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Abstract. The semisimple Frobenius manifolds related to the Hurwitz spaces Hg,N(k1, . . . , kl) are
considered. We show that the corresponding isomonodromic tau-function τI coincides with (−1/2)-
power of the Bergmann tau-function which was introduced in a recent work by the authors [8]. This
enables us to calculate explicitly the G-function of Frobenius manifolds related to the Hurwitz spaces
H0,N (k1, . . . , kl) and H1,N(k1, . . . , kl). As simple consequences we get formulas for the G-functions of
the Frobenius manifolds CN/W̃ k(AN−1) and C×C

N−1×{ℑz > 0}/J(AN−1), where W̃
k(AN−1) is an

extended affine Weyl group and J(AN−1) is a Jacobi group, in particular, proving the conjecture of
[13]. In case of Frobenius manifolds related to Hurwitz spaces Hg,N(k1, . . . , kl) with g ≥ 2 we obtain
formulas for |τI |2 which allows to compute the real part of the G-function.
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1 Introduction

In these notes we deal with the class of Frobenius manifolds related to Hurwitz spaces of moduli of
meromorphic functions on Riemann surfaces (see [2]).

The key observation of the present paper is the identification of the isomonodromic tau-function
(see [2], [3], [4], [5]) of this class of Frobenius manifolds with (−1/2)-power of the Bergmann tau-
function which was introduced in [8] in rather different context. We show that the quadratic Hamil-
tonian from [2] coincides (up to a constant) with the value of the Bergmann projective connection
calculated in the natural local parameter at the critical point of the meromorphic function. This
simple observation enables us to apply the results of [8] and explicitly calculate the isomonodromic
tau-functions of Frobenius manifolds related to the Hurwitz spaces of moduli of meromorphic functions
on surfaces of genus 0 and 1. This immediately leads to general formulas for the G-function (see [4]
and [5]) of the above Frobenius manifolds . (We recall that the G-function of a Frobenius manifold
provides a solution of the so-called Getzler equation (see [7], [5]); for some classes of Frobenius mani-
folds it plays a role of generating function of Gromov-Witten invariants of algebraic varieties ([4]); in
the general case it describes first-order deformations of dispersionless integrable systems.)

As a simple consequence we prove the recent conjecture of Strachan [13] which claims the following
formula for the G-function of the Frobenius manifold C× C

N−1 × {ℑz > 0}/J(AN−1):

G = − ln η(t0)−
N + 1

24
tN .

Moreover, using the results of [8], we get the expression for the modulus square of the isomonodromic
tau-function (and, hence, for the real part of the G-function) in case of Hurwitz spaces in higher genus.

The present work was inspired by [13] where an alternative approach to the calculation of the
G-function of Frobenius manifold was developed.

2 Preliminaries

In this section we briefly outline some basic facts and definitions from the theory of Frobenius manifolds
([2], [3], [4], [5], [11], [1], [10]).

2.1 Hurwitz spaces and Frobenius manifolds

Here we mainly follow [2], Lecture 5, departing somewhat from Dubrovin’s original notation. Let
Hg,N (k1, . . . , kl) be the Hurwitz space of equivalence classes [p : L → P

1] of N -fold branched coverings

p : L → P
1, (2.1)

where L is a compact Riemann surface of genus g and the holomorphic map p of degree N is subject
to the following conditions:

• it has M simple ramification points P1, . . . , PM ∈ L with distinct finite images λ1, . . . , λM ∈
C ⊂ P

1,

• the preimage p−1(∞) consists of l points: p−1(∞) = {∞1, . . . ,∞l}, the ramification index of the
map p at the point ∞j is kj (1 ≤ kj ≤ N).
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(The ramification index at a point is equal to the number of sheets of the covering which are glued
at this point, a point ∞j is a ramification point if and only if kj > 1. A ramification point is simple
if the corresponding ramification index equals 2.)

