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Abstract

Suppose we have two nonequivalent but s-equivalent Lagrange func-
tions, the question arises: are they both equally well fitted for the
Feynman quantization procedure or do they lead to two different quan-
tization schemes.

1. The goal of this note is to exhibit the following problem. It is well
known that in the quantization prescription, based on the Feynman “inte-
gral over all paths” the classical Lagrange function is used in the exponent of
the integrand of the Feynman integral. The physical content of a dynamical
system is, however, mainly characterized by the equations of motion of this
systems; the Lagrange function, if such one exists at all for these equations,
plays a secondary rôle, as there can be many nonequivalent Lagrange func-
tions linked to equations of motion (Euler Lagrange Equations), yielding the
same set of solutions - so called s-equivalent equations.

The question arises: suppose we have two nonequivalent but s-equivalent
Lagrange functions, are they both equally well fitted for the Feynman quan-
tization procedure or do they lead to two different quantization schemes.

2. To begin with let us consider the case of one classical particle in a
(1+1)-dimensional space-time and the largest set of s-equivalent Lagrange
functions, corresponding to the equation of motion of this particle. We do
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not need to specify the form of this equation; to each equation written in the
normal form, viz.

ẍ = f(x, ẋ, t) (1)

corresponds always a Lagrange function [1]. The inverse problem for the case
of (1+1) dimensions was treated extensively by many scientists [2], [3].

It is known that the most general form of an autonomous Lagrange func-
tion, s-equivalent to a given autonomous Lagrange function L(xẋ), the form
of which we do not specify, is

L′ = ẋ

ẋ∫

c

G(x, u)du− Σ(H) (2)

where

G(x, ẋ) ≡ dΣ(H)

dH

∂2L

∂ẋ2
, (3)

H ≡ ẋ
∂L

∂ẋ
− L , (4)

and Σ(z) is an arbitrary differentiable function of z. The constant c is so
chosen that the integral on the r.h.s. of (2) does not diverge1. The Hamilton
function reads

H ′ = ẋ
∂L′

∂ẋ
− L′ = Σ(H) + const. . (5)

The Lagrange function L′ for different choices of Σ, assuming dΣ(z)
dz

is not a
constant, are not equivalent to each other as well as to L; in other words
they do not differ from each other by a function dΦ(t)

dt
.

To make things more specific let us now specify the original Lagrange
function L as well as Σ and c, viz.

L =
1

2
ẋ2 − V (x) , (6)

Σ(H) =
1

2
H2 , (7)

c = 0 . (8)

1we could even assume c = c(x).
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Then

H =
1

2
ẋ2 + V (x) , (9)

L′ =
1

24
ẋ4 +

1

2
ẋ2 V − 1

2
V 2 , (10)

H ′ =
1

2
H2 =

1

8
ẋ4 +

1

2
ẋ2 V +

1

2
V 2 , (11)

and2

2With the notation ẋ = z we have

dz

dp′
=

1

H
= (2H ′)−

1

2 , (A)

d2z

dp′2
= − z

H3
.

For z becoming large dz
dp′

vanishes like z−2 and d3z
dp′2 like z−5.

Using the canonical Hamilton equation

z =
∂H ′

∂p′

and taking into account (A) we get the equation for H ′, viz.

∂2H ′(x, p′)

∂p′2
− 1√

2

1√
H ′(x, p′)

= 0 . (B)

The particular solution of (B) independent of x reads

Ĥ ′ =

(
81

32

) 1

3

p′
4

3

which corresponds to large p′ and ẋ and discarding V (x). The application of the first
order perturbative procedure for small V and dV

dx
as well as the use of canonical Hamilton

equations yields

ẋ = (6p′)
1

3 − 2 (6p′)
−

1

3 V

and

H ′ =

(
81

32

) 1

3

p′
4

3 −
[(

9

2

) 1

2

V + a

]
p′

2

3

where a is a small number.
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p′ ≡ ∂L′

∂ẋ
=

1

6
ẋ3 + ẋ V (x) . (12)

Relation (12) is an algebraic equation of third degree with respect to

ẋ(p′, x) = −ẋ(−p′, x) .

For
p′ = 0 and V (x) > 0 (13)

we have three roots of (12)

ẋ1 = 0 , ẋ2,3 = ±i
√

6 V (x) . (14)

For obvious reasons we choose the real solution. In case V is not always
positive but it is bounded from below we may change V in (6) by adding to
it a properly chosen constant so that V is then always positive.

