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Abstract

We examine the stability of ring-like configurations of N charges on
a plane interacting through the potential V (z1, . . . , zN ) =

∑ |zi|2 −
∑

i<j ln |zi − zj |2. We interpret the equilibrium distributions in terms
of a shell model and compare predictions of the model with the results
of numerical simulations for systems with up to 100 particles.

Determining the distributions of charged particles in a central potential is a
classic problem which has been studied since the nature of the electric force
was first understood [1]. In two dimensions the Coulomb potential varies
logarithmically with distance and describes, for example, the interaction of
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parallel charged wires. One could consider the physical problem of deter-
mining the electrostatic configuration of a group of parallel wires with like
charges confined by a central force.

Ideas such as this have been applied to the description of the ‘crystalline
state’ of cooled particle beams [2], where, in their rest frame, the beams
are approximated by line-charges, and the central force, implemented by
focusing magnets for example, is imposed to maintain the width of the
beam. A similar situation arises in systems of charged particles where the
dielectric properties of their environment are so highly anisotropic that the
system is approximately two dimensional. An example is the the distribution
of charged ions on superfluid surfaces. The Coulomb interactions in this
system can be made effectively logarithmic and the crystalline states of the
ions have been studied [3].

Another setting whereWigner crystal states are thought to play a role are
the low density and high field states in the fractional quantum Hall system
[4]. In the incompressible quantum fluid which exhibits the fractional quan-
tum Hall effect, the ground state is described by Laughlin’s wavefunction
[5,6]. At higher fields and lower densities of electrons, it is conjectured that
the same system is in a Wigner crystal state. (This state has recently been
observed experimentally [4].) There is the interesting question of whether
there can be other states intermediate between a quantum Hall state and a
Wigner crystal and whether these states could be described by a Laughlin-
like wavefunction. It is not known to what extent Laughlin’s wavefunction
continues to give a reasonable description of the electronic ground state for
low densities and high fields.

We shall begin by studying the electrostatic problem of finding the con-
figuration of particles which minimizes the potential energy

V (z1, . . . , zN ) =
N
∑

i=1

|zi|2 −
∑

i<j

ln |zi − zj |2, (1)

where zi are the complex coordinates of particle positions in a plane. The
central well is the interior potential of a uniformly charged disc. It obeys the
Poisson equation −∇2|z|2 = −4 so the background charge density is −1/π,
independent of the radius of the disc. There is also a repulsive Coulombic (in
two dimensions) interparticle potential. The potential (1) is the (suitably
rescaled) logarithm of Laughlin’s wavefunction for the fractional quantum
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Hall effect states [4,5]. The wavefunction is given by

ψ(z1, . . . , zN ) =
∏

i<j

(zi − zj)
α exp

(

−H
∑

i

|zi|2/2
)

and ρ(z1, . . . , zN ) = ψ†ψ = exp[−αV (
√

H/2α zi)], where H is the magnetic
field and ν = 1/α is the filling factor. For values of α and H relevant
to the fractional quantum Hall effect the particle distribution and density
correlations described by ψ(z1, . . . , zN ) are those of an incompressible liquid
[6]. As α and H are increased there is a phase transition to a state where the
probable distributions of particles described by ψ(z1, . . . , zN ) is concentrated
at the classical minima of V . This is the analog of a crystalline state.

Let us begin with a simple mathematical problem. If we have a few
particles in this system, we expect that they will lie on a ring at some
equilibrium radius R. If we add more particles we expect that they increase
the size of the ring to a maximum. An interesting question is: how large
can the ring be before it is unstable? Also, even if the ring is stable to small
oscillations, there is the more difficult question of whether it is actually a
global minimum of the potential energy or whether there exist other, more
favorable states.

The symmetry of the problem indicates that the configuration with N
particles lying on the ring is a stationary point of the potential energy. To
reason that a ring should have some maximum size where it is no longer a
local minimum of the energy, consider the following continuum argument:
Instead of point particles we allow the charge density to be continuous so
that the energy is now given by

V [ρ] =

∫

d2z |z|2 ρ(z)

− 1

2

∫

d2z

∫

d2z′ ρ(z) ρ(z′) ln |z − z′|2

+ λ

(

N −
∫

d2z ρ(z)

)

.