Notice that k1 + · · · + kl = N and M = 2g + l + N − 2. (The last equality is a consequence of
the Riemann-Hurwitz formula.) Two branched coverings p1 : L1 → P

1 and p2 : L2 → P
1 are called

equivalent if there exists a biholomorphic map f : L1 → L2 such that p2f = p1.
The Hurwitz spaces Hg,N(k1, . . . , kl) can be also described as spaces of meromorphic functions of

degree N on Riemann surfaces of genus g with l poles of orders k1, . . . , kl and simple critical values.
For example, the space H0,N (N) has an equivalent description as the space of polynomials L =

P
1 ∋ z 7→ λ(z) ∈ P

1

λ(z) = zN + a2z
N−2 + a3z

N−3 + · · ·+ aN , (2.2)

whereas the space H0,N (k,N − k) (1 ≤ k ≤ N − 1) can be described as the space of ”trigonometric
polynomials” L = P

1 ∋ z 7→ λ(z) ∈ P
1

λ(z) = zk + b1z
k−1 + · · ·+ bN

zN−k
; bN 6= 0. (2.3)

We assume that the critical values of λ(z) in (2.2) and (2.3) are simple (i. e. the derivative λ′(z) has
only simple roots and λ(zi) 6= λ(zj) for distinct roots z1, z2 of λ′(z)).

Introduce also the covering Ĥg,N(k1, . . . , kl) of the space Hg,N (k1, . . . , kl) consisting of pairs
〈

[

p : L → P
1
]

∈ Hg,N (k1, . . . , kl) , {aα, bα}gα=1

〉

,

where {aα, bα}gα=1 is a canonical basis of cycles on the Riemann surface L.
Obviously, for g = 0 the spaces H0,N(k1, . . . , kl) and Ĥ0,N (k1, . . . , kl) coincide.

The spaces Hg,N(k1, . . . , kl) and Ĥg,N (k1, . . . , kl) are connected complex manifolds of dimension
M = 2g + l +N − 2, the local coordinates on these manifold are given by the finite critical values of
the map p (or, equivalently, the finite branch points of the covering (2.1)) λ1, . . . , λM .

In [2] it was introduced the notion of so-called “primary” differentials on the Riemann surfaces
L; each primary differential φ defines a structure of Frobenius manifold Mφ on Ĥg,N(k1, . . . , kl). We
will not reproduce here the complete list of primary differentials (see [2]). We only notice that in
the case g ≥ 1 the normalized (

∫

aα
ωβ = δαβ) holomorphic differentials ωβ on Riemann surfaces L

are primary differentials. The (meromorphic) differentials dz and dz
z on the Riemann sphere L are

primary differentials in cases of the spaces H0,N(N) and H0,N (k,N − k) respectively.

The structure of Frobenius manifold Mφ on Ĥg,N(k1, . . . , kl) is defined by the multiplication law in

the tangent bundle : ∂λm
◦∂λn

= δmn∂λm
, the unity e =

∑M
m=1 ∂λm

, the Euler field E =
∑M

m=1 λm∂λm

and the one-form Ωφ2 =
∑M

m=1

{

ResPm

φ2

dλ

}

dλm, where λ is the coordinate on the L lifted from the

base P1. The invariant metric η(v,w) = Ωφ2(v ◦w) on the Frobenius manifold turns out to be flat and
potential (i. e. Egoroff-Darboux metric). In the coordinates λ1, . . . , λM (which are called canonical)
this metric is diagonal

η =

M
∑

m=1

ηmm(dλm)2 ; ηmm = ResPm

(

φ2

dλ

)

(2.4)

and its rotation coefficients γmn =
∂λn

√
ηmm√

ηnn
(m 6= n) have the following properties: First, they are

independent of the choice of a primary differential φ. Second, they satisfy the equations

∂λk
γmn = γmkγkn , for distinct k, n,m; (2.5)
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e(γmn) =
M
∑

k=1

∂λk
γmn = 0, (2.6)

which provide the flatness of metric (2.4). Finally, the action of the Euler vector field on γmn has the
form

E(γmn) =
M
∑

k=1

λk∂λk
γmn = −γmn. (2.7)

The following three examples of Frobenius manifolds related to Hurwitz spaces are of special
interest, since they arise also in the theory of (respectively) Coxeter, extended affine Weyl and Jacobi
groups (see [2], [3], [1]).