The solution of (12) reads

ẋ =
p′

V
− 1

6

1

V

(
p′

V

)3

+
1

12

1

V 2

(
p′

V

)5

− 1

18

1

V 3

(
p′

V

)7

+ o



(
p′

V

)9

 . (15)

Notice that the few first terms of (15) coincide with

p′

V


1 +

1

6
ln


1 − 1

V

(
p′

V

)2



 . (16)

For large ẋ and p′

ẋ = (6 p′)
1

3 . (17)

We have

H ′ =
1

2
V 2 +

1

2

p′ 2

V
− 1

24

p′ 4

V 4
+ o



(
p′

V

)8

 . (18)

3. Let us now investigate the quantal case of one particle presented in
the language of Feynman’s approach.

It is well known [4], [3] that in case the Hamiltonian function consists of
two terms from which one depends only on p and the other one only on x, the
formula of Feynman‘s “integral over all paths” with the classical Lagrange
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function in the exponent of the integral can be recovered from standard
quantum mechanical approach.

To remind the Reader on this procedure let us consider the Hamiltonian
function (9),3, viz.

H =
1

2
p2 + V (x) . (19)

Starting from the first principles of Quantum Mechanics we have for the
transition amplitude

φ(x′, t2|x, t1) = 〈x′| exp{−iĤ(t2 − t1)}|x〉 , (20)

where 〈·| and |·〉 denote the bra - and ket - states resp. and Ĥ is the Hamilton
operator

Ĥ ≡ 1

2
p̂ 2 + V (x) , p̂ = −i

∂

∂x
. (21)

We may write (20) as follows

〈x′| exp{−iĤ t}|x〉 = lim
∆t→0

∆tn=t

∫
dxn−1 . . .

∫
dx1〈x′|e−iĤ ∆t|xn−1〉〈xn−1| . . .

. . . |x1〉〈x1|e−iĤ ∆t|x〉 . (22)

If we use the formula
e(a+b)t = lim

n→∞

(
ea

t

n eb
t

n

)n
(23)

then

〈x′| exp{−iĤ t}|x〉 = lim
∆t→0

∆tn=t

∫
dxn−1 . . .

∫
dx1〈x′|e−i

p̂
2

2
∆t|xn−1〉〈xn−1| . . .

. . . |x1〉〈x1|e−i
p̂
2

2
∆t|x〉e−iV (x)t . (24)

Further we have

〈x′|e−i
p̂ 2

2
∆t|x〉 =

∫
dp〈x′|e−i

p̂ 2

2
∆t|p〉〈p|x〉

=
1

2π

∫
dpe−i

p
2

2
∆te−ip(x′

−x) . (25)

3We put the mass of the particle equal to one (m = 1).
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as

〈p|x〉 =
(

1

2π

) 1

2

eipx . (26)

Notice that

− i∆t

2
p2 − i p(x′ − x) = − i∆t

2

(
p2 +

2

∆t
p(x′ − x) +

1

(∆t)2
(x′ − x)2

)

+
i

2

(x′ − x)2

∆t
. (27)

Consequently

〈x′|e−i
p̂
2

2
∆t|x〉 =

1

2π

∫
dp exp



−

i∆t

2

(
p +

x′ − x

∆t

)2


 exp

{
i

2

(x− x′)2

∆t

}

= (2πi∆t)−
1

2 exp




i

2

(
x′ − x

∆t

)2

∆t



 (28)

where we used the saddle point method to evaluate

1

2π

∫
dp exp



−

i∆t

2

(
p +

x′ − x

∆t

)2


 = (2πi∆t)−

1

2 . (29)

Taking into account (24) and (28) we get eventually

φ(x
¯
′, t2|x

¯
, t1) = lim

n→∞

n∆t=t2−t1

n−1∏

j=1

∫
dxj

n∏

k=1

(2πi∆t)
1

2

· exp

{
i

[(
xk − xk−1

∆t

)2

− V (x)

]
∆t

}
(30)

where xn ≡ x′, x0 ≡ x. Thus in the exponent in (30) we have, indeed,

i

t2∫

t1

L(x(t), ẋ(t))dt , (31)

is conjectured at the start.
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The procedure presented above can not be applied in case of H ′ and L′

given by (18) and (10) resp. as

Ĥ ′ =
1

2
V 2 +

1

6

(
1

V
p̂ 2 + p̂

1

V
p̂ + p̂ 2 1

V

)
+ . . . , (32)

is a power series in expressions of type 1
V m p̂ l, p̂ l 1

V m , l, m = 1, 2, . . . and p̂ and
x can not be separated. So a new quantization prescription is needed.

It is also not at all clear whether L′, given by (10), inserted into the
exponent of the integral instead of L in (31) yields the same physical results
as using L of (6). It seems rather that it leads to different value of the
transition amplitude and to a different kind of quantization.

The question to be answered is: what are the limitations in using the
Feynman rule for the “integral over all paths”. Unfortunately, I do not feel
to be able to give an answer to it. Thus the problem remains open, at least
for me.

References

[1] F. Bolza, Lectures on the Calculus of Variations, New York, 1931.
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