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ABSTRACT

Typically the moduli fields acquire mass m2

φ = ±C2H2 in the early universe,
which shifts the position of the minimum of their effective potential and leads to an
excessively large energy density of the oscillating moduli fields at the later stages of
the evolution of the universe. This constitutes the cosmological moduli problem, or
Polonyi field problem. We show that the cosmological moduli problem can be solved
or at least significantly relaxed in the theories in which C ≫ 1, as well as in some
models with C ≪ 1.
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String moduli couple to standard model fields only through Planck scale suppressed inter-
actions. Their effective potential is exactly flat in perturbation theory perturbatively in the
supersymmetric limit, but it may become curved due to nonperturbative effects or because of
supersymmetry breaking. If these fields originally were far from the minimum of their effective
potential, the energy of their oscillations decrease in an expanding universe in the same way as the
energy density of nonrelativistic matter, ρm ∼ a−3(t). Meanwhile energy density of relativistic
plasma decreases as a−4. Therefore the relative contribution of moduli to the energy density of
the universe may soon become quite significant. They are expected to decay after the stage of
nucleosynthesis, violating the standard nucleosynthesis predictions, unless the initial amplitude
of the moduli oscillations φ0 is sufficiently small. The constraint on φ0 depends on details of the
theory. The most stringent constraint appears because of the photodissociation and photopro-
duction of light elements by the decay products, φ0

<∼ 10−10Mp, see [1, 2] and references therein.
However, if one makes an assumption that moduli decay only to the particles in the hidden sector,
the constraint becomes less stringent, φ0

<∼ 10−7Mp. For greater values of φ0 the energy density of
the oscillating field dominates the energy density of the universe at the epoch of nucleosynthesis,
which leads to a significant overproduction of 4He (i.e. to the absence of hydrogen). Meanwhile
one would expect the initial amplitude of oscillations φ0 to be of the same order as Mp. (Here we
use stringy normalization for the Planck mass, Mp =

1√
8πG

∼ 2× 1018 GeV.) This is the essence

of the cosmological moduli problem, which is the string version [3, 2] of the Polonyi problem [4].

There were many suggestions how to solve this problem. For example, it was suggested that
the moduli fields slowly slide down to the minimum of their effective potential during inflation,
and do not oscillate there anymore [5]. This regime would be possible even for very light moduli if
inflation is long enough. Moreover, according to [6], moduli fields typically acquire mass mφ ∼ H
during inflation. Thus, their effective mass during inflation was not that small, and they could
roll down to their minimum even if inflation was not very long [5, 7]. However, as was argued by
Goncharov, Linde and Vysotsky [8], this does not solve the problem since typically the minimum
of the effective potential during inflation does not coincide with the minimum of the effective
potential at the present time with an accuracy 10−7Mp − 10−10Mp. Recently this problem was
investigated by Dine, Randall and Thomas [9], who have argued that the positions of the two
minima may in fact coincide if one invokes some additional symmetries. If the mass of the moduli
fields is very large (which may happen in certain models, see e.g. [10]), then they decay very
early and do not pose any problems. A more general solution would be to have an additional
stage of inflation which would dilute the energy of the oscillating moduli fields [2]. The most
elegant realization of this idea is the “thermal inflation” scenario suggested by Lyth and Stewart
[11]. It appears that in many models where scalar potentials have flat directions a secondary
stage of inflation may indeed take place when the temperature becomes sufficiently small. This
stage is short, but it may be long enough to resolve the cosmological moduli problem. A similar
(or maybe even somewhat longer) stage of “nonthermal” inflation may occur due to nonthermal
phase transitions after reheating [12].

Thus, it may happen that after all the cosmological moduli problem may be not too severe.
However, since “thermal” (or “nonthermal”) inflation is very short, it solves the cosmological mod-
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uli problem only under some optimistic assumptions about parameters of the models. Therefore
it would be nice to have an additional mechanism which would help us to solve or at least to
somewhat relax this problem.

To investigate this possibility one should note that there are many mechanisms giving the
contributions O(H2) to m2

φ. The sign and the magnitude of the sum of all these contributions
is not well known. At the classical level, one would expect that in the early universe m2

φ ∼ H2,
but this expectation can be strongly altered by quantum corrections and by nonrenormalizable
terms in the effective Lagrangian [13]. For example, radiative corrections may lead to the terms
in the effective Lagrangian of the form

δL = ± C2

M2
p

∫

d4θ χ†χφ†φ , (1)

where χ is some field which dominates the energy density of the universe. At argued in [13],
the existence of such operators is guaranteed in the presence of Yukawa couplings since they
are necessary counterterms for operators generated by loop diagrams. But this means that the
coefficient C2 in front of this term a priori can take any value; there is no reason to expect that
C2 is particularly small, or that C2 ∼ 1. If χ dominates the energy density, then ρ ≃ 〈∫ d4θχ†χ〉.
The interaction (1) therefore gives a contribution ∆m2

φ = ±C2 ρ
M2

p
to the effective mass of the field

φ. During inflation ρ = 3H2M2

p , i.e. ∆m2

φ = ±3C2H2. Thus, we see that this contribution to the
moduli mass squared is proportional to H2, but the absolute value and the sign of the coefficient
±C2 is unknown since it is determined by the counterterms which appear in a nonrenormalizable
theory. In general, one may add such counterterms with any coefficient ±C2.