• M0;N. The underlying Hurwitz space here is the space H0,N(N). In this case g = 0, l = 1; the
primary differential defining the structure of Frobenius manifold is dz.

• M0;k,N−k. The underlying Hurwitz space is H0,N(k,N − k) (g = 0, l = 2, 1 ≤ k ≤ N − 1); the
Frobenius structure is defined by the primary differential dz

z .

• M̂1,N. The underlying space here is the covering Ĥ1,N (N), g = 1, l = 1; the primary differential
on the elliptic surface L is the normalized (

∫

a ω = 1) holomorphic differential ω.

Due to [3], the first N − 1 flat coordinates of the metric η in case of the Frobenius manifold
M0;k,N−k of dimension M = N are given by

tµ = (−1)µ+1 k

µ
Resz=∞ [λ(z)]µ/k d ln z, 1 ≤ µ < k − 1,

tN−µ = (−1)µ
N − k

µ
Resz=0

[

(−1)Nλ(z)
]µ/(N−k)

d ln z, 1 ≤ µ ≤ N − k.

The last flat coordinate tN is defined by the equation

bN = (−1)N exp [(N − k)tN ] . (2.8)

To write down the flat coordinates on the Frobenius manifold M̂1;N (of dimension N + 1) set

z(P ) =
∫ P
∞1

ω, where ∞1 is the point on L such that p(∞1) = ∞ and λ(z(P )) = p(P ). Then the

flat coordinates t0, . . . , tN are given by (see [1]): t0 =
∫

b ω = σ, where σ is the modulus of the elliptic
curve L, t1 =

∫

a λ(z(P ))dz(P ) and

tµ = Resz=0 z[λ(z)]
−µ−1

N dλ(z), µ = 2, . . . , N. (2.9)

2.2 Isomonodromic tau-function and G-function of Frobenius manifold

Let Mφ be the Frobenius manifold with underlying Hurwitz space Ĥg,N (k1, . . . , kl) and the Frobenius
structure given by a primary differential φ. Set Γ = ||γmn||m,n=1,...,M (the diagonal elements of the
matrix Γ are not defined), U = diag(λ1, . . . , λM ) and V = [Γ, U ]. Here γmn are the rotation coefficients
of the metric (2.4), λ1, . . . , λM are the canonical coordinates on Mφ. The matrix V is well-defined
since the diagonal elements of Γ do not enter the commutator [Γ, U ].
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The isomonodromic tau-function τI of the Frobenius manifold Mφ is defined by the system of
(compatible) equations

∂ ln τI
∂λm

= Hm; m = 1, . . . ,M, (2.10)

where the Hamiltonians Hm are defined by

Hm =
1

2

∑

n 6=m;1≤n≤M

V 2
nm

λm − λn
; m = 1, . . . ,M. (2.11)

Let t1, . . . , tM be the flat coordinates on the Frobenius manifold Mφ. The Jacobian J = det||∂λm

∂tn
||

can be expressed as follows in terms of metric coefficients ηmm:

J =

(

M
∏

m=1

ηmm

)1/2

=

(

M
∏

m=1

ResPm

φ2

dλ

)1/2

. (2.12)

The G-function of the Frobenius manifold Mφ is defined as follows

G = ln

(

τI

J
1
24

)

. (2.13)

3 Isomonodromic tau-function of Frobenius manifold and Bergmann

tau-function on Hurwitz space

3.1 Rotation coefficients of the flat metric η and the Bergmann kernel

First, we recall the definition of the Bergmann kernel. In the case g > 0 the Bergmann kernel on
the Torelli marked Riemann surface L is defined by B(P,Q) = dP dQ lnE(P,Q), where E(P,Q) is the
prime-form on L (see [6]). At the diagonal P = Q the Bergmann kernel is singular:

B(x(P ), x(Q)) =

(

1

(x(P ) − x(Q))2
+H(x(P ), x(Q)

)

dx(P ) dx(Q), (3.1)

where

H(x(P ), x(Q)) =
1

6
SB(x(P )) + o(1) (3.2)

as P → Q. Here x(P ) is a local coordinate of a point P ∈ L, SB is the Bergmann projective connection
(see, e.g., [6],[14]).

