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Abstract

A novel Hamiltonian system in n dimensions which admits the max-

imal number 2n − 1 of functionally independent, quadratic first inte-

grals is presented. This system turns out to be the first example of a

maximally superintegrable Hamiltonian on an n-dimensional Riemannian

space of nonconstant curvature, and it can be interpreted as the intrinsic

Smorodinsky–Winternitz system on such a space. Moreover, we provide

three different complete sets of integrals in involution and solve the equa-

tions of motion in closed form.

1 Introduction

A Hamiltonian system on a 2n-dimensional phase space is maximally super-

integrable (MS) if it is Liouville integrable [2] and there exist further n − 1
functionally independent (global) first integrals. Throughout this paper we
shall restrict ourselves to the case of natural Hamiltonians, whose kinetic term
defines a Riemannian metric on an n-dimensional configuration space.

The intrinsic relevance of MS systems has resulted in a wealth of results con-
cerning MS Hamiltonians [11,20,21,28,34]. MS models with integrals of motion
quadratic in the momenta are of particular interest because of their connections
with generalized symmetries [19, 35], isochronic potentials [10, 18], and separa-
bility of the associated Hamilton–Jacobi (HJ) equation and Schrödinger equa-
tions [8, 22, 27]. A systematic study of MS systems on certain low-dimensional
spaces is currently being developed by Kalnins et al. (cf. [24] and references
therein), and in fact in two dimensions they managed to obtain a (local) clas-
sification of all MS Hamiltonians with integrals at most quadratic in the mo-
menta [25,26]. This result, which hinges on a classical theorem by Koenigs [29],
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yielded the first examples of MS systems not defined on constant curvature
spaces.

Unfortunately, most examples of MS Hamiltonians are restricted to low-
dimensional spaces. To the best of our knowledge, the only known examples of n-
dimensional MS systems with quadratic integrals are given by the (generalized)
Kepler problem [14], the Smorodinsky–Winternitz (SW) system [15, 17], their
generalizations to the simply connected spaces of constant sectional curvature
(cf. [4] and references therein), and the geodesic flow on these spaces. Note that
the allowed potentials correspond essentially to those appearing in the extension
to space forms of Bertrand’s theorem [7, 31]. If one drops the requirement
that the integrals be quadratic in momenta, the list can be enlarged with the
rational and hyperbolic Calogero–Sutherland–Moser models of type A [9,32,36,
38], the nonisotropic oscillator with rational frequencies and the nonperiodic
Toda lattice [1, 37].

In this paper we show that the Hamiltonian

H(p,q) =
p2 + ω2 q2 +

∑

j bj q
−2
j

κ+ q2
, (1)

where κ > 0 and ω2, bj ≥ 0, is a MS system with quadratic first integrals. Here
p,q ∈ R

n, and we shall always assume that R2n is endowed with its standard
symplectic form dq ∧ dp. For any u ∈ R

n we use the notation

u2 = u · u =
∑

i

u2
i

and all the sum indices run from 1 to n unless otherwise stated.

The Hamiltonian (1) yields the motion under the potential

V (q) =
ω2 q2 +

∑

j bj q
−2
j

κ+ q2
(2)

on the conformally flat Riemannian manifold Mn := (Rn, ds2) whose metric is
given by

ds2 = (κ+ q2) dq2 . (3)

The Hamiltonian (1) provides the first example of a Hamiltonian system on a
Riemannian space of nonconstant curvature which is MS in any dimension. The
analysis of the geometry of Mn presented in Sec. 4 shows that this model can
be in fact regarded as the intrinsic SW system on this space. When n = 2 this
model is listed in Kalnins et al.’s classification of MS systems in the Darboux
space of type III [26]. This model is singled out among the others in this list
because it is the only one readily amenable to the Poisson coalgebra treatment
developed in Sec. 2.

