish the main result statedin the Introduction. In4.1,
we first identify theW-algebra generators in the centralizer of the screenings. In 4.2, we
construct 2p W-algebra representationsY±r , 16 r 6 p, evaluate their charactersχ ±

r (τ,ν),
and establish their spectral-flow transformation properties. The spectral flow closes if 2p
functionsω±

r (τ,ν), 16 r 6 p, are added. Modular transformation properties are studied
in 4.3. Certain combinations of theχ ±

r (τ,ν), ω±
r (τ,ν) and the integrable characters

χ r(τ,ν), 16 r 6 p−1, become parts of multiplets, i.e., transform in representations of
the formCn⊗ π , whereπ is someSL(2,Z)-representation andn = 2 and 3, where the
C2 andC3 representations are realized on polynomials inτ of respective degrees 1 and 2
(seeC.2.1andC.3.1). In addition, a certain triangular structure emerges, with terms of
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the formν times “lower” characters occurring in modular transformations of the “higher”
characters. The precise result is in Lemmas4.3.3and4.3.5.

4.1. TheW±(z) currents. The W-algebra representing the symmetry of the model is
defined as the maximum local algebra acting in the kernel. As discussed in the Introduc-
tion, we somewhat restrict this definition by taking only thegenerators that map between
ŝℓ(2)k modules of the same twist.

4.1.1. Locality and the vacuum representation.We first select operators that are local
with respect to all operators in the kernel. The kernel kerQ− ∩ kerQ+ is spanned by
operators of the general form

(4.1) (modes) ·e(aξ+
r−1
2p (ψ−+ψ+)+mψ−+nψ+).ϕ(z)

with integera, integer r, and simultaneouslyinteger or half-integerm and n, where
(modes) are differential polynomials in thêsℓ(2)k currents. In the OPE

eaξ.ϕ(z)e(bξ+
r−1
2p (ψ−+ψ+)+mψ−+nψ+).ϕ(w) ∝ (z−w)a(m−n),

the exponenta(m−n) is therefore always integer; noninteger exponents thus occurs only
in the OPEs

e
r−1
2p (ψ−+ψ+).ϕ(z)e

r′−1
2p (ψ−+ψ+).ϕ(w) ∝ (z−w)

(r−1)(r′−1)
2p

and in the OPEs involvinge(mψ−+nψ+).ϕ in the case of half-integerm andn. It follows
that the vertices as in (4.1) with r = 1 and integerm andn produce integer-valued expo-
nents — no nonlocalities — in the OPEs with all of the verticesencountered in the ker-
nel (in checking the OPE withe(m

′ψ−+n′ψ+).ϕ , it is essential thatm′ andn′ can only be
half-integer simultaneously). We therefore identify the vacuum representation of theW-
algebra with the kernel kerQ−∩kerQ+ in the socle of the butterfly resolution of ther = 1
integrable representation. That is, the vacuum representation of theW-algebra is given by

⊕

m>1

Km,m[1]⊕
⊕

m>0

K′
m,m[1],

whereKm,n[r] are defined in (3.30) andK′
m,n[r] in (3.40).

4.1.2. W±(z) currents. The fieldsW−(z) andW+(z) generating theW-algebra are asso-
ciated with certain singular vectors as follows.

• W−(z) corresponds to the singular vector|MFF+(p−1,3;1)〉 constructed on the
vertexV ′

1,1[1] = e(−pξ+ψ−+ψ+).ϕ (see (3.33) and (3.36); from (3.33), this vertex

represents the twisted highest-weight state|λ+(p−1,3);1〉).8 Therefore,W−(z)

8Thek= 0 example given below is already sufficiently generic, and may help visualize the positions of
the various states.
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is a (θ=1)-twisted highest-weight operator of dimension 4p−2 and charge−2p+
1. (Itsspin is−2p+1+ k

2 = λ+(1,4) = λ−(4p−1,1).) More explicitly,

W−(z) = (F−1)
3p−1(E0)

2p−1(F−1)
p−1(E0)

−1(F−1)
−p−1e(−pξ+ψ−+ψ+).ϕ(z).(4.2)

• W+(z) corresponds to the singular vector|MFF−(3p−1,1)〉 constructed on the

vertexL1,1[1] = e(−pξ−ψ−−ψ+).ϕ (see (3.16)). This singular vector the((m+n+
1)p−r,1)−;n−m arrow in Fig.3.1, where we now setm= n= 1 andr = 1. It follows
thatW+(z) is a highest-weight operator of the same dimension 4p−2 and of the
chargeλ+(4p−1,1) = λ−(1,4) = 2p−1:

W+(z) = (E−1)
3p−1e(−pξ−ψ−−ψ+).ϕ(z) =

(
∂ 3p−1eψ+.ϕ(z)

)
e((2p−1)ξ−ψ−−2ψ+).ϕ(z)(4.3)

(where we used (3.24) to evaluate a power ofE−1).

Once again, the meaning of (4.2) is thatW−(z) is the operator whose corresponding
state is given by the appropriate singular vector (expressed as in the MFF formulas) eval-

uated on the state corresponding to the vertexe(−pξ+ψ−+ψ+).ϕ(z).

The OPE of the currents starts as

W+(z)W−(w) =
Op−1(w)

(z−w)7p−3 + . . . ,

whereOp−1 is the charge-0 dimension-(p−1) operator at the first embedding level (the
level ofK′+

1 ) in Fig. 3.6with m= n= 0 andr = 1: up to a nonzero factor, therefore,

Op−1 = F p−1
0 |MFF−(p−1,1)〉= F p−1

0 Ep−1
−1 U ′

1[0,0]

(whereU ′
1[0,0](w) = 1 is the unit operator). Fork= 0 and 1, in particular,

O1(z) = 2H(z) = ∂ϕ−(z)−∂ϕ+(z),

O2(z) =−4EF(z)+8HH(z)+4∂H(z)

= ∂ϕ+∂ϕ+(z)−4∂ϕ+∂ϕ−(z)+∂ϕ−∂ϕ−(z)+∂ 2ϕ+(z)+∂ 2ϕ−(z)

up to nonzero factors.

4.1.3. Example.For k = 0, some details of the vacuum representation are shown in
Fig. 4.1. As regards explicit expressions for the generators, with the negative powers
involved inW−(z) understood in the standard MFF setting in (2.10), we find that the five
factors in (4.2) evaluate as

F3p−1
−1 E2p−1

0 F p−1
−1 E−1

0 F−p−1
−1 = F5

−1E3
0F−1E−1

0 F−3
−1

= 120F−3+60H−2F−1+120H−1F−2+60H2
−1F−1−12E−1F2

−1+E2
0F3

−1

−30E0F−2F−1−18E0H−1F2
−1.

The corresponding free-field expression is
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U1,1[1] [−1] • [1] U′

1,1[1]

◦ ◦ [0] ◦ ◦ [−2] • • • [2]

[−3] [3] [−3] [2] [3] [−3] • • • • • [3]

[−4] • • • [4] [−4] • • [−4] • • •

(1,2)+ F−1 E−1

(3,1)−

(1,4)+
(5,1)+;1

(1,4)+

(1,4)+

(1,3)−(1,3)− (1,3)+;1

(5,1)− (1,4)−;1

W−

−6

W+
5

W+
−6

W−

5

W+
2W+

−5
W−

−5

W+
7

FIGURE 4.1. Some details of theW-algebra vacuum representation atk= 0. Three copies of a two-dimensional lattice indicate
the (charge, dimension) bigrade. The picture shows three modules:U1,1[1] (from the left wing of the butterfly) andU′

0,0[1] and
U′

1,1[1] (from the right wing). Some sites are shown with theirchargesin square brackets. Boldfaced sites are in kerQ−∩kerQ+,
but not all of them are in the socle: as the maps show, the extremal states of the right-hand moduleU′

1,1[1] in the grades−2, . . . ,2
(the “lid”), although in kerQ−∩kerQ+, are not in the socle, and hence not in the vacuum representation of theW-algebra (among
the descendants of these states, only those in the submodulewith extremal states in the grades(−3,6), . . . , (3,6) are in the
vacuum representation). The states corresponding to theW±(z) generators are at the grades(±(2p−1),4p−2) (in the current
case wherek = 0, at(3,6) for W+ and(−3,6) for W−); theW±

−4p+2 =W±
−6 arrows map into them from the vacuum. “Angles”

denote highest-weight state or twisted highest-weight states. Tilted downward(r ′,s′)±-arrows show some of the nonvanishing
singular vectors in the corresponding modulesL1,1[1], R1,1[1], andL′

m,m[1], R
′
m,m[1] (m= 0,1), as in Figs.3.1, 3.2, and3.6.

