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1. Introduction

The Duistermaat-Heckman integration formula [1],[2] and its generalizations to path

integrals have been discussed extensively both in the Mathematics [3]-[5] and in the

Physics [6]-[7] literature. In this article, we shall review the original integration formula

and show how it can be derived. In particular we shall discuss the equivariant coho-

mology structure which underlies the integration formula, explore connections between

equivariant cohomology and classical integrability, and investigate how the known in-

tegration formulas could be generalized.

We shall limit ourselves to finite dimensional integrals, and we refer to the original

articles [5,6] where path integral generalizations have been discussed: The integration

formulas for path integrals can be obtained by generalizing the present construction

to the loop space. Even though there are some genuine loop space intricacies that are

absent in finite dimensions, the insight gained in finite dimensions is in any case quite

applicable also in the loop space.

2. Equivariance, Integrable Models And Localization

We shall consider a 2n dimensional compact phase space M , with local coordinates

zi and Poisson bracket

{zi, zj} = ωij(z) (1)

Here ωij is the inverse matrix to the symplectic two-form on M ,

ω =
1

2
ωijdz

idzj (2)

This is closed,

dω = 0 (3)

so that locally we can introduce the one-form ϑ called the symplectic potential such

that

ω = dϑ (4)

We are interested in the exact evaluation of the ”classical” partition function

Z =
∫

ωne−βH (5)
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where H is some hamiltonian on M , and β is a real parameter (inverse temperature

in classical statistical physics). The integration formula by Duistermaat and Heckman

states, that if H determines the symplectic action of U(1) on the phase space the

integral (5) localizes to the critical points of H ,

Z =
1

βn

∑

dH=0

√

det||ωij||
√

det||∂ijH||
exp{−βH} (6)

In this article we shall explain how (6) is derived. We shall also discuss some possible

approaches to generalize this integration formula to a wider class of Hamiltonians.

The integration formula (6) is derived using equivariant cohomology on the phase

space M . For this we consider the exterior algebra Ω(M) of M and introduce the

contraction operator iX with respect to a general vector field X . It is a nilpotent

operator on the exterior algebra Ω(M). We also introduce the equivariant exterior

derivative

dX = d+ φiX (7)

where φ is a real parameter, and the Lie derivative along X

LX = d2X = φ(diX + iXd) (8)

On the subcomplex ΩX of X -invariant exterior forms

LXΩX = 0 (9)

the exterior derivative (7) is then nilpotent and defines the X -equivariant subcomplex

ΩX of Ω(M). The corresponding cohomology determines the equivariant cohomology

on M .

We shall assume that the action of X on M is symplectic,

LXω = diXω = 0 (10)

Provided the one-form iXω is exact (for this the triviality of H1(M,R) is sufficient),

we can introduce the corresponding Hamiltonian H(z)

iXω = − dH (11)

In local coordinates zi on M this becomes

X = ωab∂aH∂b (12)
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In order to use this formalism to derive the integration formula (6) and its gener-

alizations, we realize the various operations on the exterior algebra Ω(M) canonically.

For this we introduce a canonical conjugate variable pi for z
i, identify dzi with anti-

commuting ci and the contraction operator on ci with c̄i, with Poisson brackets

{pi, zj} = δ
j
i (13)

{c̄i, cj} = δ
j
i (14)

In terms of these variables the exterior derivative, contraction and Lie derivative can

be realized by the Poisson bracket actions of

d = pic
i (15)

iH = X ic̄i (16)

LH = X ipi + ci∂iX j c̄j (17)

Since

dH(φH + ω) = φ(dH + iHω) = 0 (18)

by (11), we conclude that φH+ω is an element ofH∗(M) and determines an equivariant

cohomology class. This is an equivalence class consisting of elements in Ω(M) which

are linear combinations of zero- and two-forms that can be represented as

φH + ω + dHψ (19)

where ψ ∈ Ω(M) satisfies

LHψ = 0 (20)

and is a linear combination of the form

ψ = ψ0 + ψ1 + ψ2 + ... + ψ2n (21)

where ψk is a k-form on Ω(M). In particular, due to linearity of LH these k-forms also

satisfy

LHψk = 0 (22)

Suppose now that there exists a ψ which satisfies (20) and in addition dHψ is a

linear combination of a zero- and two-form. Denoting the zero-form by K and the
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two-form by Ω, we then have the relations (φ = 1 for simpler notation)

iHψ1 = K (23)

dψ0 + iHψ2 = 0 (24)

dψ1 + iHψ3 = Ω (25)

dψ2 + iHψ4 = 0 (26)

etc...