If g = 0 and z : L → P
1 is a biholomorphic map then the Bergmann kernel is defined by

B(z(P ), z(Q)) =
dz(P )dz(Q)

(z(P ) − z(Q))2
.

(In particular SB(z) ≡ 0 in the local parameter z.)
Near a simple ramification point Pm ∈ L of covering (2.1) we introduce the local parameter

xm(P ) = (λ(P )− λm)1/2 , (3.3)

where λ(P ) = p(P ), λm = p(Pm); m = 1, . . . ,M .

5



Let U(Pm) and U(Pn) be small neighborhoods of ramification points Pm and Pn. For (P,Q) ∈
U(Pm)× U(Pn) we set

bmn(P,Q) =
B(xm(P ), xn(Q))

dxm(P ) dxn(Q)
.

Lemma 1 (cf. [9]) The rotation coefficients γmn of the metric η =
∑M

m=1 ResPm

(

φ2

dλ

)

(dλm)2 are

related to bmn(P,Q) as follows

γmn =
1

2
bmn(Pm, Pn); m,n = 1, . . . ,M ; m 6= n. (3.4)

Proof. For g ≥ 1 the proof is contained in [9]. In brief, it looks as follows: Since the rotation
coefficients are independent of the choice of a primary differential φ, it is sufficient to verify (3.4) only
in the case φ = ω1, where ω1 is the holomorphic differential on L such that

∫

aα
ω1 = δ1α. For such a

primary differential we have

ηmm = ResPm

ω2
1

dλ
=

1

2

[

ω1(xm(P ))

dxm(P )

∣

∣

∣

P=Pm

]2

.

Now (3.4) follows from the definition of rotation coefficients and the Rauch formula:

∂

∂λn

[

ω1(xm(P ))

dxm(P )

∣

∣

∣

P=Pm

]

=
1

2
bmn(Pm, Pn)

[

ω1(xn(P ))

dxn(P )

∣

∣

∣

P=Pn

]

. (3.5)

Consider the case g = 0. Let z : L → P
1 be a biholomorphic map such that z(∞1) = ∞. Then φ = dz

is a primary differential in the sense of Dubrovin. For this primary differential

ηmm = Resxm=0
[z′(xm)dxm]2

2xmdxm
=

1

2

{

z′(xm)
∣

∣

∣

xm=0

}2
. (3.6)

Let us prove an analog of Rauch’s variational formula for the meromorphic differential dz. Setting

αm = z′(xm)
∣

∣

∣

xm=0
, we get

∂

∂λn
{dz} =

∂

∂λn

[

(

αm +O(
√

λ− λm)
) dλ

2
√
λ− λm

]

=

(

δmnαm

2x2m
+O(1)

)

dxm (3.7)

as xm → 0. Thus, the meromorphic differential ∂
∂λn

dz has the only pole at Pn and, therefore,

∂

∂λn
{dz(P )} =

1

2

[

B(P, xn)z
′(xn)

dxn

∣

∣

∣

xn=0

]

. (3.8)

On the other hand as P → Pm for m 6= n, we have

∂

∂λn
{dz} =

∂

∂λn
(αm +O(xm))dxm =

(

∂αm

∂λn
+O(xm)

)

dxm.

Thus, due to (3.8), we get the following analog of the Rauch formula (3.5):

∂αm

∂λn
=

∂
∂λn

dz(xm)

dxm

∣

∣

∣

xm=0
=

1

2
bmn(Pm, Pn)αn. (3.9)

Now (3.4) follows from (3.6), (3.9) and the definition of rotation coefficients. �

Remark 1 Lemma 1 clarifies properties (2.5) – (2.7) of the rotation coefficients. Namely, property
(2.5) is nothing but the Rauch variational formula for the Bergmann kernel, equations (2.6) and (2.7)
follow from the invariance of the Bergmann kernel under the translations λ 7→ λ+ ǫ and (respectively)
dilatations λ 7→ (1 + δ)λ of every sheet of the covering (2.1).
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3.2 The Bergmann tau-function

Introduce the quantities

Bm = − 1

12
SB(xm)

∣

∣

∣

xm=0
; m = 1, . . . ,M,

where SB is the Bergmann projective connection from (3.2), xm is, as usually, the local parameter
(3.3) near the ramification point Pm. In [8] it was introduced the so-called Bergmann tau-function τB
on the Hurwitz space Ĥg,N which is defined by the system of equations:

∂ ln τB
∂λm

= Bm; m = 1, . . . ,M. (3.10)

The local solvability of system (3.10) can be obtained, in particular, from the symmetry of the
Bergmann kernel and the first statement of the following lemma.