The twist is additionally indicated with;1. Tilted upward arrows are the reverse of arrows that would lead to vanishing singular
vectors. In the middle module, the action ofE−1 andF−1 on the vacuum (the top middle state) is also shown.
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W−(z) =
(
−6∂ϕ−∂ 2ϕ+(z)−18∂ 2ϕ−∂ϕ−(z)−12∂ 2ϕ−∂ϕ+(z)+3∂ϕ−∂ϕ−∂ϕ−(z)

+6∂ϕ−∂ϕ−∂ϕ+(z)+3∂ϕ−∂ϕ+∂ϕ+(z)+12∂ 3ϕ−(z)
)
e(−3ξ+ψ−+ψ+).ϕ(z).

From (4.3), we also have

W+(z) =
(
10∂ 3ϕ+∂ 2ϕ+(z)+5∂ 4ϕ+∂ϕ+(z)+15∂ 2ϕ+∂ 2ϕ+∂ϕ+(z)

+10∂ 3ϕ+∂ϕ+∂ϕ+(z)+10∂ 2ϕ+∂ϕ+∂ϕ+∂ϕ+(z)+∂ϕ+∂ϕ+∂ϕ+∂ϕ+∂ϕ+(z)

+∂ 5ϕ+(z)
)
e(3ξ−ψ−−ψ+).ϕ(z).

4.2. “Narrow” W-algebra representationsY±r and their characters. First, the inte-
grableŝℓ(2)k representationsIr , 16 r 6 p−1, areW-algebra representations. Next, the
resolutions in Sec.3 allow constructing 2p W-algebra representations, denoted byY±r ,
1 6 r 6 p, in what follows. Their underlying vector spaces are the sums of irreducible
ŝℓ(2)k subquotients in the kernel kerQ− ∩ kerQ+ evaluated in the socle of each module
along the horizontal symmetry line of the butterfly in (1.1). That is,Y+r is the sum of
Km,m[r] in (3.30) andK′

m,m[r] in (3.40):

Y+r =
⊕

m>1

Km,m[r]⊕
⊕∗

m>0

K′
m,m[r]

where the asterisk at the direct sum is a “lazy notation” to indicate that atm= 0, the
subquotient given by the integrable representationIr (see (3.39)) is to be omitted. Sim-
ilarly, Y−r is given by an analogous construction in the “Neveu–Schwartz sector,” with
summations going over half-integer values:

Y−r =
⊕

m>
1
2

Km,m[r]⊕
⊕

m>
1
2

K′
m,m[r].

We next find the characters

χ ±
r (q,z) = χ Y±

r (q,z).

In what follows, we writeθr for θr,p and similarly for theta-function derivatives, and
sometimes omit the theta-function argument when it is just(q,z) or, equivalently,(τ,ν)
(see AppendixB for the theta-function conventions).

4.2.1. Lemma.The W-algebra charactersχ ±
r (q,z) are given by(see(2.15) for Ω(q,z))

χ +
r (q,z) =

1
Ω(q,z)

(
r2

4p2

(
θ−r −θr

)
+

r
p2

(
θ ′
−r +θ ′

r

)
+

1
p2

(
θ ′′
−r −θ ′′

r

))
,

χ −
r (q,z) =

1
Ω(q,z)

((
r2

4p2 −
1
4

)(
θp−r −θp+r

)
+

r
p2

(
θ ′

p−r +θ ′
p+r

)
+

1
p2

(
θ ′′

p−r −θ ′′
p+r

))

for 16 r 6 p−1 (with the theta-function arguments(q,z) omitted in the right-hand sides),
and
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χ +
p (q,z) =

2θ ′
p(q,z)

pΩ(q,z)
, χ −

p (q,z) =
2θ ′

0(q,z)

pΩ(q,z)
.

This readily follows by direct calculation: for 16 r 6 p−1, the sum of characters
in (3.31) and (3.41) yields

χ +
r (q,z) = ∑

m>1
χ Km,m[r](q,z)+∑∗

m>0
χ K′

m,m[r](q,z)

=
1

q
1
8 ϑ1,1(q,z)

∑
a∈Z

a2qp( r
2p+a)2(z− r+1

2 −ap−z
r−1

2 +ap),

where the asterisk affects them= 0 term just as above. ForY−r , no term is excluded at
m= 0, and summation over half-integer values ofm gives

χ −
r (q,z) = ∑

m>
1
2

χ Km,m[r](q,z)+ ∑
m>

1
2

χ K′
m,m[r](q,z) = 2 ∑

m>
1
2

χ K′
m,m[r](q,z) =

=
1

q
1
8 ϑ1,1(q,z)

∑
a∈Z+ 1

2

(a2− 1
4
)qp( r

2p+a)2(z− r+1
2 −ap−z

r−1
2 +ap).

In terms of theta-functions, this gives the above formulas.For r = p, we find from (3.45)
and (3.46) that

χ +
p (q,z) = ∑

m>1
χ Km,m[p](q,z)+ ∑

m>0
χ K′

m,m[p](q,z) =
2θ ′

p(q,z)

pΩ(q,z)
,

and a similar calculation leads toχ −
p (q,z).

4.2.2. Spectral flow transformation properties. We next study the spectral-flow orbit
of the above charactersχ ±

r (q,z). It follows from (B.5)–(B.8) that their spectral flow
transformation properties are given by

χ +
r;1(q,z) =−χ −

r (q,z)−ω−
r (q,z)− 1

2
χ p−r(q,z),

χ −
r;1(q,z) =−χ +

r (q,z)−ω+
r (q,z)

for 16 r 6 p−1, and

χ +
p;1(q,z) =−χ −

p (q,z)−ω−
p (q,z),

χ −
p;1(q,z) =−χ +

p (q,z)−ω+
p (q,z),

whereχ r(q,z) are the integrable representation characters and

ω+
r (q,z) =

1
Ω(q,z)

(
r

2p

(
θr(q,z)+θ−r(q,z)

)
− 1

p

(
θ ′

r(q,z)−θ ′
−r(q,z)

))
,

(4.4)
ω−

r (q,z) =
1

Ω(q,z)

(
r

2p

(
θp−r(q,z)+θr−p(q,z)

)
− 1

p

(
θ ′

r−p(q,z)−θ ′
p−r(q,z)

))
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for 16 r 6 p−1, and

ω+
p (q,z) =

θp(q,z)

Ω(q,z)
, ω−

p (q,z) =
θ0(q,z)
Ω(q,z)

.(4.5)

Defining the spectral-flow transformation rule forω±
r as for characters (see (2.5)), we

further calculate the transformation laws

ω+
r;1(q,z) =−ω−

r (q,z)− 1
2

χ p−r(q,z),

ω−
r;1(q,z) =−ω+

r (q,z)+
1
2

χ r(q,z)

for 16 r 6 p−1, whileω±
p;1(q,z) = ω±

p (q,z). We do not detail the representation-theory
interpretation of theω±

r in this paper.

4.3. Modular transformation properties. We now evaluate the modular transformation
properties of the 5p−1 functions given by the aboveW-algebra charactersχ ±

r , 16 r 6 p,
the integrable representation charactersχ r , 16 r 6 p−1, and theω±

r , 16 r 6 p.

4.3.1. The “minimal” SL(2,Z)-representationRint(p). We first recall the well-known
transformation formulas

χ r(τ +1,ν) = λr,pχ r(τ,ν), λr,p = eiπ( r2
2p− 1

4),(4.6)

χ r(−
1
τ ,

ν
τ ) =

√
2
p

eiπkν2
2τ

p−1

∑
s=1

sin
πrs
p

χ s(τ,ν),(4.7)

which just state that the integrable representation charactersχ r span a(p−1)-dimensional
SL(2,Z)-representationRint(p).

4.3.2. Remark. Strictly speaking, to defineRint(p), we have to “eliminate” theeiπkν2
2τ

factor in (4.7); this then gives theSL(2,Z)-representation uniquely defined by theT-
transformation as in (4.6) and theS-transformation

(4.8) Sχ r =

√
2
p

p−1

∑
s=1

sin
πrs
p

χ s.