The main observation which we are going to make is the following. The standard formulation
of the moduli problem as we know it pertains only to the case m2

φ ∼ ±C2H2 with C ∼ 1.
Meanwhile, under certain conditions the moduli problem can be either completely solved or at
least considerably relaxed both for C2 ≪ 1 and for C2 ≫ 1.

We will begin with the discussion of the possibility C2 ≪ 1, which seems less natural since
it requires some fine tuning. In this case the moduli masses during inflation remain very small,
and the motion of the field φ towards the minimum of its effective potential will be very slow.
Due to quantum fluctuations during the early stages of inflation, the field φ takes all its possible
values in different parts of the universe. Since these values do not change much at the stage with
C2H2 > m2

φ, at the end of this stage the universe will consist of exponentially large domains with
all or almost all possible values of the field φ. In those domains where this field will be displaced
from the minimum of its effective potential at small H by more than 10−7Mp, the energy of its
oscillations will be very large. In such domains the density of the universe, and the speed of
its expansion at the time of nucleosynthesis (which is determined by the value of temperature)
would be much greater than in the part where we live. As a result, neutrons would not have
enough time to decay, and all hydrogen would be conversed to helium. Therefore there are no
hydrogen-burning stars in such parts of the universe, and we would be unable to live there. We
would be able to live only in those (exponentially large) parts of the universe where the initial
amplitude of oscillations of Polonyi fields is small enough not to disturb nucleosynthesis.
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Note, that this does not explain why should the field φ0 be smaller than 10−10Mp, since
photodissociation and photoproduction of light elements after the moduli decay does not seem
to lead to any problems for the emergence of life for φ0 < 10−7Mp. Therefore our proposal solves
the problem only if φ0 < 10−7Mp is the most stringent constraint on φ0. This is the case for
the moduli which decay only to the particles in the hidden sector. Another potential problem
with this explanation is that quantum fluctuations δφ ∼ H/2π of the moduli field produced
each time H−1 during inflation lead to isothermal density perturbations δρ

ρ
∼ δφ

φ
[14]. These

perturbations should not exceed 10−5 to avoid conflict with the COBE data. This leads to the
condition H

2πφ
<∼ 10−4. For φ ∼ 10−7Mp this implies that H <∼ 108 GeV. In simplest models of

chaotic inflation this condition is not satisfied. However, it can be satisfied in hybrid inflation
models [15].

Now let us consider a more interesting possibility, C2 ≫ 1. The standard assumption of all
recent works on the cosmological moduli problem is the following. In the early universe the moduli
field stays in the position corresponding to the minimum of the effective potential determined
by the corrections ∼ H2φ2. When the Hubble parameter becomes smaller than mφ, the field φ
rolls toward its present value and oscillates about it with the amplitude φ0 approximately equal to

the distance between the minima of the effective potential at large H and at small H. This last
assumption seemed so natural that nobody actually verified it.

Meanwhile for C2 ≫ 1 this assumption is incorrect. Indeed, for C2 ≫ 1, H >∼ mφ, the effective
potential is very curved near its minimum, and the field φ is strongly captured there. When the
Hubble constant decreases, the minimum moves, and it drags with it the scalar field. As a result,
the field φ almost adiabatically moves to its new equilibrium value, and the amplitude of its
oscillations about it is very small. This effect reduces strongly the energy density stored in the
oscillations of the field φ and relaxes the cosmological moduli problem.

To verify this statement, we will consider here two toy models which illustrate possible behav-
ior of the effective potential of the field φ as a function of H . The simplest model was considered
in [11]:

V =
1

2
m2

φφ
2 +

C2

2
H2 (φ− φ0)

2 . (2)

At large H the minimum appears at φ = φ0; at small H the minimum is at φ = 0. Thus one
would expect that the field should oscillate about φ = 0 with an initial amplitude approximately
equal to φ0. The equation of motion of the field φ in this potential is

φ̈+ 3Hφ̇+m2

φφ+ C2H2 (φ− φ0) = 0 . (3)

Following [11], we will consider the regime H = p/t with p = 1/2 for radiation domination and
p = 2/3 for matter domination. In the beginning (for H ≫ mφ) δφ = φ0, and so one can take
δφ(0) = φ0 and ˙δφ(0) = 0. According to [11], the corresponding solution of Eq. (3) at large
t ≫ m−1

φ looks as follows:

φ ∼ C2φ0√
π

(

p

2

)

4−3p

2

Γ
(

1 + µ

2
+

ν

2

)

Γ
(

1 + µ

2
− ν

2

)

(

H

mφ

)
3p

2

sin

(

mφt+
(2− 3p)π

4

)

, (4)
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where µ = −3(1− p)/2 and ν2 = −C2p2 + (3p− 1)2/4.