Lemma 2 The quantities Bm satisfy the following equations:

∂λn
Bm = −1

4
b2mn(Pm, Pn), m 6= m, (3.11)

e(Bm) =

M
∑

n=1

∂λn
Bm = 0, (3.12)

E(Bm) =
M
∑

n=1

λn∂λn
Bm = −Bm. (3.13)

Proof. Since the singular part of the Bergmann kernel in a neighborhood of the ramification point
Pm is independent of {λn}, we have

∂λn
Bm = −1

2
{∂λn

bmm(P,Q)}
∣

∣

∣

P=Q=Pm

. (3.14)

Computing the r.h.s. of (3.14) via the Rauch formula for the Bergmann kernel:

∂λm
bnk(P,Q) =

1

2
bnm(P,Pm)bmk(Pm, Q) , (3.15)

we get (3.11).
Under the translation λ 7→ λ+ǫ and the dilatation λ 7→ (1+δ)λ of each sheet of covering (2.1) (the

both transformations generate conformal isomorphisms of L) the Bergmann kernel remains invariant:

Bǫ(P ǫ, Qǫ) = Bδ(P δ, Qδ) = B(P,Q).

We have the following transformation rules for the local parameter xm and the critical values λm:

xǫm(P ǫ) = xm(P ), xδm(P δ) = (1 + δ)1/2xm(P ); λǫ
m = λm + ǫ, λδ

m = (1 + δ)λm.

Therefore, the function H from (3.1) transforms as follows:

Hǫ(xǫm(P ǫ), xǫm(Qǫ)) = H(xm(P ), xm(Q)) (3.16)
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and

Hδ(xδm(P δ), xδm(Qδ)) =
1

1 + δ
H(xm(P ), xm(Q)). (3.17)

Differentiating equations (3.16) and (3.17) with respect to ǫ and δ respectively, we get

dHǫ

dǫ
=
∑

n

∂Hǫ

∂λǫ
n

= 0 (3.18)

and
dHδ

dδ
=
∑

n

λn
∂Hδ

∂λδ
n

= − 1

(1 + δ)2
H. (3.19)

Setting in (3.18) and (3.19) ǫ = 0 and δ = 0 and, then, P = Q, we get (3.12) and (3.13). �

3.3 Relation between τB and τI

The following simple observation provides a basis of this work.

Proposition 1 The Bergmann tau-function τB from [8] and the isomonodromic tau-function τI are
related as follows

τI = (τB)
−1/2. (3.20)

Proof. Let Hm be the quadratic Hamiltonians from (2.11). Due to lemmas 1 and 2, we have

Hm =
1

2

∑

n 6=m

V 2
mn

λm − λn
=

1

2

∑

n 6=m

γ2mn(λm − λn) =

=
1

8

∑

n 6=m

b2mn(Pm, Pn)(λm−λn) = −1

2

∑

n 6=m

(λm−λn)∂λn
Bm = −1

2



λm

∑

n 6=m

∂λn
Bm −

∑

n 6=m

λn∂λn
Bm



 =

=
1

2

M
∑

n=1

λn∂λn
Bm = −1

2
Bm,

which proves (3.20). �

3.4 The Bergmann tau-function for coverings with arbitrary branching over the

point at infinity

In [8] the Bergmann tau-function τB was explicitly calculated in cases of Hurwitz spaces H0,N (1, . . . , 1)

and Ĥ1,N (1, . . . , 1). In higher genera (i. e. for the spaces Ĥg,N (1, . . . , 1) with g ≥ 2) in [8] there were
found expressions for the modulus square |τB|2. (It should be noted that in [8] the general situation
of Hurwitz spaces of coverings with higher multiplicities of the finite branch points was investigated.
This general case corresponds to nonsemisimple Frobenius manifolds which are not considered here.)