The relation between (4.7) and (4.8) can be understood in terms of an automorphy factor.
The argument (with some details omitted, see [58] and also [10, Sec. 4.1] is based on the

fact that j(γ;τ,ν) defined forγ =
(

a b

c d

)
as

(4.9) j(γ;τ,ν) = ζ−1
c,d (cτ+d)−

1
2 e−iπ cν2

cτ+d ,

whereζc,d is a certain eighth root of unity [58], satisfies the cocycle conditionj(γγ ′;τ,ν)=
j(γ ′;τ,ν) j(γ;γ ′τ,γ ′ν), j(1;τ,ν) = 1.

In what follows, we write the modular transformations as they follow from calculations

for the characters, with the understanding that theeiπkν2
2τ factors are to be omitted when
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we speak of finite-dimensionalSL(2,Z) representations.Matrix automorphy factors are
also used to unravel the structure of representations derived below.

4.3.3. Lemma.The functions

π0(τ,ν) = ω−
p (τ,ν),

πr(τ,ν) = ω+
r (τ,ν)+ω−

p−r(τ,ν), 16 r 6 p−1,(4.10)

πp(τ,ν) = ω+
p (τ,ν)

span a(p+1)-dimensional SL(2,Z)-representationRp+1:

(4.11)

πr(τ +1,ν) = λr,pπr(τ,ν),

πr(−
1
τ ,

ν
τ ) = i

√
2
p

eiπkν2
2τ

(
1
2

π0(τ,ν)+
(−1)r

2
πp(τ,ν)+

p−1

∑
s=1

cos
πrs
p

πs(τ,ν)
)

for 06 r 6 p. The functions

ϖr(τ,ν) = (p− r)ω+
r (τ,ν)− rω−

p−r(τ,ν),

ςr(τ,ν) = τϖr(τ,ν),
16 r 6 p−1,(4.12)

transform as

ϖr(τ +1,ν) = λr,pϖr(τ,ν), ςr(τ +1,ν) = λr,p
(
ςr(τ,ν)+ϖr(τ,ν)

)
,(4.13)

ϖr(−
1
τ ,

ν
τ ) =

√
2
p

eiπkν2
2τ

p−1

∑
s=1

sin
πrs
p

(
ςs(τ,ν)−

pν
2

χ s(τ,ν)
)
,(4.14)

ςr(−
1
τ ,

ν
τ ) =

√
2
p

eiπkν2
2τ

p−1

∑
s=1

sin
πrs
p

(
−ϖs(τ,ν)+

pν
2τ χ s(τ,ν)

)
.(4.15)

This is shown by straightforward calculation based on (B.10)–(B.12) for theS-transfor-
mations. ForT, the formulas are obvious.

For notational simplicity, we no longer use a special notation for functions likeτϖr

in (4.12). It must be clear fromC.2.1 how the occurrence ofτ give rise toC2 tensor
factors inSL(2,Z)-representations.

4.3.4. SL(2,Z) representation structure: a deformedC2⊗Rint(p). The admixture of
ν times integrable representation characters in (4.14) fits into the representation structure
described inC.2.2, with a direct sum of representations deformed by a matrix automorphy

factor. The functionsϖr , τϖr , and χ r are combined into a column

(
f (τ)ϖ

χ

)
, where

f (τ) is a polynomial of degree61 and we omit the indices, lettingϖ andχ denote a
vector inCp−1 each. The column of the above form (read from bottom up) can therefore
be considered an element ofCp−1⊕C2⊗Cp−1. TheSL(2,Z)-action defined by (4.13)–
(4.14) (in the version where this is aright action) differs from that onCp−1⊕C2⊗Cp−1=
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Rint(p)⊕C2⊗Rint(p) by a matrix automorphy factor: the action is given by

(4.16)

(
f (τ)ϖ

χ

)

·γ =

(
(cτ +d) f (γτ)ϖ·γ +βνc f(γτ)χ ·γ

χ ·γ
)
, β =− p

2
,

whereγ =

(
a b

c d

)
in the right-hand side acts on eachCp−1 as on the integrable repre-

sentation characters andγτ is defined inC.1. At β = 0 (or, formally,ν = 0), obviously,
the matrix automorphy factor becomes the identity matrix and the transformation law
in (4.16) becomes that onRint(p)⊕C

2⊗Rint(p).

In the next lemma, we encounter aτ2ϕr and hence aC3 tensor factor (cf.C.3.1).

4.3.5. Lemma.The functions

ρ0(τ,ν) = χ −
p (τ,ν),

ρr(τ,ν) = χ +
r (τ,ν)+χ −

p−r(τ,ν)+
r

2p
χ r(τ,ν), 16 r 6 p−1,

ρp(τ,ν) = χ +
p (τ,ν)

transform as

ρr(τ +1,ν) = λr,pρr(τ,ν),

ρr(−
1
τ ,

ν
τ ) = i

√
2
p

eiπkν2
2τ

(
1
2
(τρ0(τ,ν)+νπ0(τ,ν))+

(−1)r

2
(τρp(τ,ν)+νπp(τ,ν))

+
p−1

∑
s=1

cos
πrs
p

(
τρs(τ,ν)+νπs(τ,ν)

))
.

The functions

ϕr(τ,ν) = (p− r)χ +
r (τ,ν)− rχ −

p−r(τ,ν)−
(

r2

4p
+

1
8iπτ

)
χ r(τ,ν), 16 r 6 p−1,

transform as

ϕr(τ +1,ν) = λr,pϕr(τ,ν),

ϕr(−
1
τ ,

ν
τ ) =

√
2
p

eiπkν2
2τ

p−1

∑
s=1

sin
πrs
p

(
τ2ϕs(τ,ν)+ντϖs(τ,ν)−

pν2

4
χ s(τ,ν)

)
.

This also follows by a direct calculation based on (B.10)–(B.12) for S. For T, apart
from the same eigenvaluesλr,p, the transformations amount to substitutingτ 7→ τ +1 in
polynomials of degree not greater than 2, which is not a difficult calculation.

4.3.6. SL(2,Z)-representation structure: deformedC
2⊗Rp+1 and C

3⊗Rint(p). It
follows from 4.3.5andC.2.2 that theρ (with suppressed indices, i.e., viewed as a vector
in Cp+1) transform underSL(2,Z) (again in the right-action version) as
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(4.17)

(
f (τ)ρ

π

)

·γ =

(
(cτ +d) f (γτ)ρ·γ +ανc f(γτ)π·γ

π·γ
)
, α = 1,

where f (τ) is a polynomial of degree61 and in the right-hand side theSL(2,Z) action
on eachCp+1 is as onRp+1, see (4.11). This representation is also a deformation of
Rp+1⊕C2⊗Rp+1 via a matrix automorphy factor.

Similarly, it follows from4.3.5andC.3.2that theSL(2,Z)-action on theϕ (now viewed
as a vector fromCp−1 endowed with theSL(2,Z) representation isomorphic toRint(p))
is a “composition” of the finite-dimensional representations and an “even larger” matrix
automorphy factor: the transformations derived in the lastlemma are equivalent to the
SL(2,Z) action given by

(4.18)




f (τ)ϕ
ϖ
χ


·γ

=



(cτ +d)2 f (γτ)ϕ·γ +αν c(cτ +d) f (γτ)ϖ·γ + αβ

2 ν2c2 f (γτ)χ ·γ
ϖ·γ
χ ·γ


 ,

where f (τ) is a polynomial of degree62, in the right-hand sideSL(2,Z) acts on each
Cp−1 as onRint(p), and

α = 1, β =−p
2

as above. At zero values ofα andβ we recover a direct sum of finite-dimensional repre-
sentations, the “ϕ” one beingC3⊗Rint(p).

4.3.7. Example:k= 0. Fork= 0 (and 9p−3= 15), theW-algebra generators are given
in 4.1.3. We here have a single integrable representation characterχ 1 = 1. The other 8+
6= 14 generalized characters are a triplet(π0,π1,π2), a “τ”-doublet(ϖ1,τϖ1), aC2 (due
to τ) tensored with another triplet(ρ0,ρ1,ρ2), with νπr occurring in itsS-transform, and,
finally, a “τ”-triplet (ϕ1,τϕ1,τ2ϕ1), with bothϖ1 andχ 1 occurring in itsS-transform.