In particular, since

diHψ3 = − iHdψ3 = iHiHψ5 = 0

by (22), we conclude that Ω is a closed two-form (but not necessarily nondegenerate).

Furthermore, since

dK = diHψ1 = − iHdψ1 = − iHΩ (27)

we get

Ωab∂bK = ωab∂bH (28)

so that the classical equations of motion for the two Hamiltonian systems (H,ω) and

(K,Ω) coincide. As a consequence these two systems determine a bi-Hamiltonian struc-

ture. (Here we assume that Ωab is nondegenerate onM except possibly on submanifolds

of M which have a co-dimension larger than or equal to two. On these submanifolds,

the Hamiltonian K must then vanish to keep the equations of motion non-singular.)

On the other hand, if we have a bi-Hamiltonian structure so that (28) holds we get

dH(φK + Ω) = 0 (29)

that is, φK + Ω is equivariantly closed with respect to dH . We can then apply an

equivariant form of Poincare’s lemma to conclude that there exist a (locally defined)

form ψ on Ω(M) such that

φK + Ω = dHψ (30)

Indeed, for an integrable model this can be easily solved at least locally: If (H,ω) and

(K,Ω) is an integrable bi-Hamiltonian pair, we can introduce action-angle variables

(Ii, θi) (almost) everywhere on M such that both H and K depend only on the action

variables, H = H(I) and K = K(I). We assume that these variables are selected so

that Ω admits the Darboux form

Ω =
∑

i

dIi ∧ dθi (31)
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while ωab remains a nontrivial function of (Ii, θi). The corresponding symplectic po-

tential for Ω is

ϑ =
∑

i

Iidθi + dF (32)

where F is some function.

In the complement of the critical point set of K we have an action variable Ik such

that
∂K(I)

∂Ik
6= 0

With θk the corresponding angle variable, we introduce the following function on M

W (I, θ) = θk ·
(

∂K

∂Ik

)−1

(33)

We then consider (30) (φ = 1 here for simplicity):

K + Ω = (d+ iH)(ϑ+ dF ) = ωab∂bHϑa + ωab∂bH∂aF + Ω (34)

Using ( ), we get further

=
∑

i

∂K

∂Ii
Ii + {K,F}+

∑

i

dIi ∧ dθi (35)

Hence, if we select

F (I, θ) = W · (K −
∑

i

∂K

∂Ii
Ii) +G(I) (36)

with G(I) an arbitrary function of the action variables, we conclude that the one-form

ψ = ϑ+ dF satisfies (30),

K + Ω = dH(ϑ+ dF ) (37)

The global existence of such a form ψ is connected to the nontriviality of the

equivariant cohomology associated with dH .

The preceding discussion suggests an intimate relationship between equivariant co-

homology and the existence of bi-Hamiltonian structures, which deserves further in-

vestigation.

We remind, that if the symplectic two-forms ω and Ω are such that the following

rank-(1,1) tensor is nontrivial,

L = Ωω−1 = Ωacω
cbcapb (38)
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we can establish the integrability of (H,ω) under a certain condition: From (26),

LHΩ = (diH + iHd)dψ = diHdψ (39)

and since ψ satisfies (20), we conclude that

LHΩ = 0 (40)

Using (10), we then get

LHL = LH(Ωω−1) = (LHΩ)ω−1 + Ω(LHω−1) = 0 (41)

or in components

X c
H∂cL

b
a + Lac∂aX c

H − Lca∂cX b
H = 0 (42)

This we can write as
dLba
dt

= Lca(∂cX b
H) − (∂aX c

H)L
b
c (43)

or
dL

dt
= [L, U ] (44)

with U b
a = ∂aX b

H . This is the Lax equation and L, U is the Lax pair.