A slight modification of the proofs from [8] leads to the explicit formulas for the Bergmann tau-
function for the Hurwitz spaces H0,N (k1, . . . , kl) and Ĥ1,N (k1, . . . , kl) of coverings with the branching
of type (k1, . . . , kl) over the point at infinity. (Coverings from Hg,N (1, . . . , 1) considered in [8] have no
branching over the point at infinity.)

8



First, consider the case g = 0. Let [p : L → P
1] ∈ H0,N(k1, . . . , kl). Let also z : L → P

1 be a
biholomorphic map such that z(∞1) = ∞ and

z(P ) = [λ(P ))]1/k1 +O(1), (3.21)

as P → ∞1, where λ(P ) = p(P ).
Introduce the local parameter ζs near the point ∞s with s ≥ 2:

ζs(P ) = λ−1/ks(P ).

The map z near the point ∞s (s ≥ 2) is a holomorphic function of ζs. Near the simple ramification
point Pm the map z is a holomorphic function of the local parameter xm from (3.3). The next
statement is a modification of Theorem 6 from [8]. Its proof is essentially the same.

Proposition 2 The Bergmann tau-function on the Hurwitz space H0,N (k1, . . . , kl) is given by the
following expression

τB =



















∏l
s=2

(

dz
dζs

∣

∣

∣

ζs=0

)ks+1

∏M
m=1

dz
dxm

∣

∣

∣

xm=0



















1
12

. (3.22)

Let now g = 1 and [p : L → P
1] ∈ Ĥ1,N (k1, . . . , kl), where L is an elliptic Riemann surface. Let ω

be a holomorphic (not necessarily normalized) differential on L. Introduce the notation

hs =
ω(ζs(P ))

dζs(P )

∣

∣

∣

P=∞s

; s = 1, . . . , l

and

fm =
ω(xm(P ))

dxm(P )

∣

∣

∣

P=Pm

; m = 1, . . . ,M.

Let σ be the modulus of the elliptic surface L. Define the Dedekind eta-function by

η(σ) =

{

d

dz
Θ
[

1/2
1/2

]

(z, σ)
∣

∣

∣

z=0

}1/3

.

The next statement is a modification of Theorem 5 from [8].

Proposition 3 The Bergmann tau-function on the Hurwitz space Ĥ1,N (k1, . . . , kl) is given by

τB = η2

{

∏l
s=1 h

ks+1
s

∏M
m=1 fm

}
1
12

. (3.23)

Due to Riemann-Hurwitz formula the r. h. s. of (3.23) is independent of normalization of the
holomorphic differential ω.

Remark 2 The way to obtain (3.22) and (3.23) in [8] was somehow indirect. Namely, these formulas
were deduced from the study of the appropriately regularized Dirichlet integral S = 1

2π

∫

L |φλ|2, where
eφ|dλ|2 is the flat metric on L obtained by projecting down the standard metric |dz|2 on the universal
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covering L̃. The derivatives of S with respect to the branch points can be expressed through the values
of the Schwarzian connection at the branch points; this reveals a close link of S with the modulus of
the Bergmann tau-function. On the other hand, the integral S admits an explicit calculation via the
asymptotics of the flat metric near the branch points and the infinities of the sheets of the covering.
Moreover, it admits a “holomorphic factorization” i.e. it can be explicitly represented as the modulus
square of some holomorphic function, which allows one to compute the Bergmann tau-function itself.

To prove relations (3.22) and (3.23) directly (i. e. without any use of Dirichlet integrals) remains
an open problem.

4 G-function of Frobenius manifolds related to Hurwitz spaces in

genera 0 and 1

4.1 The general formulas for the G-function

The following two theorems are immediate consequences of propositions 2, 3 and 1.