Here λ is a Lagrange multiplier to fix the total charge. This potential is
stationary where

|z|2 −
∫

d2z′ ρ(z′) ln |z − z′|2 − λ = 0,

∫

d2z ρ(z) = N.
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These equations are solved by

ρ(z) =

{

1/π, |z| < R
0, |z| > R with R2 = N,

(2)

a uniform disc-shaped charge density (which, as expected, exactly compen-
sates the background charge of the disc). Thus we expect that, in the limit
of large numbers of particles, where we can approximate their distribution as
continuous, the average of the distribution is uniform rather than ring-like
and therefore large rings should be unstable unless they contain a sufficiently
large charge in their interior.

In the following, we shall consider (and find an exact answer for) the
slightly more general question of how large the ring can be when there is
an azimuthally symmetric charge distribution inside. Such a configuration
should minimize the energy

VQ(z1, . . . , zN ) =
∑

i

|zi|2 −
∑

i<j

ln |zi − zj |2

+
∑

i

∫

d2z′ ln |zi − z′|2 ρ(|z′|), (3)

where
∫

|z′|<R d
2z′ ρ(|z′|) = Q.

The first variation of VQ is

δVQ(z1, . . . , zN )

=
∑

i

(z̄i δzi + δz̄i zi)−
∑

i<j

(

δzi − δzj
zi − zj

+
δz̄i − δz̄j
z̄i − z̄j

)

−
∑

i

∫

dz′
(

δzi
zi − z′

+
δz̄i

zi − z′

)

ρ(|z′|). (4)

We make the ansatz zk = R exp(2πik/N) for k = 1, . . . , N . This assumes
that N particles sit on a ring which encloses an azimuthally symmetric
charge distribution. Of course, if there are particles inside the ring, the
charge distribution inside will not be azimuthally symmetric. However, es-
pecially in the limit of large numbers of particles, cancelling forces form
approximately evenly distributed point charges should make this a good
approximation.

From (4) we obtain the equation

R2 = Q+
N
∑

k=i

1

1− exp(2πik/N)
= Q+ (N − 1)/2, (5)
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where we have used the sum rule (A.2). Thus, we find that the ring config-
uration is always an extremum of the energy. In order to see whether it is
a local minimum or a saddle point we must compute the eigenvalues of the
stability matrix given by the second variation

δ2VQ(z1, . . . , zN )

= 2
∑

k

δz̄k zk +
1

2

∑

j<k

(

(δzj − δzk)
2

(zj − zk)2
+

(δz̄j − δz̄k)
2

(z̄j − z̄k)2

)

+
∑

k

∫

d2z′ ρ(|z′|)
(

δzk δzk
(zk − z′)2

+
δz̄k δz̄k

(z̄k − z̄′)2

)

. (6)

Using the summation formula in equations (A.2) and (A.3), the parame-
terization of the equilibrium positions δzk = zk (δ lnRk + iδφk), and the
formula (5) for R2, we get

δ2VQ =
∑

i

(

4Q+
1

6
(N − 1)(11 −N)

)

δ lnRi δ lnRi

+
1

2

∑

i 6=j

δ lnRi δ lnRj

sin2 π(i− j)/N
+
∑

i

1

6
(N − 1)2 δφi δφi

− 1

2

∑

i 6=j

δφi δφj
sin2 π (i− j)/N

. (7)

The stability matrices are related to spectra of the Calogero model and
can be diagonalized by techniques developed in Ref. 7 and reviewed in
Appendix. For the angular fluctuations, δφi, the spectrum is s(N − s), s =
0, . . . , N−1, and for radial fluctuations, δ lnRi it is 4Q+2(N−1)−s(N−s),
s = 0, . . . , N − 1. The angular modes are non-negative, indicating stability
to angular fluctuations for all N . The zero mode for s = 0 is a consequence
of rotation invariance of VQ. For large enough N some radial modes are
negative, indicating instability of the radial fluctuations. The minimum of
the radial spectrum occurs at s = N/2 (if N is even). The maximum value
of N for which this minimum is positive is the largest integer less than

Nmax = 4

(

√

Q+ 1/2 + 1

)

. (8)

For a system with a total of M = N+Q particles, the largest number which
will lie on the outside ring is given by the largest integer less than

Nmax = 4

(

√

M + 1/2 − 1

)

. (9)
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It is interesting to note that, as particles are added to a ring, the first
mode of instability to radial fluctuations appears for the mode of maximum
frequency, i.e. that where every second particle moves inward and the other
particles move outward. Locally, instead of the ring rejecting the last particle
and forcing it to the center of the distribution, its first tendency is to split
into two rings of roughly equal size.