In order to prove integrability, we introduce

Qk =
1

k
TrLk (45)

and define the Nijenhuis tensor N , with components

N c
ab = Lda∂dL

c
b − Ldb∂dL

c
a − Lcd(∂aL

d
b − ∂bL

d
a) (46)

Then,

N c
ab(L

n−1)bc = (Lda∂dL
c
b − Ldb∂dL

c
a − Lcd[∂aL

d
b − ∂bL

d
a])(L

n−1)bc

= Lda(∂dL
c
b)(L

n−1)bc − (Ln)dc(∂dL
c
a)− (Ln)bd(∂aL

d
b − ∂bL

d
a)

= Lda(∂dL
c
b)(L

n−1)bc − (Ln)bd∂aL
d
b (47)

On the other hand,

∂dTrL
n =

∑

m

Tr(L...∂d
(m)

L ...L) = nTr(∂dL)L
n−1 = n(∂dL

c
b)(L

n−1)bc

so that using

∂dQn = (∂dL
c
b)(L

n−1)bc
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we conclude that

N c
ab(L

n−1)bc = Lda∂dQn − ∂aQn+1 (48)

As a consequence, if the Nijenhuis tensor vanishes we obtain the recursion relation

Lda∂dQn = ∂aQn+1 (49)

which we can also write as

ωab∂bQn = ΩabQn+1 (50)

Furthermore, since

{Qi, Qj}ω = ωab∂aQi∂bQj = Ωab∂aQi∂bQj+1 = ωab∂aQi−1∂bQj+1 = {Qi−1, Qj+1}ω

and assuming i > j and iterating i− j times, we get

{Qi, Qj}ω = {Qj , Qi}ω

Hence

{Qi, Qj}ω = 0 for all i, j (51)

and we have constructed n quantities in involution. Furthermore, since

Tr{Lk dL
dt

} = Tr{Lk[L, U ]} = 0 (52)

we conclude that these quantities are conserved i.e. commute with the Hamiltonian

H . This establishes the integrability of the Hamiltonian system (H,ω), provided (45)

are complete i.e. the number of functionally independent (45) coincides with half the

phase space dimension. However, in general there is no guarantee that these integrals

are complete, and this completeness must be established independently.

Consider now the integral

Z = φn
∫

ωne−φH (53)

for some Hamiltonian H that admits a bi-Hamiltonian structure. If we introduce

anticommuting variables ca we can write Z as

Z = (−)nn!φn
∫

dzi
√

det||ωij||e−φH = (−)nn!φn
∫

dzidcie−φH−ω (54)

We assume that ψ is a one-form such that

LHψ = 0 (55)
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With λ a real parameter we then argue that the following one-parameter family of

integrals

Zλ =
∫

dzidci exp{−φH − ω − λdHψ} (56)

does not depend on λ. This implies in particular, that the integral (53) only depends

on the equivalence class determined by (H,ω) in the dH equivariant cohomology.

In order to prove this λ-independence, we consider an infinitesimal variation λ →
λ+ δλ, and show that

Zλ = Zλ+δλ (57)

For this, we introduce the following infinitesimal change of variables in (56):

zi → z̃i = zi + δzi = zi + δψ · dHzi = zi + δψci (58)

ci → c̃i = ci + δci = ci + δψ · dHci = ci − δψX i (59)

with

δψ = δλ · ψ (60)

Since ψ satisfies (55), the exponential in (56) is invariant under the change of variables

(59). However, the Jacobian is nontrivial:

dz̃idc̃i = Sdet









∂z̃i

∂zi
z̃i
←

∂
∂ci

∂c̃i

∂zi
∂c̃i

∂ci









dzidci

= Sdet







1 + ∂δψ

∂zi
ci ⋆

⋆ 1− ∂δψ

∂ci
X i





 dzidci

=





1 + Str







∂δψ

∂zi
ci ⋆

⋆ −∂δψ

∂ci
X i











 dzidci

= (1 +
∂δψ

∂zi
ci +

∂δψ

∂ci
X i)dzidci

= (1− (ci
∂

∂zi
−X i ∂

∂ci
)δψ)dzidci
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= (1− dHδψ)dz
idci ∼ exp{−dH(δψ)}dzidci = exp{−δλdHψ}

Hence

Z =
∫

dzidci exp{−φH + ω − λdHψ − dH(δψ)}

=
∫

dzidci exp{−φH + ω − (λ+ δλ)dHψ} = Zλ+δλ (61)

and we have established that if the Hamiltonian system (H,ω) admits a bi-Hamiltonian

struture the classical partition function (53) depends only on the equivalence class that

(H,ω) determines in the dH equivariant cohomology.