We also note that thec= 0 logarithmic model of̂sℓ(2)0 is somewhat “smaller in size”
than the celebrated(3,2) logarithmic model with the central chargec = 0 [59]. The
logarithmic (p = 3,q = 2) model involves1

2(p−1)(q−1) + 2pq= 13 irreducibleW-
algebra representations, while the space of torus amplitudes has (based on the modular-
group argument) dimension12(3p−1)(3q−1) = 20 [12]. For ŝℓ(2)0, these two numbers
seem to be 5p−1= 9 and 9p−3= 15 respectively.

5. HAMILTONIAN REDUCTION TO THE W-ALGEBRA OF THE (p,1) MODEL

In this section, we apply the Hamiltonian reduction functorto theW-algebra of the
logarithmicŝℓ(2)k model. We show that theW-generators (4.2) and (4.3) reduce to gen-
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erators of the tripletW-algebra [7, 2, 8] of the (p,1) logarithmic model, which were
defined in [10] in terms of a Virasoro screening.

It is well-known that the result of Hamiltonian reduction ofthe ŝℓ(2)k algebra itself is
the Virasoro algebra

(5.1) T(z)T(w) =
d/2

(z−w)4 +
2T(w)
(z−w)2 +

∂T(w)
z−w

with central charge

(5.2) d = 13− 6
k+2

−6(k+2).

5.1. Theorem. Hamiltonian reduction of the W-algebra generated by the currents(4.2)
and (4.3) is the triplet W-algebra of the(p=k+2,1) logarithmic model.

5.2. Construction of the “inverse reduction”. To find how theW-algebra representa-
tions are reduced, it is useful to recall how theŝℓ(2) currents arereconstructedfrom the
reduction resultT(z).

5.2.1. Lemma([60]). Let φ andϕ be two scalar fields with the operator products

∂ϕ(z)∂ϕ(w) = 1
(z−w)2 , ∂φ(z)∂φ(w) = −1

(z−w)2

and let T(z) satisfy(5.1) with d given by(5.2). For k 6= 0, the currents

E(z) = e

√
2
k (ϕ(z)−φ(z))

,(5.3)

H(z) =

√
k
2

∂ϕ(z),(5.4)

F(z) =
(
(k+2)T(z)− k

2
∂φ∂φ(z)−

√
k
2
(k+1)∂ 2φ(z)

)
e−
√

2
k (ϕ(z)−φ(z))(5.5)

then satisfy thêsℓ(2) OPEs in(2.2).

We emphasize that no free-field representation is required of T(z).

This construction ofE(z), H(z), andF(z) can be considered an “inversion” of the
Hamiltonian reduction starting with its result, the energy-momentum tensorT(z). The re-
duction of any expression built out of thêsℓ(2) currents thus amounts to simply expressing
the currents in terms ofT(z), ϕ(z), andφ(z) (and, depending on one’s taste, eventually
setting the two free fields equal to zero). In particular, theSugawara energy-momentum
tensor evaluates in accordance with this procedure as

TSug(z) = T(z)+
1
2

∂ϕ∂ϕ(z)− 1
2

∂φ∂φ(z)−
√

k
2

∂ 2φ(z).

5.2.2. Remark. The above formulas do not allow the limitk → 0. But this can be con-
sidered an artifact of the choice of scalar fields in (5.3)–(5.5). Changing them as
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ϕ =
1√
2

( 2√
k

X̄+

√
k

2
X
)
, φ =

1√
2

( 2√
k

X̄−
√

k
2

X
)

where the new fieldsX andX̄ have the OPEs

∂X(z)∂ X̄(w) =
1

(z−w)2 , ∂X(z)∂X(w) = reg, ∂ X̄(z)∂ X̄(w) = reg,

maps (5.3)–(5.5) into a form wherek can be set equal to zero, with the result

E(z) = eX(z),

H(z) = ∂ X̄(z),

F(z) = (2T(z)−∂ X̄∂ X̄(z)−∂ 2X̄(z))e−X(z)

for the ŝℓ(2)0 currents. We restrict ourself to the observation that this simple change of
variables suffices to resolve the apparentk = 0 problem, and proceed with (5.3)–(5.5),
which we prefer for essentially esthetical reasons.

5.2.3. Reducing the representations.The simple recipe to “invert” the reduction ex-
tends to representations. A spin-λ (nontwisted)̂sℓ(2) highest-weight state/operatorUλ (z)
.
= |λ 〉 is obtained by “dressing” the Virasoro primaryVδ (z) of dimension9

(5.6) δ =
λ (λ +1)

k+2
−λ

as

Uλ (z) = Vδ (z)e
λ
√

2
k (ϕ(z)−φ(z))

.

Takingλ = λ+(r,s) (see2.2) corresponds to the Virasoro dimension

δr,s =
λ+(r,s)(λ+(r,s)+1)

k+2
−λ+(r,s) =

r2−1
4(k+2)

+(k+2)
s2−1

4
+

1− rs
2

.

For example, the spin-1
2 highest-weight state is thus constructed ase

1
2

√
2
k (ϕ(z)−φ(z))

V[21](z),
whereV[21](z) ≡ Vδ2,1

(z) is the “21” vertex operator for the Virasoro algebra ofT(z).

Moreover, the differential equation(k+2)∂ 2V[21](z)−T(z)V[21](z)=0 satisfied byV[21](z)

then implies the singular vector vanishingF0F0(e
1
2

√
2
k (ϕ(z)−φ(z))

V[21](z)) = 0.

5.2.4. Expressing theW±(z) currents. Hamiltonian reduction of the fields generating
theW-algebra, Eqs. (4.2) and (4.3), is particularly simple forW+(z) because of the simple
formula for the|MFF−(r ′,1)〉 singular vectors, which, moreover, immediately evaluate
explicitly in realization (5.3). In accordance with the construction of nontwisted highest-
weight states in5.2.3, we have

Lm,m[r](z)
∣∣∣
(5.3)−(5.5)

= V[r,2m+1](z)e
( j−(k+2)m)

√
2
k (ϕ(z)−φ(z))

(recall notation (3.13)); therefore, in evaluatingW+(z) = (E−1)
3p−1L1,1[1](z) (see (4.3)),

9Hereinafter, all Virasoro primaries and their dimensions are with respect toT(z) in (5.1)–(5.2).
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we haveL1,1[1](z) expressed throughV[1,3](z) = V2k+3(z); next, it follows from (5.3) that
the action ofE−1 affects only the free-field sector, and therefore

(5.7) W+(z)
∣∣∣
(5.3)−(5.5)

= V2k+3(z)e(2k+3)
√

2
k (ϕ(z)−φ(z))

.

This identifies the Hamiltonian reduction ofW+(z) as the dimension-(2p−1) Virasoro
primary.

The Hamiltonian reduction ofW−(z) is evaluated explicitly to within the “explicitness”
of the MFF construction for singular vectors. With then= moperators (3.34) represented
in the inverse Hamiltonian reduction setting as

U ′
m,m[r](z)

∣∣∣
(5.3)−(5.5)

= V[r+2mp,1](z)e
( j+(k+2)m)

√
2
k (ϕ(z)−φ(z))

,

we evaluateW−(z) as a free-field vertex times a nonvanishing Virasoro singular vector
built on the dimension-1 primaryV[2p+1,1](z) = V1(z):

(5.8) W−(z)
∣∣∣
(5.3)−(5.5)

=
(
D2k+2(T)V1(z)

)
e−(2k+3)

√
2
k (ϕ(z)−φ(z))

,

whereD2k+2(T)V1(z) = α∂ 2k+2V1(z)+ · · ·+ γT(z)k+1V1(z) is a normal-ordered differ-
ential polynomial inT(z) andV1(z), linear inV1(z), of the total degree 2k+ 2, if we
set degT(z) = 2, degV1(z) = 1, and deg∂ = 1. Clearly,

∮
V1 is one of the two Virasoro

screenings.

We thus see from (5.7) and (5.8) that the two currents

w+(z) = V2p−1(z),

w−(z) = D2p−2(T)V1(z)
(5.9)

are the result of the Hamiltonian reduction ofW+(z) andW−(z). Moreover, their con-
struction in terms of Virasoro generators and vertices shows that they are the dimension-
(2p−1) currents generating theW-algebra of the(p,1) logarithmic conformal field the-
ory model, which were constructed in [10] using a Virasoro screening operator.