A numerical calculation using simulated annealing Monte Carlo methods
can be used to find the equilibrium distribution of the particles for N up to
100. The result is that, to a good approximation, particles lie on concentric
rings with the number of particles per ring increasing like the square root
of the radius of the ring and with average spatial density close to the value
1/π given in (2).

The structure that we see is reminiscent of the shell model of the atom.
We can devise a model for predicting the number of particles in each ring.
We begin by using Eq.(9) to calculate the maximum number of particles
which fit in the outer ring, which depends on the total number of particles.
Then we subtract that number from the total and compute how many par-
ticles will fit in the next ring given the total remaining number of particles
and so on until the total number of particles is exhausted. This gives the
maximum occupation numbers of concentric rings.

There are two limits to the accuracy of this model. First, the internal
charge distribution is approximated as azimuthally symmetric, rather than
distributed at points. In the real system the rings are perturbed by the
inhomogeneities of the charge distribution and are not exactly circular. We
expect that azimuthal symmetry is a good approximation when the number
of particles is large. Second, the model is accurate only when each ring tends
to fill to its locally stable configuration with maximum number of particles.
In almost every case, this is unlikely as there can be many preferred, lower
energy states where rings are not filled to maximum capacity.

We know that this already happens for a six particles. Our theoretical
computation indicates that six particles sitting on the corners of a hexagon
is stable to small perturbations. However, explicit calculation reveals that
the configuration with five particles sitting on corners of a pentagon with a
single particle at the center is also stable to perturbations and has slightly
lower energy than the hexagon. Therefore, already for six particles our shell
model is approximate.

It is then interesting to ask how accurate it is for higher numbers of
particles. Some results of a numerical simulations compared with predictions
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of the shell model are

M : 2 3 4 5 6 7 8 9 10 15 25 100
Nexp : 2 3 4 5 5/1 6/1 7/1 7/2 8/2 11/4 14/9/2 31/25/19/14/8/3
Nth : 2 3 4 5 6 6/1 7/1 8/1 8/2 11/4 16/8/1 36/28/20/12/4

where, for both the experimental and theoretical values we also denote the
number of particles in the inner rings, starting from the largest. We see
qualitative agreement of the results of the model. However quantitative
predictions are reliable only within about 30%. Also, since the rings do
not fill to their maximum, we tend to underestimate the number of rings1.
We also estimate the accuracy of the computer simulation itself to be within
about two or three for the population of the rings. (This estimate is obtained
from reproducability of the results.)

The shells are generally not filled to their maximum population since
global minima of the potential appear first. It would be interesting to obtain
a ring-filling criterion which sought global minima of the energy. This would
be an analog of Hund’s rule for filling of electronic orbitals in atoms [8]. We
haven’t yet succeeded in doing this, our only present recourse is to explicit
calculations and comparisons of the total energy of different configurations
of a few particles and numerical simulations.

As a test of the accuracy of the shell model, we have used a numerical
simulation to find the equilibrium configurations in the region between 40
and 60 particles. Below we show the number and population of the rings
observed and compare with the numbers and populations of rings which are
computed using the shell model,

M : 40 41 42 43 44 45
Nth : 21/13/6 21/14/6 22/14/6 22/14/6/1 22/14/7/1 22/15/7/1
Nexp : 19/14/6/1 19/13/7/2 18/15/7/2 20/13/8/2 21/15/7/1 20/14/8/3

M : 46 47 48 49 50
Nth : 23/15/7/1 23/15/8/1 23/16/8/1 24/16/8/1 24/16/8/2
Nexp : 21/14/9/2 21/13/10/3 21/14/9/4 20/14/9/5/1 22/15/9/4

M : 51 52 53 54 55
Nth : 24/16/9/2 24/17/9/2 25/17/9/2 25/17/10/2 25/18/10/2
Nexp : 21/16/8/5/1 22/15/9/5/1 22/15/10/5/1 22/16/11/5 21/17/10/6/1

1 The computer simulation of the 100 particle case is shown in Fig.1, see the original

paper
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M : 56 57 58 59 60
Nth : 26/18/10/2 26/18/10/3 26/18/11/3 26/19/11/3 27/19/11/3
Nexp : 23/17/9/6/1 22/17/11/6/1 22/17/11/6/2 23/15/12/5/4 24/16/12/7/1

Experience shows that these numerical calculations are good to within plus
or minus two or three particles per ring. The main source of error is dis-
tortion of the ring by inhomogeneities of the charge distribution. This is
particularly acute for rings with near maximum numbers of particles. We
see that our model predicts the population of the outer shell within 20%
and gives reasonable populations for the inner shells.

