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Abstract

Suppose we have two nonequivalent but s-equivalent Lagrange func-
tions, the question arises: are they both equally well fitted for the
Feynman quantization procedure or do they lead to two different quan-
tization schemes.

1. The goal of this note is to exhibit the following problem. It is well
known that in the quantization prescription, based on the Feynman “inte-
gral over all paths” the classical Lagrange function is used in the exponent of
the integrand of the Feynman integral. The physical content of a dynamical
system is, however, mainly characterized by the equations of motion of this
systems; the Lagrange function, if such one exists at all for these equations,
plays a secondary role, as there can be many nonequivalent Lagrange func-
tions linked to equations of motion (Euler Lagrange Equations), yielding the
same set of solutions - so called s-equivalent equations.

The question arises: suppose we have two nonequivalent but s-equivalent
Lagrange functions, are they both equally well fitted for the Feynman quan-
tization procedure or do they lead to two different quantization schemes.

2. To begin with let us consider the case of one classical particle in a
(141)-dimensional space-time and the largest set of s-equivalent Lagrange
functions, corresponding to the equation of motion of this particle. We do
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not need to specify the form of this equation; to each equation written in the
normal form, viz.

¥ = f(x,2,t) (1)

corresponds always a Lagrange function [1]. The inverse problem for the case
of (14+1) dimensions was treated extensively by many scientists [2], [3].

It is known that the most general form of an autonomous Lagrange func-
tion, s-equivalent to a given autonomous Lagrange function L(zz), the form
of which we do not specify, is

=i / Gz, u)du — X(H) (2)

where
Gai) = EU TL 3)
H=i g—é ~L, (4)

and X(z) is an arbitrary differentiable function of z. The constant ¢ is so
chosen that the integral on the r.h.s. of () does not divergef]. The Hamilton
function reads

H =i%— — L' =%(H) + const. . (5)

ot
The Lagrange function L’ for different choices of ¥, assuming %9 is not a
constant, are not equivalent to each other as well as to L; in other words
they do not differ from each other by a function %Et).

To make things more specific let us now specify the original Lagrange
function L as well as ¥ and ¢, viz.

1.,
L= 5% = V(x), (6)
S(H) = %H% (7)
c=0. (8)

lwe could even assume ¢ = c(x).

\)



Then
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2With the notation & = z we have
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For z becoming large 9% vanishes like z~2 and 2% like z~°.
d dp

Using the canonical Hamilton equation
_0H'
= o

z

and taking into account (A) we get the equation for H', viz.

O?H'(z,p) 1

1
op’2 - ﬁ H(z,p) =0. (B)

The particular solution of (B) independent of x reads

1
S, (817
H/ = <ﬁ> p/

which corresponds to large p’ and 4 and discarding V' (x). The application of the first
order perturbative procedure for small V' and % as well as the use of canonical Hamilton
equations yields
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where a is a small number.
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,_ oL 1 .4
p=o-=¢d +aV(x). (12)

Relation ([2) is an algebraic equation of third degree with respect to

2(p,x) = —i(-p, z).

For
pP=0 and V(z)>0 (13)

we have three roots of ([[2)

Zifl = O, 11‘3'273 = :f:i\/ 6 V([L’) . (14)

For obvious reasons we choose the real solution. In case V is not always
positive but it is bounded from below we may change V' in (f]) by adding to
it a properly chosen constant so that V' is then always positive.

The solution of ([J) reads

3 5 7 9
. 11y 11 (9 11 (p P’
Ty 6V<V> METRTE (v) 18 V3 (v) +O<<v> ) - (15)

Notice that the few first terms of ([[3) coincide with

P’ 1 1 (p 2
Plhi+-mf1-=(2 16
T G n( v(v (16)
For large = and p/
= (6p)% . (17)
We have .
1 1p/2 1p/4 p/
H=-v2y b P 2. 18
2 Ty Tavr to(\v (18)

3. Let us now investigate the quantal case of one particle presented in
the language of Feynman’s approach.

It is well known [4], [3] that in case the Hamiltonian function consists of
two terms from which one depends only on p and the other one only on z, the
formula of Feynman'‘s “integral over all paths” with the classical Lagrange
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function in the exponent of the integral can be recovered from standard
quantum mechanical approach.
To remind the Reader on this procedure let us consider the Hamiltonian
function () i, viz.
1
H= §p2 +V(z). (19)

Starting from the first principles of Quantum Mechanics we have for the
transition amplitude

o2 ta|x, ty) = (| exp{—iﬁ(tg —t1)}Hz), (20)

where (-] and |-) denote the bra - and ket - states resp. and H is the Hamilton
operator

7oL .0
H:ip +V(z), p=—ig_. (21)

We may write (B() as follows

t—0

(2| exp{~iH t}|z) = lim / dtp 1 ... / dr (2 |e= T A g V] . ..

Atn=t

o m ) (y [e T A ) (22)
If we use the formula .
(a+b)t __ 12 a% b n
oo (et @
then
— 'AQ
(/| exp{—iH t}|z) = lim /dIn_l . ./d:z1<:£'|e_’p7At|atn_1><:En_1| .
Atn=t
Lz M |e T A z) eV @It (24)

Further we have

~. ~

Wle T 2y = [ dpla'le > p)pl)

1 —iﬁAt —ip(z’ —x)
= %/dpe % . (25)

3We put the mass of the particle equal to one (m = 1).



as

1\2
(plz) = (g) e (26)
Notice that
iAt o iAt 2 1
- 7]92 —ip(a’ —z) = - N <P2 + Ktp(x/ —x)+ (At)2($/ - $)2>
i (2 — x)?
+ §< AL ) (27)
Consequently
D2 1 iAt o —z\’ i (z—a')?
/ —ZTAt — el = T\ v
(x'|e |x) 27r/ dp exp{ 5 <p+ A7 ) }exp{2 A7
SN2
= (2m’At)_% exp {% <xAt:C> At} (28)

where we used the saddle point method to evaluate

1 1At 2 —z\? A
ﬁ/dpexp{— 5 <p—i— A7 ) }—(QMAt) .

Taking into account (4) and (B§) we get eventually

(NI

(29)

n—1 n
(X talx,t1) = lim H/d:)sj H(Qm'At)%
k=1

'" :Xp{z ((;’CA“Z’“Y _ V(x)] At} (30)

where x,, = 2/, o = x. Thus in the exponent in (BQ) we have, indeed,

z/L(x(t),sc(t))dt, (31)

is conjectured at the start.



The procedure presented above can not be applied in case of H' and L’
given by ([§) and ([[0) resp. as

— 1 1/1 1 1
H' =-V? —(—Az D—p A2—) 32
SV ot eGP D pP D) e (32)
is a power series in expressions of type Vimﬁl, ﬁlvim, [,m=1,2,...and p and

x can not be separated. So a new quantization prescription is needed.

It is also not at all clear whether L', given by ([[0), inserted into the
exponent of the integral instead of L in (BI]) yields the same physical results
as using L of (). It seems rather that it leads to different value of the
transition amplitude and to a different kind of quantization.

The question to be answered is: what are the limitations in using the
Feynman rule for the “integral over all paths”. Unfortunately, I do not feel
to be able to give an answer to it. Thus the problem remains open, at least
for me.
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