5.2.5. If we further use the bosonization

T(z) =
1
2

∂ f (z)∂ f (z)+
p−1√

2p
∂ 2 f (z)

for the energy-momentum tensor and

(5.10) V[r,s](z) = e

√
2
pλ+(r,s) f (z)

for the vertices in terms of a free field with the OPE∂ f (z)∂ f (w) =
1

(z−w)2 , then the ver-

tex operators in (5.9) becomeV[1,3](z)≡V2p−1(z)= e−
√

2p f(z) andV[2p+1,1](z)≡V1(z)=

e
√

2p f(z), as in the free-field construction in [10], with the screening given by
∮

e
√

2p f .
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5.2.6. Example.Fork= 1, the differential polynomial in (5.8) is given by

(5.11) D4V1(z) = 9
(
−60T(z)∂ 2V1(z)−6∂T(z)∂V1(z)

−18∂ 2T(z)V1(z)+64T(z)T(z)V1(z)+9∂ 4V1(z)
)

(with nested normal ordering from right to left, as usual). In terms of the bosonization
in (5.10), we then find

w+(z) = e−
√

6 f (z)

and a straightforward evaluation of (5.11) gives

w−(z) =
(
3120∂ 2 f (z)∂ 2 f (z)−1440∂ 3 f (z)∂ f (z)−960

√
6∂ 2 f (z)∂ f (z)∂ f (z)

+1440∂ f (z)∂ f (z)∂ f (z)∂ f (z)+40
√

6∂ 4 f (z)
)
e
√

6 f (z),

which is−80 times the(p=3,1)-model operatorW+(z) in [10, Example 2.2.1].10

5.3. “Reduction” of the characters. We recall from [61] that taking residues of inte-
grable or admissiblêsℓ(2) characters atz= qn gives either zero or Virasoro-representation
characters (times a two-boson character), in agreement with the Hamiltonian reduction
(under whichsomeirreducibleŝℓ(2) representations map into the trivial Virasoro repre-
sentation). This can be considered a “Hamiltonian reduction” at the level of characters.
For example, the integrablêsℓ(2)k charactersχ r(q,z) are holomorphic functions ofz, and
hence have zero residues.

This observation extends to the logarithmic/W-algebra realm as follows. We take the
residues atz= 1. As just noted, the integrable representation charactershave zero residue
at this point in particular. Next, for theW-algebra characters in4.2.1, we also have

res
z=1

χ ±
r (q,z) = 0, 16 r 6 p

(although these characters do have poles elsewhere, as is easy to see). On the other hand,
theω±

r (q,z) in (4.4)–(4.5) have nonvanishing residues atz= 1, yielding the 2p characters
of the (p,1)-model tripletW-algebra in [10], times the factor 1/η(q)2 that accounts for
the character of two free bosons:

res
z=1

ω+
r (q,z) =

1
η(q)2

rθr (q)−2θ ′
r (q)

pη(q)
,

res
z=1

ω−
r (q,z) =

1
η(q)2

rθp−r (q)+2θ ′
p−r(q)

pη(q)
,

(5.12)

where the theta-constants in the right-hand sides are the corresponding theta-functions at
z= 1. The resulting characters are indeed those in [10] (identification requires readjusting
the conventions for the theta-derivative and for the± labeling).

10The± conventions seem to be particularly difficult to match.
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Another interpretation of the above residue formulas can begiven in terms ofspecial-
ization of the W-algebra characters toz= 1.11 That is (switching to theν-language),
settingν = 0 in the modular transformation properties in4.3.3and4.3.5, we have the
well-defined specialized characters

χ r(τ) = lim
ν→0

χ r(τ,ν), 16 r 6 p−1,

χ ±
r (τ) = lim

ν→0
χ ±

r (τ,ν), 16 r 6 p.

Taking the limit in the definitions in4.3.5, we obtain the correspondingρr(τ), 16 r 6
p+1, andϕr(τ), 16 r 6 p−1. In addition, we define

ω̂±
r (τ) = lim

ν→0

(
νω±

r (τ,ν)
)
, 16 r 6 p,

which are just the residues in (5.12) times inessential constant factors. In accordance with
the definitions in4.3.3, this then gives the correspondingπ̂r(τ), 16 r 6 p+1, andϖ̂r(τ),
16 r 6 p−1.

Remarkably, these definitions allow takingν → 0 in the modular transformation for-
mulas in4.3.3and4.3.5(because theϖr enter the right-hand sides of the transformations
in 4.3.5only in the combinationνϖr(τ,ν)). But theS-transform formulas for the thus
“specialized” characters acquire negative powers ofτ, for example

π̂r(−
1
τ ) = i

√
2
p

(
1
2τ π̂0(τ)+

(−1)r

2τ π̂p(τ)+
1
τ

p−1

∑
s=1

cos
πrs
p

π̂s(τ)
)
,

as well as implicit negative powers ofτ in

ϕr(−
1
τ ) =

√
2
p

p−1

∑
s=1

sin
πrs
p

(
τ2ϕs(τ)+ τϖ̂s(τ)

)
,

becauseS-transformingτ2ϕr(τ) gives rise toτ−1ϖ̂s(τ) in the right-hand side.

Rewriting the modular transformation formulas in terms of the(p,1)-model characters
ϖ̃s(τ) = η(τ)2ϖ̂s(τ) andπ̃s(τ) = η(τ)2π̂s(τ), we, in particular, reproduce theSL(2,Z)
representationRp+1⊕C2⊗Rint(p) on these characters in [10]:

π̃r(−
1
τ ) = i

√
2
p

(
1
2

π̃0(τ)+
(−1)r

2
π̃p(τ)+

p−1

∑
s=1

cos
πrs
p

π̃s(τ)
)
,

ϖ̃r(−
1
τ ) =

√
2
p

p−1

∑
s=1

sin
πrs
p

τϖ̃s(τ).

Transformations of the remaining specialized characters involve both the(p,1) characters
and the free-boson charactersη(τ)−2 in the right-hand sides:

11I thank I. Tipunin for the suggestion.
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ρr(−
1
τ ) = i

√
2
p

(
1
2

(
τρ0(τ)+

π̃0(τ)
η(τ)2

)
+

(−1)r

2

(
τρp(τ)+

π̃p(τ)
η(τ)2

)

+
p−1

∑
s=1

cos
πrs
p

(
τρs(τ)+

π̃s(τ)
η(τ)2

))
,

ϕr(−
1
τ ) =

√
2
p

p−1

∑
s=1

sin
πrs
p

(
τ2ϕs(τ)+

τϖ̃s(τ)
η(τ)2

)
.

6. FURTHER PROSPECTS

This section is essentially a todo list or, depending on one’s standpoint, a list of things
that the author has failed to accomplish. It may nevertheless be helpful in setting loga-
rithmic ŝℓ(2) models in some new perspectives.

6.1. Three fermionic screenings. It would be exceptionally interesting to see how the
present construction generalizes to the case with three fermionic screenings, which is
indeed exceptional because theW-algebra that commutes with three fermionic screenings
is a Hamiltonian reduction of the exceptional affine Lie superalgebraD̂(2|1;α). It is at
the same time (see [62]) the algebra of the conformal field theory of the coset

ŝℓ(2)k1 ⊕ ŝℓ(2)k2

ŝℓ(2)k1+k2

,

which makes it particularly interesting in applications.

6.2. Kazhdan–Lusztig correspondence, the dual quantum group, and fusion. We re-
call that the property of a chiral algebra and a quantum groupassociated with the screen-
ings to be each other’s centralizers underlies the Kazhdan–Lusztig correspondence [31]
between representation categories of the chiral algebra and the quantum group.

Logarithmic conformal field theory models have nice quantum-group counterparts,
which capture at least part of the structure of logarithmic models and are therefore quite
useful in investigating them [11, 32, 33]. On the quantum-group side, the central role is
played by two objects, thecenterand the Grothendieck ring. In the known examples, the
center carries the same modular group representation as is realized on generalized char-
acters of the logarithmic model.12 Elements of the quantum-group center also translate
into boundary states in boundary conformal field theories [15]. The Kazhdan–Lusztig-
dual quantum group in thêsℓ(2)k context — a quantum supergroupUqsℓ(2|1) at a root of
unity — may actually correspond to the logarithmicŝℓ(2)k/u(1) theory, because the num-
ber of screenings is then equal to the number of free fields. Indications of a complicated
structure of its center can already be found in [64]. For the center to carry a modular
group action at all, the quantum group must be ribbon and factorizable (cf. [11, 33]);

12A decomposition of theSL(2,Z)-representation on a quantum group center involvingC
n tensor factors

(actually,C2) was first, to our knowledge, observed in [63].
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finding these structures, or at least some analogues thereof, for a quantumsupergroup is
a separate, quite interesting task. Hamiltonian reductionof logarithmic conformal field
theories in Sec.5 must also have a counterpart for the respective Kazhdan–Lusztig-dual
quantum groups, or at least for their centers and the modulargroup actions on them.