Theorem 1 The G-function of the Frobenius manifold with underlying Hurwitz space H0,N(k1, . . . , kl)
and the Frobenius structure given by a primary differential φ can be expressed as follows:

G =
1

24
ln



















∏M
m=1

dz
dxm

∣

∣

∣

xm=0

∏l
s=2

(

dz
dζs

∣

∣

∣

ζs=0

)ks+1 (
∏M

m=1 ResPm

φ2

dλ

) 1
2



















. (4.1)

Theorem 2 The G-function of the Frobenius manifold with underlying Hurwitz space Ĥ1,N(k1, . . . , kl)
and the Frobenius structure given by a primary differential φ can be expressed as follows:

G =
1

24
ln











∏M
m=1 fm

∏l
s=1 h

ks+1
s

(

∏M
m=1 ResPm

φ2

dλ

) 1
2











− ln η(σ) . (4.2)

4.2 Examples

4.2.1 M0;N

The Frobenius manifold M0;N is isomorphic to the orbit space CN−1/AN−1 of the Coxeter group AN−1

(see [2]).
In this case l = 1 and the first factor at the denominator of (4.1) is absent. As a map z we can

take one given by (2.2), so

(

M
∏

m=1

ResPm

φ2

dλ

)

1
48

=

(

M
∏

m=1

Resxm=0
[z′(xm)]2dxm

2xm

)

1
48

= const

(

M
∏

m=1

dz

dxm

∣

∣

∣

xm=0

)

1
24

and, therefore, G = const.
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4.2.2 M0;k,N−k

According to [3], the Frobenius manifold M0;k,N−k is isomorphic to the orbit space of the extended
affine Weyl group W̃ k(AN−1).

In this case l = 2, z is given by (2.3). Using the equality ζ2 = λ− 1
N−k , we get

dz

dζ2
=

1

λ′
z

dλ

dζ2
=

1

bN +O(z)

(

z

ζ2

)N−k+1

=
1

bN +O(z)
[bN +O(z)]

N−k+1
N−k

as z → 0 and

dz

dζ2

∣

∣

∣

ζ2=0
= b

1
N−k

N ;

(

dz

dζ2

∣

∣

∣

ζ2=0

)

k2+1
24

= b
N−k+1
24(N−k)

N .

Since φ = dz
z , we have

(

N
∏

m=1

ResPm

φ2

dλ

)

1
48

=

(

N
∏

m=1

Resxm=0
[z′(xm)]2dxm
2xm[z(xm)]2

)

1
48

= const

(

∏M
m=1

dz
dxm

∣

∣

∣

xm=0

)
1
24

(

∏M
m=1 γm

) 1
24

,

where γm = z(Pm) are the critical points of the map λ(z).
On the other hand, M = 2g + l +N − 2 = N and

λ′(z) = kzk−1 + · · ·+ (k −N)bN
zN−k+1

=
k
∏N

n=1(z − γn)

zN−k+1
.

Therefore,

k
M
∏

m=1

γm = ±(N − k)bN

and (up to a constant independent of {λk})

G = − 1

24

ln bN
N − k

= − 1

24
tN ,

in agreement with the main result of [13].

4.2.3 M̂1,N

The Frobenius manifold M̂1,N is isomorphic to the orbit space C×C
N−1 ×{ℑz > 0}/J(AN−1) of the

Jacobi group J(AN−1) (see [2] and [1]).
In this case l = 1, M = N +1. Following [1], we start the enumeration of the flat coordinates from

0. We have

(

M
∏

m=1

ResPm

φ2

dλ

)

1
48

= const

(

M
∏

m=1

ω(xm(P ))

dxm(P )

∣

∣

∣

P=Pm

)

1
24

=

(

M
∏

m=1

fm

)

1
24

.

On the other hand, since ζ1 = λ− 1
N ,

tN = Resz=0

(

z[λ(z)]−
N−1
N dλ(z)

)

= Resζ1=0

(

z(ζ1)
dζ1
ζ21

)

= z′(ζ1)
∣

∣

ζ1=0
= h1
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and

G = − ln η(t0)−
N + 1

24
tN ,

which proves the conjecture from [13].

5 Some remarks on higher genus case

Here we give a formula for the modulus square of the tau-function of Frobenius manifolds related to
the Hurwitz spaces Hg,N (k1, . . . , kl) with g ≥ 2. From this formula one can derive an expression for the
real part of the corresponding G-function. For simplicity, we consider only the case k1 = · · · = kl = 1,
the results in the general case differ insignificantly.