It was noted in [11] that this solution has a rather weak dependence on C2 and p, and for
p = 1/2 or 2/3 one has to a good approximation

φ ∼ 4

3
φ0

(

p

mφt

)
3p

2

sin

(

mφt +
(2− 3p)π

4

)

. (5)

Thus, as one could expect, the field φ oscillates with the amplitude proportional to φ0, the factor
(

p
mφt

)

3p

2 taking care of the decrease of the initial amplitude due to the expansion of the universe.

The behavior of the field φ for the case C ∼ 1 is illustrated by Fig. 1 a.

However, in fact the solution (4) has a weak dependence on C only for C ∼ 1. Meanwhile,
if one takes C ≫ 1, the behavior of the solution changes dramatically, see Fig. 1b. The field φ
follows the position of the time-dependent minimum of the effective potential, and its oscillations
about this position are rather small. To see these oscillations more clearly, one should subtract
from the actual value of the field φ its slowly changing mean value φ̄(t) corresponding to the
position of the time-dependent minimum of the effective potential. The result of this subtraction
is shown on Fig. 2, simultaneously with the solution (4), which has the following asymptotic
form1 for large C:

φ ∼
√

2pπ φ0 C
3p+1

2 exp
(

− Cπp

2

)

(

p

tmφ

)
3p

2

sin

(

mφt+
(2− 3p)π

4

)

. (6)

Fig. 2 shows numerical solution and the analytical solution (6) being superimposed. It is clearly
seen that both functions coincide at large t, which serves as an independent verification of the
validity of numerical and analytical results.

The solution (6) has an amplitude which is smaller than the amplitude of the solution (5) for
C ∼ 1 by the factor

3
√
2pπ

4
C

3p+1

2 exp
(

− Cπp

2

)

. (7)

To reduce the amplitude of oscillations, say, by the factor 10−10, which would be sufficient to
solve the cosmological moduli problem, one needs C ∼ 30 for p = 1/2. For p = 2/3 (universe
dominated by nonrelativistic matter) it would be enough to have C ∼ 20. Whereas this may
look as a rather tough requirement, we remind that we do not really know the true value of this
parameter.

The situation is similar but somewhat better for the toy model considered in [13]:

V = −1

2
(m2

φ + C2

1
H2)φ2 +

1

4M2
p

(m2

φ + C2

2
H2)φ4 . (8)

1 I am very grateful to Ewan Stewart for the discussion of this asymptotic form of their solution (4) at large
C.
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For H ≫ mφ, the minimum lies at (C1/C2)Mp. For H ≪ mφ, the minimum lies at Mp. The
expectation was that when the Hubble parameter becomes small, the field begins to oscillate
about the second minimum with initial amplitude φ0 ∼ |1−C1/C2|Mp. This is indeed the case for
Ci ∼ 1. However, for Ci ≫ 1 the situation is quite different. We do not know analytical solution
to the equation of motion for the theory (8), but numerical solution can be easily obtained, and
it shows a somewhat stronger dependence on Ci than the solution for the previous model. Let us
consider, e.g., the model with C1 = 2C2. In this case the naive value of the initial amplitude of
oscillations would be Mp. The results of a numerical investigation of the corresponding equation
for the field φ shows that in order to decrease the amplitude of oscillations to the safe level of
10−10Mp in the universe with p = 2/3 it would be sufficient to have, e.g., C1 = 12, C2 = 6.

Thus, the cosmological moduli problem does not appear for the fields which acquire mass
approximately one order of magnitude greater than H in the early universe. It is hard to tell
whether this condition can be satisfied in realistic models. However, after struggling for ten
years to find a solution for the moduli problem, we should not overlook this simple possibility.
Moreover, even if the mass of the moduli is not much greater than the Hubble constant, our
results imply that the moduli problem may be less severe than we expected, which makes the
possibility of solving it by an additional short stage of inflation [2, 11, 12] much more plausible.

The author is grateful to M. Dine, E. Halyo, S. Thomas, and especially to E. Stewart and D.
Lyth for many valuable discussions. This work was supported in part by NSF grant PHY-8612280.
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Figure 1: Oscillations of the moduli field in the theory (2) in the radiation dominated universe
(p = 1/2). Fig. 1a corresponds to C = 1, Fig. 1b shows the same process for C = 5.
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Figure 2: Asymptotic solution (6) for φ(t) versus numerical solution for the deviation of the
field φ(t) from the instantaneous position φ̄(t) of the minimum of the effective potential. For
definiteness, we take here C = 8. As expected, these two functions coincide for large t.
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