The previous experience with Kazhdan–Lusztig-dual quantum groups shows that their
Grothendieck rings give (a “K0-version” of) the fusion for the correspondingW-algebras
[10, 11, 12, 29]. Although this “experimental law” might require modification in the
current case of the dual pair given by the aboveW-algebra andUqsℓ(2|1) at a root of
unity, the Grothendieck ring of the dual quantum group is certainly related to theW-
algebra representation theory, being at the same time an object that is much easier to
evaluate.13

Another, rather speculative, inference from the (so far hypothetical) Kazhdan–Lusztig
correspondence with a quantumsℓ(2|1) is that becausesℓ(2|1) has typical (“wide”) and
atypical (“narrow”) representations, a similar picture, inasmuch as it survives specializing
to a root of unity and imposing constraints in the quantum group, is to be expected for the
W-algebra representations. TheY±r representations constructed above are then certainly
the “narrow” ones. The problem of “typical/wide/massive” representations and of the
role they may play is left for the future (their̂sℓ(2) “building blocks” may have the ex-
tremal diagrams shaped like those of admissible or even relaxed representations, cf. [5]).

6.3. More general models: “triplet” W-algebras instead ofŝℓ(2). For integerk, there
must exist logarithmic models generalizing the logarithmic ŝℓ(2)k differently thanŝℓ(2)→
ŝℓ(n), which first suggests itself. The bosonization ofŝℓ(2)k in 2.4 is then= 2 case of a

general pattern of algebrasW(2)
n (k), n> 1, constructed very similarly [53] (then=1 case

is merely theβγ system and then=3 case is the Bershadsky–Polyakov algebra [66, 67]).
For n> 2, the set ofn+1 vectors inCn+1 generalizing the dataξ, ψ−, ψ+ in 2.4.1is ξ,
an−2, . . . ,a1,ψ−,ψ+ with the Gram matrix generalizing (2.16) as




0ξ

an−2

an−3

a1

ψ−
ψ+

0 . . . . . . . . . . . . . . . . . . . . . . 0 1 −1
0 2(k+n) −k−n 0 . . . . . . . . . . . . . . . . . . . . . . . . 0
0 −k−n 2(k+n) −k−n 0 . . . . . . . . . . . . . . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . . . . . 0 −k−n 2(k+n) −k−n 0
1 0 . . . . . . . . . . . . . . . 0 −k−n 1 k+n−1
−1 0 . . . . . . . . . . . . . . . . . . . . . . 0 k+n−1 1




13We recently became aware of the results in [65], which go far beyond the Grothendieck ring for
the quantum groups closely related to those dual to the(p,1) logarithmic models: tensor products of
the indecomposable quantum group representations are evaluated there. We thank K. Erdmann for the
communication.
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(the determinant is given by−n(k+n)n−1). These vectors and an(n+1)-tuple of scalar
fieldsϕ are used to construct the screenings (with the dot denoting the Euclidean scalar
product inCn+1)

Ei =
∮

eai .ϕ , i = 1, . . . ,n−2, Q− =
∮

eψ−.ϕ , Q+ =
∮

eψ+.ϕ

representing the nilpotent subalgebra ofUqsℓ(n|1). The centralizer of the screenings is a

W-algebraW(2)
n (k) generated by two currentsE(z) andF(z) with the OPEs

E(z)F(w) =
λn−1(n,k)
(z−w)n +

nλn−2(n,k)H(w)
(z−w)n−1 + . . . ,

whereλm(n,k) = ∏m
i=1

(
i(k+n−1)−1

)
, and, further,

H(z)E(w) =
E(w)
z−w

, H(z)F(w) =−F(w)
z−w

, H(z)H(w) =
n−1

n k+n−2

(z−w)2 .

Quite an explicit construction ofE(z) andF(z) is available [53].

The entries of the above Gram matrix are integer for integerk and the fermionic screen-

ings commute fork+n > 1; “integrable” representations ofW(2)
n (k), mentioned in [53]

(also see [49]), are then a good starting point for the construction of logarithmic models.

6.4. Other logarithmic ŝℓ(2)k? There are two aspects of “other” logarithmiĉsℓ(2)k-
models with nonnegative integerk. First, there are various possibilities of constructing
“essentially larger” models, e.g., by taking the kernel of only one screening. Second,
with just two screenings, an a priori different logarithmicextension ofŝℓ(2)k conformal
models with integerk > −1 is possible based on the “nonsymmetric” bosonization of
ŝℓ(2)k (with a fermionic and a bosonic screening). It would be not entirely trivial if the
results actually coincide with those in this paper.

One more possibility is to “bosonize”̂sℓ(2)k just by the construction in (5.4) in terms
of two free fields and an energy-momentum tensorT(z) that isnot represented through a
free field. The screening/kernel machinery then involves the screeningSconstructed in
terms of the fields in5.2.1as [24]

(6.1) S=
∮

e

√
k
2φ

V[12],

whereV[12](z) is the “12” vertex operator forT(z), of dimensionδ12 =
3k
4 +1. The proof

that S is a screening uses the differential equation∂ 2V[12](z)− (k+2)T(z)V[12](z) = 0
satisfied byV[12](z). It is readily seen thatS is a fermionicscreening. Moreover, like
the Virasoro vertex operatorV[12], it has two components that map differently between

Virasoro modules. The construction of the logarithmicŝℓ(2)k model may then be repeated
with this screening action.

6.5. Rational k. Constructing a logarithmiĉsℓ(2)k theory for rationalk appears to be
a more complicated (and certainly bulkier) problem. The bosonization in (2.17) is still
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applicable for rationalk, and the two fermionic screenings given by (2.18) exist, but the
corresponding vertex operatorseψ±.ϕ(z) are no longer local with respect to each other.
The extension to rationalk may turn out to be easier to achieve in the “nonsymmetric”
bosonization of̂sℓ(2), with one bosonic and one fermionic screenings, but this task seems
to be rather involved anyway. The ultimate logarithmic theory is then to include the
elegant constructions in [3, 5].

6.6. Projective modules.Taking the kernel of screenings and identifying the relevant
W-algebra and its irreducible representations is only the first step in constructing (the
chiral sector of) a logarithmic conformal field theory modelbecauseextensionsof these
representations must be taken in order to obtain modules where the relevant generators
(e.g., L0) act nonsemisimply. The extensions are to be taken “up to thelimit,” which
means constructing projective covers of irreducibleW-algebra modules. The full space
of states in a given chiral sector is then the sum of all nonisomorphic indecomposable
projective modules. This is just another major difference from the semisimple/rational
case, where the chiral space of states is exhausted by irreducible representations. At
chosen fractional values ofk, constructions of some indecomposableŝℓ(2)-modules were
given in [3, 5]. A complication to be encountered with theW-algebra in this paper may
be expected from the fact that the modular group representation is infinite-dimensional
before the matrix automorphy factors are isolated, which may suggest some pathologies
in theW-algebra projective modules.
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APPENDIX A. EMBEDDING STRUCTURE OFVERMA ŝℓ(2)k-MODULES

We recall the embedding structure of someŝℓ(2)k Verma modules with positive integer
k+ 2. It is of course well known, and is given here for convenience of reference; the
reader may also find the picture of a twisted Verma module useful in deciphering the
figures in the main body of the paper.
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We use the notation • for the highest-weight state of a Verma module, to make it
reminiscent of the Verma module extremal diagram: in accordance with the annihilation
conditions in (2.6) for θ = 0, theŝℓ(2) operators act on the highest-weight vector as

(A.1)

• • • • •

F0

E−1

• • • • • •

• • • • • • •

with the occupied states, shown with dots, extending from west to south-east, but not
east or north. This notational convention is naturally extended to(θ = 1)-twisted Verma
modules, whose extremal diagram has the form

(A.2)

•

E0

F−1

• • • •

• • • • • •

• • • • • • •

and we therefore let• denote the twisted highest-weight vector with twist 1.