3. Duistermaat-Heckman Integration Formula

In order to construct examples we consider a compact Lie group G that acts on M

by local diffeomorphisms which are generated by vector fields Xa, a = 1, ..., m. Their

commutation relations defines a representation of the Lie algebra ĝ of G,

[Xa,Xb] = fabcXc (62)

where fabc are the structure constants of ĝ.

We denote contraction w.r.t. the Lie algebra basis {Xa} by ia. The corresponding

Lie derivatives

La = dia + iad (63)

then generate the action of G on the exterior algebra Ω(M) of M ,

[La,Lb] = fabcLc (64)

We assume that the action of G on M is symplectic,

Laω = diaω = 0 for all a (65)

so that we can define the momentum map

HG : M 7→ ĝ∗ (66)
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which gives a one-to-one correspondence between the vector fields Xa and the compo-

nents Ta of the momentum map,

HG = φaTa (67)

where {φa} is a (symmetric) basis of ĝ. From the Jacobi identity for ĝ we then get the

homomorphism

[Xa,Xb] = fabcXc = X{Ta,Tb} (68)

However, in general the Hamiltonian corresponding to the commutator of two gen-

erators may differ from the Poisson bracket of the corresponding Hamiltonians by a

two-cocycle,

{Ta, Tb} = fabcTc + κab (69)

but here we shall assume that κab = 0.

We again introduce the canonical realization (15)-(17) of the various operations.

The simplest example of the present construction is the canonical action of the

circle G = U(1) ∼ S1. This action is generated by a vector field X , the generator of

the Lie-algebra u(1) of U(1). The corresponding momentum map (67) is

HU(1) = φH (70)

and

X a = ωab∂bH (71)

and φ is the generator of the dual basis of u(1), a real parameter.

We wish to derive the integration formula (6) for the integral

Z = φn
∫

ωne−φH (72)

with H the hamiltonian in (70). For this we introduce the corresponding equivariant

exterior derivative

dH = d+ φiH (73)

and the Lie-derivative with respect to X is

d2H = φ(diH + iHd) = φLH .
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so that on the subcomplex ΩU(1) of U(1)-invariant exterior forms, dH is nilpotent and

defines an exterior differential operator. The pertinent cohomology coincides with the

equivariant cohomology H∗
U(1)(M) of the manifold M .

In order to derive (6), we first need a one-form ψ that we can use in (56), to localize

it onto (6). For this we first observe that since the group G ∼ U(1) is compact, we may

construct a metric tensor gab on M for which the canonical flow of H is an isometry,

LHg = 0 (74)

Such a metric is obtained by first selecting an arbitrary Riemannian metric g̃ on M ,

and averaging it over the group G using its Haar measure. A converse is also true:

Since M is compact the isometry group of g must also be compact.

We select

ψ = iHg = gijX icj (75)

where g is the Riemannian metric (74). As a consequence,

LHψ = 0 (76)

and we obtain the bi-Hamiltonian structure with

K = gijX iX j (77)

Ωij = ∂i(gjkX k)− ∂j(gikX k) (78)

and the integral

Z = φn
∫

dzidci exp{−φH − ω + λ(K + Ω)} (79)

is independent of λ.

Explicitly,

Z = φn
∫

dzidci exp{−φH − ω − λgijX iX j − 1

2
λ · Ωijcicj} (80)

In the λ→ ∞ we can then use

δ(zi) = lim
λ→∞

(

λ
2π

)n
2

√

det ||Sij|| · e−
λ
2
ziSijz

j

(81)

δ(ci) = lim
λ→∞

λ−
n
2

1√
det ||Aij ||

· eλ
2
ciAijc

j

. (82)
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for a symmetric (S) and antisymmetric (A) matrix respectively, to localize (80) onto

(6):