Thus we see that the shell model describes well the qualitative, and
approximately the quantitative properties of the frozen state of N particles
up to 100 or so.

In conclusion, we observe that, even in the case of 100 particles2, there is
no observable tendency for the systems we study by numerical simulations to
form a triangular Wigner crystal. The latter is the expected ground state in
the limit of large numbers of particles. For a system which is too small, the
tendency to form a regular crystalline state is frustrated by the boundary
geometry. For large systems, this should be offset by two effects: First,
the boundary energy grows more slowly than the bulk energy (the ratio is
1/
√
M) so eventually the boundary should adjust itself to help minimize

the energy of the bulk. Second, the effects of the boundary on particle
positions well inside the bulk should be negligible because of the screening
of the long-ranged Coulomb force by the gas of charged particles themselves.
The screening length in a classical Coulomb gas is generally a few average
spacings.

It is a mystery to us that we do not see the onset of Wigner crystal-
lization. We might speculate about possible glass-like or quasi-crystalline
phases of the system and perhaps a phase transition to other states as we
increase the particle number. (Phase transitions are possible in this system
with a finite number of degrees of freedom because it is classical - there is no
tunneling which could restore a broken symmetry.) One idea which supports
this speculation is the fact that, for six particles, the configuration with a
pentagon and one particle in the center is preferred to a hexagon. Thus,
locally the system may have a tendency to form structures with five-fold
symmetry. However, this structure cannot form a lattice and so perhaps
forms a frustrated state with no long-range order. This possibility is the
subject of ongoing investigation.

2 shown in Fig.1, see the original paper
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Appendix. The summations and diagonalizations of matrices used in this
paper have been presented previously in the context of the Calogero model
[7]. We shall summarize the technique in this Appendix. Consider the
matrix Ljk = (1 − δjk) {1 + i cot π(j − k)/N}. We can show explicitly that
the vector ψs

k = exp(−2πiks/N), s, k = 1, . . . , N , is an eigenvector of L, i.e.,

N−1
∑

k=0,k 6=j

(1 + i cot π(j − k)/N) exp (− 2πiks/N)

= exp (−2πijs/N)

(

N−1
∑

k=1

−2 exp((2s + 1)πik/N)

exp(iπk/N) − exp(−iπk/N)

)

, (A.1)

where we have combined the terms in (A.1) and changed variables k → j−k
in the sum. After some algebra, the right-hand side of (A.1) is

−
(

2s−2
∑

l=0

N−1
∑

k=1

exp [(2πik/N) (l − s+ 1)]

)

.

The eigenvalue can further be written as

2s−2
∑

l=0

(

1−
N
∑

k=1

exp[(2πik/N)(l − s+ 1)]

)

= 2s−N − 1.

Thus, the eigenvalues of L are 2s−N − 1, s = 0, . . . , N .
Next, we use the trigonometric identity

cotα cot β = 1− (cotα− cot β) cot(α− β)

to show that

B =
1

2

(

L2 + 2L− 1

3
(n2 − 1)I

)

,

where
Bjk = (1− δjk)

[

1/ sin2 π(j − k)/N
]

.
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This gives the eigenvalues of the matrix B as 1
2
(N2 − 1) − 2s (N − s),

s = 1, . . . , N which are used in Eq.(7) to get the spectra of small oscillations.
The eigenvalue equation (A.1) also gives the sum rule

N−1
∑

k=1

exp(−2πiks/N)

1− exp(2πik/N)
= s− 1

2
(N + 1) . (A.2)

Another sum rule can be derived from the eigenvalue equation for matrix
B,

N−1
∑

k=1

cos 2ksπ/N

sin2 kπ/N
=

1

3
(N2 − 1)− 2s(N − s) . (A.3)
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