Let p= k+2∈ {2,3, . . .} andλ = λ+(r,s) = r−1
2 − ps−1

2 . Submodules in the Verma
moduleMλ are then arranged as in Fig.A.1. Arrows labeled(r ′,s′)± denote|MFF±(r ′,s′)〉
singular vectors (see2.2). The labels at the Verma submodules (which are representedby
dots) show the spin of the respective highest-weight vector. The right column gives the
relative level with respect to the highest-weight vector ofthe module:

(A.3) ℓi =





i
2

(
(s+

i
2
−1)p− r

)
, eveni,

(
s+

i−3
2

)(
r +

i−1
2

p
)
, odd i.

It may be instructive to consider the picture in Fig.A.1 transformed by the spectral flow
with θ = 1. More precisely, we take the twisted Verma moduleMλ+1+ k

2 ;1, whose highest-

weight vector is in the grade(λ +1, ℓ), where(λ , ℓ) is the grade of the highest-weight vec-
tor ofMλ (see (2.6)). Forλ = r−1

2 − ps−1
2 as above, the embedding diagram ofMλ+1+ k

2 ;1

is shown in Fig.A.2, where an arrow labeled(a,b)±;1 denotes the|MFF±(a,b;1)〉 singular
vector. The labels at the twisted highest-weight vectorsindicate their charge, not spin
(i.e., the eigenvalue ofH0, notλ in (2.6)).

We leave it to the reader to place the two diagrams, ofMλ andMλ+ p
2 ;1, into the corre-

sponding grades in the same picture and see how an extension of one module by the other
can then be constructed (the key is the matching lengths of the horizontal arrows in the
two diagrams).

We next recall the characters of some irreducible subquotients occurring in Fig.A.1.
Let Ni denote theright-hand irreducible subquotient at theith embedding level (i.e., on
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• 0

• ℓ1=r(s−1)

• • ℓ2=sp−r

• • ℓ3=s(r+p)

• • ℓ4=2(s+1)p−2r

• • ℓ5=(s+1)(r+2p)

r−1

2
−

s−1

2
p

−
r+1

2
−

s−1

2
p

r−1

2
−

s+1

2
p

−
r+1

2
−

s+1

2
p

r−1

2
−

s+3

2
p

−
r+1

2
−

s+3

2
p

−
r+1

2
+ s+1

2
p

r−1

2
+ s+1

2
p

−
r+1

2
+ s+3

2
p

r−1

2
+ s+3

2
p

(r,s)+

(sp−r,1)−

(p−r,s+1)+

(sp+r,1)−
((s+1)p−r,1)+

(r,s+1)−(r,s+2)+

((s+2)p−r,1)−

((s+1)p+r,1)+

(p−r,s+2)−(p−r,s+3)+

((s+2)p+r,1)−

((s+3)p−r,1)+

(r,s+3)−(r,s+4)+ ((s+4)p−r,1)−

((s+3)p+r,1)+

FIGURE A.1. Embedding structure of the Verma moduleMλ+(r,s).

the levelℓi relative to the top of the diagram). From the BGG resolution,its character
follows as

(A.4) χ Ni (q,z) =
q

r2
4p− s−1

2 r+ (s−1)2

4 p

q
1
8 ϑ1,1(q,z)

×
(

∑
a>0

+ ∑
a6−s−i−1

)
q

i+2a
2 ((s−1+ i+2a

2 )p−r)
(

z−
r+1

2 + s+i+2a−1
2 p−z

r−1
2 − s+i+2a−1

2 p
)

for eveni and

(A.5) χ Ni (q,z) =
q

r2
4p− s−1

2 r+ (s−1)2

4 p

q
1
8 ϑ1,1(q,z)

×
(

∑
a>1

+ ∑
a61−s−i

)
q

i+1+2a
2 ((s+ i+2a−1

2 )p−r)
(

z
r−1

2 − s+i+2a
2 p−z−

r+1
2 + s+i+2a

2 p
)

for odd i.
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• • 0

• • ℓ1=r(s−1)

• • ℓ2=sp−r

• • ℓ3=s(r+p)

• • ℓ4=2(s+1)p−2r

(r,s−1)+;1

((s−1)p−r,1)−;1

(p−r,s)+;1

((s−1)p+r,1)−;1

(st−r,1)+;1

(r,s)−;1

(r,s+1)+;1

((s+1)p−r,1)−;1

(sp+r,1)+;1

(p−r,s+1)−;1

(p−r,s+2)+;1

((s+1)p+r,1)−;1

((s+2)p−r,1)+;1

(r,s+2)−;1

((s+3)p−r,1)−;1

((s+2)p+r,1)+;1
(p−r,s+3)−;1

[ r+1
2 −

s−1
2 p]

[− r−1
2 −

s−1
2 p]

[ r+1
2 −

s+1
2 p]

[− r−1
2 −

s+1
2 p]

[ r+1
2 −

s+3
2 p]

[− r−1
2 + s+1

2 p]

[ r+1
2 + s+1

2 p]

[− r−1
2 + s+3

2 p]

[ r+1
2 + s+3

2 p]

[− r−1
2 + s+5

2 p]

FIGURE A.2. Embedding structure of the(θ = 1)-twisted Verma module
Mλ+(r,s);1. Labels in square brackets indicatechargesof the corresponding
twisted highest-weight vectors.

APPENDIX B. THETA-FUNCTION CONVENTIONS

The higher-level theta-functions are defined as

θr,p(q,z) = ∑
ι∈Z+ r

2p

qpι2
zpι .(B.1)

We set

(B.2) θ ′
r,p(q,z) = z

∂
∂z

θr,p(q,z), θ ′′
r,p(q,z) =

(
z

∂
∂z

)2
θr,p(q,z).

We also use the classic theta-functions

ϑ1,1(q,z) = ∑
m∈Z

q
1
2(m

2−m)(−z)−m = ∏
m>0

(1−z−1qm) ∏
m>1

(1−zqm) ∏
m>1

(1−qm),(B.3)

ϑ(q,z) = ∑
m∈Z

q
m2
2 zm(B.4)

related to (B.1) as

θr,p(q,z) = z
r
2 q

r2
4p ϑ(q2p,zpqr).
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The quasiperiodicity properties of theta-functions are expressed as

θr(q,zqn) = q−pn2
4 z−pn

2 θr+pn(q,z),(B.5)

with θr+pn,p(q,z) = θr(q,z) for even n, and

ϑ1,1(q,zqn) = (−1)nq−
1
2(n

2+n) z−nϑ1,1(q,z), n∈ Z.(B.6)

It then follows that

θ ′
r(q,zqn) = q−pn2

4 z−pn
2

(
θ ′

r+pn,p(q,z)−
pn
2

θr+pn(q,z)
)
,(B.7)

θ ′′
r (q,zqn) = q−pn2

4 z−pn
2

(
θ ′′

r+pn,p(q,z)− pnθ ′
r+pn(q,z)+

p2n2

4
θr+pn(q,z)

)
.(B.8)

We resort to the standard abuse by writingf (τ,ν) for f (e2iπτ ,e2iπν); it is tacitly as-
sumed thatq= e2iπτ (with τ in the upper complex half-plane) andz= e2iπν .

The modularT-transform of the theta-function is expressed as

θr,p(τ +1,ν) = eiπ r2
2p θr,p(τ,ν)(B.9)

and theS-transform as

θr,p(−
1
τ ,

ν
τ ) = eiπ pν2

2τ

√
−iτ
2p

2p−1

∑
s=0

e−iπ rs
p θs(τ,ν).(B.10)

Therefore,

θ ′
r,p(−

1
τ ,

ν
τ ) = eiπ pν2

2τ

√
−iτ
2p

2p−1

∑
s=0

e−iπ rs
p

(
τθ ′

s(τ,ν)+
pν
2

θs(τ,ν)
)

(B.11)

(the price paid for abusing notation is thatθ ′
r(τ,ν) = 1

2iπ
∂

∂ν θr(τ,ν)) and

θ ′′
r,p(−

1
τ ,

ν
τ ) = eiπ pν2

2τ

√
−iτ
2p

2p−1

∑
s=0

e−iπ rs
p

(
τ2θ ′′

s (τ,ν)+ pντθ ′
s(τ,ν)(B.12)

+
( p2ν2

4
+

pτ
4iπ
)
θs(τ,ν)

)
.