Z =
∫

dzidci

√

det ||Ωij ||
√

det ||gij||
δ(X )δ(c) e−φH−ω =

∫

dzi

√

det ||Ωij||
√

det ||gij||
δ(X ) e−φH

=
∫

dX i det ||
(

∂zi

∂X j

)

|| ·
√

det ||Ωij||
√

det ||gij||
δ(X ) e−φH

=
∑

dH=0

1

det ||∂iX j||

√

det ||Ωij||
√

det ||gij||
e−φH

Since dH = 0, we have X = 0 and

Ωij = ∂i(gjkX k)− ∂j(gikX k) = gjk∂iX k − gik∂jX k

On the other hand, in terms of its components LHg = 0 becomes

X k∂kgij + gik∂jX k + gjk∂iX k = 0

As a consequence,

gik∂jX k + gjk∂iX k = 0

that is

Ωij = 2gjk∂iX k

Consequently we get

Z =
∑

dH=0

1

det ||∂iX j || ·
√

det ||gij|| ·
√

det ||∂iX k||
√

det ||gij||
exp{−φH}

=
∑

dH=0

e−φH
√

det ||∂iX j||
(83)

Since

∂iX j = ωjk∂i∂kH

we get finally get the Duistermaat-Heckman integration formula (6),

Z =
∑

dH=0

√

det ||ωij||
√

det ||∂ijH||
exp{−φH} (84)
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for a Hamiltonian H that generates the action of U(1) on the phase space.

4. Generalizations:

Our discussion in section 2. suggests, that the localization techniques to evaluate

integrals of the form (5) could be applied to quite general integrable Hamiltonians:

The existence of a functional ψ which is Lie derived by the Hamiltonian seems to

be generally connected to the concept of integrability. Since the integral (5) depends

on the equivariant cohomology class determined by φH + ω rather than its given

representative, it is natural to expect that (6) is just an example of a much more

general phenomenon. At the moment this is not yet well understood, and thus we shall

here only discuss a few possible ways to generalize the integration formula (6).

First, we shall consider the general case of a compact nonabelian Lie group G which

acts on M , and we are interested in a Hamiltonian H2 which is a quadratic Casimir

for the nonabelian Lie group generators Ta,

C2 = ηabTaTb (85)

{Ta, C2} = 0 for all a (86)

Here ηab is positive definite and nondegenerate. We consider the path integral

Z = φn
∫

dzidci exp{−φηabTaTb − ω} (87)

We multiply this by

1 =

(

φ

π

)
n
2 √

det ||ηab||
∞
∫

−∞

dqa exp{−φηabqaqb} (88)

which yields

Z =

(

φ

π

)n
2

φn
√

det ||ηab||
∞
∫

−∞

dqa exp{−φηabqaqb}
∫

dzidci exp{−2φηabqaTb−ω} (89)

Denoting

Hq = 2ηabqaTb
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which we can identify as the momentum map (67) with φa = 2ηabqb, we then conclude

that the second integral in (89) is of the form (54). Consequently (89) localizes to

Z =

(

φ

π

)n
2 √

det ||ηab||
∞
∫

−∞

dqa exp{−φηabqaqb}
∑

dHq=0

√

det||ωij||
√

det ||∂ijHq||
exp{−φHq} (90)

Generalizations to higher order Casimirs, and for more general functionals H [Ta] of the

Lie algebra generators can also been considered [5], [6].

Next, we first consider a (not necessarily integrable) Hamiltonian H with a number

of conserved quantities Qα,

{H,Qα} = 0 (91)

Using these conserved quantities, we introduce the following (degenerate!) symmetric

matrix

Gij(Q) =
∑

α

∂iQα∂jQα (92)

We then consider the Lie derivative LHG. In components, this gives

∂i({H,Qα})∂jQα + ∂j({H,Qα})∂iQα = 0 (93)

as a consequence of (91), so that the matrix (92) satisfies the Lie derivative condition

(74). However, for the same reason we find that the corresponding one-form (75)

ψQ = GijX ici = ωik∂kH∂iQα∂jQαc
j = {H,Qα}dQα = 0 (94)

and consequently we do not get a localization formula.

In the loop space (92) can be used to derive localization formulas [6], and it would

be interesting to see if a proper variant of the present could be used to derive a partial

localization also for the pertinent integral (5). With Qα the full set of conserved

quantities for an integrable model (H,ω) this could then yield a localization formula

for a quite general integrable system.