If the covering L has genus g > 1 then it is biholomorphically equivalent to the quotient space H/Γ,
where H = {z ∈ C : ℑz > 0}; Γ is a strictly hyperbolic Fuchsian group. Denote by πF : H → L the
natural projection. Let x be a local parameter on L. Introduce the standard metric of the constant
curvature −1 on L:

eχ(x,x̄)|dx|2 =
|dz|2
|ℑz|2 , (5.1)

where z ∈ H, πF (z) = P , x = x(P ).
Denote by ζ = 1/λ the local coordinate in a neighborhood of the infinity of any sheet of covering L.

Introduce functions χext(λ, λ̄), χint(xm, x̄m), m = 1, . . . ,M and χ∞
k (ζ, ζ̄), k = 1, . . . , N by specifying

x = λ, x = xm and x = ζ (in a neighborhood of the point at infinity of kth sheet) in (5.1) respectively.
Consider the following domain on kth sheet of L: Lk

ρ = {λ ∈ Lk : ∀m |λ−λm| > ρ & |λ| < 1/ρ},
where λm are all the branch points which belong to the k-th sheet Lk of the covering L. (The sheet
Lk can be considered as a copy of the Riemann sphere P

1 with appropriate cuts between the branch
points; the domain Lk

ρ is obtained from Lk by deleting small discs around branch points belonging to
this sheet, and the disc around infinity.)

The function χext
k : Lk → R is smooth in the domain Lk

ρ for any sufficiently small ρ > 0. This
function has finite limits at the cuts (except the endpoints which are the branch points); at the branch
points and at the infinity there are the following asymptotics

|∂λχext
k (λ, λ̄)|2 = 1

4
|λ− λm|−2 +O(|λ− λm|−3/2) (5.2)

as λ → λm and
|∂λχext

k (λ, λ̄)|2 = 4|λ|−2 +O(|λ|−3) (5.3)

as λ → ∞. We define the “truncated” integral Tρ by

Tρ =

N
∑

k=1

∫

Lk
ρ

|∂λχext
k |2 |dλ ∧ dλ̄|/2 . (5.4)

Then there exists the finite limit

reg

∫

L
(|χλ|2 + eχ) |dλ ∧ dλ̄|/2 = lim

ρ→0

(

Tρ +

N
∑

k=1

∫

Lk

eχ
ext
k |dλ ∧ dλ̄|/2 + (8N + 4M)π ln ρ

)

. (5.5)
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Define the function SF by

SF (λ1, . . . , λM ) =
1

24π

{

reg

∫

L
(|χλ|2 + eχ) |dλ ∧ dλ̄|/2

}

+
1

3

M
∑

n=1

χint(xn)
∣

∣

∣

xn=0
− 1

3

N
∑

k=1

χ∞
k (ζ)

∣

∣

∣

ζ=0
;

(5.6)
and introduce the determinant of Laplacian operator (in the Poincaré metric) det∆ = exp{−ζ ′(0)},
where ζ(s) is the zeta-function of the Laplacian on the Riemann surface L.

Let B be the matrix of b-periods of the Riemann surface L.
The following theorem is a consequence of Theorem 9 from [8] and Lemma 1.

Theorem 3 Let g ≥ 2. The modulus square of the isomonodromic tau-function on Ĥg,N(1, . . . , 1) has
the following representation

|τI |2 = eSF
(detℑB)1/2

(det∆)1/2
. (5.7)

Remark 3 At the moment we don’t know the explicit holomorphic factorization (similar to that in
genera 0 and 1) of the r. h. s. of (5.7). Finding of such a factorization seems to be of great interest.

LetMφ be the Frobenius manifold with underlying Hurwitz space Ĥg,N (1, . . . , 1) and the Frobenius
structure given by a primary differential φ. From Theorem 3 it follows that the real part of the G-
function of Mφ is given by

ReG =
1

2
SF +

1

4
ln

(detℑB)

(det∆)
− 1

48
ln
∣

∣

∣

M
∏

m=1

ResPm

φ2

dλ

∣

∣

∣
. (5.8)
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