We also note the formula

Ω(−1
τ ,

ν
τ ) =−i

√
−iτ eiπ ν2

2τ Ω(τ,ν)

for the functionΩ(q,z) = q
1
8 z

1
2 ϑ1,1(q,z).

The eta function

η(q) = q
1
24

∞

∏
m=1

(1−qm)(B.13)
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transforms as

η(τ +1) = e
iπ
12η(τ), η(−1

τ ) =
√
−iτ η(τ).(B.14)

In calculating residues in5.3, we also need the formula

∂ϑ1,1(q,z)
∂z

∣∣∣
z=qn

= (−1)nq−
1
8 η(q)3q−

n2
2 − 3n

2 , n∈ Z.

APPENDIX C. SOME ELEMENTARY TRICKS WITH SL(2,Z) REPRESENTATIONS

C.1. SL(2,Z)y h×C. We first recall the standardSL(2,Z)-action onh×C (whereh is
the upper half-plane),

γ =

(
a b
c d

)
: (τ,ν) 7→

(
aτ +b
cτ +d

,
ν

cτ +d

)
.

The spaceF of suitable (e.g., meromorphic or just fractional-linear in τ) functions on
h×C is then endowed with anSL(2,Z)-action.

C.2. C2.

C.2.1. The defining two-dimensional representation —thedoublet — ofSL(2,Z) is the
representation where

S=

(
0 −1
1 0

)
and T =

(
1 1
0 1

)

act onC2 just by these matrices. We choose a basis 1, τ in C2 such thatSτ =−1, S1= τ,
Tτ = τ +1, andT1= 1.

If π is any finite-dimensionalSL(2,Z)-representation, withSπ = s andTπ = t acting
on vectors denoted byω, thenC2⊗π is spanned by 1ω andτω, with the action

S(τω) =−sω, S(1ω) = τ sω, T(τω) = τ tω +1tω, T(1ω) = 1tω.

ThisC2⊗π representation can be realized using theSL(2,Z) action onF as follows: we
identify 1= 1 andτ = τ, viewω as a function ofτ, which allows consideringf (τ)ω with
f ∈ F , and redefine the action ofSandT as

(C.1) S( f (τ)ω) = τ f (−1
τ ) sω, T( f (τ)ω) = f (τ +1) tω

(in other words, f is prescribed to transform with weight 1). Indeed, these formulas
immediately imply, e.g., thatS(τω) =−1

τ τ sω =−sω.14 Wishing to deal with the more

14By f (− 1
τ ), we everywhere meanf (τ)

∣∣∣
τ→− 1

τ
, and similarly for f (τ +1). For example, theτ →− 1

τ

operation sendsf ( τ
τ+1) into f (− 1

τ−1).
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standardcτ +d (rather than−cτ +a for the inverse matrix), we have to consider theright
action, which is determined by (C.1) as

γ : f (τ)ω 7→ (cτ +d) f (γτ)ω·γ, γ =

(
a b

c d

)
∈ SL(2,Z).

Clearly, extendingf (τ) beyond polynomials of degree 1 yields an infinite-dimensional
SL(2,Z) representation on the space of suitable functions timesπ , containingC2⊗π as
a subrepresentation.

C.2.2. If π ′ is anotherSL(2,Z)-representation of the same dimension asπ , with Sπ ′ = s
′

andTπ ′ = t
′ acting on vectors denoted byχ , then the direct sumπ ′⊕C2⊗ π admits a

family of deformations achieved by introducing a (matrix) automorphy factor as follows.
We start from the direct sumπ ′⊕C2⊗π realized as

(C.2)

(
f (τ)ω

χ

)

(whereω is from the representation space ofπ andχ is from π ′), with f (τ) being a first-
or zeroth-degree polynomial, in accordance with the above realization of the doublet. The

entire representation space is then spanned by

(
f (τ)ω +βνg(τ)χ

χ

)
. The terms containing

ν in the top row are always linear inν and proportional to a chosen parameterβ , because
of their origin that becomes clear momentarily.

TheSL(2,Z) action is uniquely defined by theT andSactions

T

(
f (τ)ω +βνg(τ)χ

χ

)
=

(
f (τ +1) tω +βνg(τ +1) t′χ

t
′χ

)
,

S

(
f (τ)ω +βνg(τ)χ

χ

)
=

(
τ f (−1

τ ) sω +β ν
τ g(−1

τ )s
′χ +βν f (−1

τ ) s
′χ

s
′χ

)
.

The third term in the top row of theS-transformation formula is the origin of terms pro-
portional toβν. The prescription for theS-transformation rule is to act with and without
an extraτ factor on terms withoutν and with it in the top row. That is,f in f (τ)ω is
assigned weight 1 as before, whereas anyg in νg(τ)χ is considered to have weight 0.

It is easy to see that theSL(2,Z)-orbit (again in the right-action version) of elements (C.2)
can then be written as in (4.16).

C.3. C3.

C.3.1. Taking the symmetrized square ofC2 gives theC3 representation; followingC.2.1,
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we can represent its basis as 1⊗1, τ ⊗1+1⊗ τ, andτ ⊗τ. A somewhat shorter notation
for the same basis is 1, 2τ, andτ2, with theSL(2,Z)-action immediately found as

S1= τ2, S2τ =−2τ, Sτ2 = 1,

T1= 1, T 2τ = 2τ +2 ·1, Tτ2 = τ2+2τ +1.

This form suggests a “functional realization” ofC
3⊗π (for a finite-dimensionalSL(2,Z)

representationπ determined byϕ 7→ sϕ andϕ 7→ tϕ) as the representation spanned byϕ,
2τϕ, andτ2ϕ, with theSL(2,Z)-action defined by

S( f (τ)ϕ) = τ2 f (−1
τ ) sϕ, T( f (τ)ϕ) = f (τ +1) tϕ.

In other words,f is assigned weight 2 andSL(2,Z) acts (in the right-action version) as

γ : f (τ)ϕ 7→ (cτ +d)2 f (γτ)ϕ·γ.
Extendingf (τ) beyond degree-2 polynomials gives an infinite-dimensionalSL(2,Z) rep-
resentation in whichC3⊗π is a subrepresentation.

C.3.2. With C3⊗π realized as inC.3.1, we construct a deformation ofπ ′′⊕π ′⊕C3⊗π
for three representationsπ ′′, π ′, andπ of the same dimension. We write

(C.3)




f (τ)ϕ
ω
χ




for an arbitrary element ofπ ′′⊕π ′⊕C3⊗π , where f (τ) a polynomial of degree at most
two. The “new”SL(2,Z)-action on such elements gives rise to and is defined on elements
of the form 


f (τ)ϕ +νg(τ)ω +ν2h(τ)χ

ω
χ


 ,

where theν-dependent terms are in fact proportional to the parametersα andβ as be-
comes clear from theS-action formula below.

The T generator acts as (we omit the primes distinguishing the actions in π , π ′, and
π ′′)




f (τ)ϕ +νg(τ)ω +ν2h(τ)χ
ω
χ


 T7−→




f (τ +1)tϕ +νg(τ +1)tω +ν2h(τ +1)tχ
tω
tχ




andSas



f (τ)ϕ +νg(τ)ω +ν2h(τ)χ
ω
χ


 S7−→
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τ2 f (− 1
τ )sϕ +νg(− 1

τ )sω + ν2

τ2 h(− 1
τ )sχ +αντ f (− 1

τ )sω +ν2
(

αβ
2 f (− 1

τ )+
β
τ g(− 1

τ )
)
sχ

sω
sχ


 .

TheS-transformation rule in the top row can be described as follows. Theν-independent
term transforms as a triplet (with a factor ofτ2 as inC.3.1); the term linear inν trans-
forms as “ν times a doublet,” i.e.,S: ν ·g(τ)ω 7→ ν

τ ·τg(−1
τ )sω (with the extraτ factor as

in C.2.1); theν2-term involves no additionalτ-dependent factors: it transforms in accor-

dance with the action on functions onh×C; in addition, the pair

(
f (τ)ϕ

ω

)
gives rise to

an extra termαντ f (−1
τ )sω, the pair

(
νg(τ)ω

χ

)
to an extra termν2 β

τ g(−1
τ )sχ , and the

pair

(
f (τ)ϕ

χ

)
to αβ

2 ν2 f (−1
τ )sχ .

It is not difficult to see that the (right-action)SL(2,Z)-orbit of elements (C.3) can be
written as in (4.18).
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