We shall conclude this article by investigating properties of the following [8] alter-

native geometrical condition to the Lie derivative condition (74): We shall assume that

instead of (74) we have a metric tensor which satisfies

∇XH
XH = 0 (95)
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or in components

X l∂lX k + ΓkijX iX j = 0 (96)

for the Hamiltonian vector field

X i
H = ωij∂jH (97)

This condition means, that the Hamiltonian flow of H is geodetic to gij.

We introduce the following Hamiltonian

K =
1

2
gijX i

HX j
H (98)

and the following symplectic two-form

Ωij = ∂i(gjkX k)− ∂j(gikX k) (99)

and argue, that (H,ω) and (K,Ω) determines a bi-hamiltonian pair, i.e.

∂iK = ΩijX j
H (100)

In order to establish this we consider the r.h.s. of (100),

ΩijX j = [∂i(gjkX k)− ∂j(gikX k)]X j

= (∂igij)X jX k + gjk(∂iX k)X j − (∂jgik)X kX j − gik(∂jX k)X j (101)

We then use the component form (100), i.e.

X l(∂lX k) +
1

2
gkl(∂igjl + ∂jgil − ∂lgij)X iX j = 0

from which we get

gklX j∂jX l = −(∂igjk)X iX j +
1

2
(∂kgij)X iX j

Substituting this into then last term in (101), we then get

= (∂igjk)X jX k + gjk(∂iX k)X j − (∂jgik)X kX j + (∂kgij)X kX j − 1

2
(∂igjk)X kX j

=
1

2
(∂igjk)X jX k + gjk(∂iX k)X j =

1

2
(∂igjk)X jX k +

1

2
gjk(∂iX j)X k +

1

2
gjkX j∂iX k

= ∂i(
1

2
gjkX jX k) (102)
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This coincides with the l.h.s. of (100), and establishes the bi-hamiltonian structure.

In fact, we have here shown that

dH(K + Ω) = 0 ⇔ ∇XH
XH = 0 (103)

Unfortunately, we also find that the symplectic two-form Ω is degenerate on a

compact phase space [9]: Consider the Ω - volume form

Ωn =
√

det||Ωij||dz1 ∧ ... ∧ dz2n (104)

Since

Ω = d(iHg) (105)

globally on M (in obvious notation), Stokes theorem yields

∫

M
Ωn =

∫

M
d(iHg ∧ Ωn−1) = 0 (106)

which implies that det||Ωij || = 0. However, for integrability it appears to be sufficient,

that degeneracies of Ω which occur only on submanifolds ofM with co-dimensions two

or more are not necessarily fatal, provided the Hamiltonian vanish at these submani-

folds to keep the equations of motion non-singular.

Finally, we argue that K+Ω is equivariantly exact, i.e. that there exist a one-form

ψ such that

dHψ = K + Ω (107)

For this, we first observe that if we denote

η = iHg = gabX a
Hc

b

we get

dHη = 2K + Ω (108)

If we then subtract (107) from (108) and define

θ = η − ψ

we get

dHθ = dH(η − ψ) = K (109)

that is

dθ = 0 (110)
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and

iHθ = K (111)

If we then assume that θ is exact so that we can write θ = dF for some function F (by

Poincare’s lemma such a F exists at least locally), we obtain

iHdF = X a
H∂aF = K (112)

so that

ψ = iHg − dF (113)

is the desired one-form that satisfies (107). Consequently we have established that

the condition (103) yields relations analogous to those that yield the Duistermaat-

Heckman formula, and it would be interesting to see how (103) could be used to derive

new localization formulas.

5. Conclusions

In conclusion, we have investigated the relations between equivariant cohomology

and classical integrability. In particular, we have explained in detail how the localiza-

tion formulas for the classical partition function (5) are derived from the formalism of

equivariant cohomology, and as an example we have derived the Duistermaat-Heckman

integration formula in detail. We have also discussed some generalizations of the equiv-

ariance structure which underlies the Duistermaat-Heckman integration formula, and

it would be interesting to see if these generalizations yield new integration formulas. In

particular, it would be very interesting to understand fully the relation between inte-

grability and equivariant cohomology, and whether localization techniques could in fact

be extended to evaluate the partition functions for quite generic quantum integrable

models.

We thank M.Laine, K.Palo and O.Tirkkonen for discussions.
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