The paper is organized as follows. In Sec. 2 we show that the Hamiltonian (1)
is indeed MS and briefly study the separability of the HJ equation. The proof
is greatly simplified by the use of the sl(2) Poisson coalgebra symmetry [5,6] of
the model. In Sec. 3 we study the equations of motion and find their general
solution in closed form using the previously computed first integrals. Quite
remarkably, the radial motion is essentially that of the Kepler problem, whereas
the HJ equation essentially coincides with the one for the SW system. In Sec. 4
we analyze the geometry of the underlying Riemannian space and relate the
Hamiltonian (1) to the intrinsic harmonic oscillator in Mn.
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2 Maximal superintegrability and separability

of the HJ equation

Instead of dealing with the model (1) directly, in the following two sections we
prefer to analyze the Hamiltonian

H(p,q) =
p2 − c+

∑

j bjq
−2
j

2(κ+ q2)
, c := κω2 , (4)

which is related to (1) via H = 2H + ω2. Obviously the maximal superinte-
grability of H is equivalent to that of H, whereas the trajectories of H can be
mapped into those of H via the time dilation t 7→ t/2. In particular, H and H
possess the same orbits.

A first observation is that there is an sl(2) Poisson coalgebra symmetry of
the Hamiltonian (4) that immediately provides 2n− 2 quadratic integrals. This
underlying coalgebra structure is shared by all the other known examples of
quadratically MS models [3,4], as well as by uncountably many other integrable
Hamiltonian systems which are not MS. Therefore, the crucial result in this
section is the derivation of an additional first integral, functionally independent
of the previous 2n− 2.

The sl(2) Poisson coalgebra is defined by the basis {Jǫ : ǫ = ±, 0} together
with the following Lie–Poisson brackets, Casimir C and primitive coproduct ∆:

{J0, J+} = 2J+ , {J0, J−} = −2J− , {J−, J+} = 4J0 , (5)

C = J−J+ − J2
0 , ∆(Jǫ) = Jǫ ⊗ 1 + 1⊗ Jǫ . (6)

A symplectic (one-dimensional) realization of the algebra (5) on (R2, dq1 ∧ dp1)
is given by

J− = q21 , J0 = q1p1 , J+ = p21 + b1q
−2
1 ,

where b1 is a real parameter labeling the representation which corresponds to the
value of the (one-dimensional) Casimir. Under this realization, the Lie-Poisson
product of the sl(2) algebra is recovered by computing the corresponding Poisson
bracket in (R2, dq1 ∧ dp1). Moreover, its n-th coproduct yields a symplectic
realization in R

2n via

J− = q2 , J0 = p · q , J+ = p2 +
∑

j

bj q
−2
j , (7)

with bj ∈ R. Again, the Lie-Poisson product is given by the standard Poisson
bracket

{f, g} =
∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q

and the Casimir (6) is simply

C = L2 +
∑

j

bjq
2

q2j
,

where L2 denotes the angular momentum. From this expression it is apparent
that C is a homogenous function of degree 0.
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This sl(2)⊗ · · · ⊗ sl(2) symmetry endows any n-dimensional Hamiltonian in
the enveloping algebra with 2n− 3 integrals other than the Hamiltonian given
by the left and right partial Casimirs. More precisely we have the following
result, which we quote from Ref. [3].

Theorem 1. Any Hamiltonian H0(p,q) = h(J+, J0, J−) possesses 2n− 3 first

integrals given by the left and right partial Casimirs

C(m) =
∑

1≤i<j≤m

[

(qipj − qjpi)
2 +

biq
2
j

q2i
+

bjq
2
i

q2j

]

+
m
∑

i=1

bi ,

C(m) =
∑

n−m<i<j≤n

[

(qipj − qjpi)
2 +

biq
2
j

q2i
+

bjq
2
i

q2j

]

+

n
∑

i=n−m+1

bi ,

where 1 < m ≤ n. Here C(n) = C(n) = C is the Casimir (6) and the functions

{

H0, C
(l), C(m) : 1 < l < n, 1 < m ≤ n

}

are functionally independent. Moreover, the subsets {H0, C
(m) : 1 < m ≤ n}

and {H0, C(m) : 1 < m ≤ n} are in involution.

The previous result obviously applies to the Hamiltonian (4), which corre-
sponds to

H =
J+ − c

2(κ+ J−)
.

The main result of this paper is that the remaining first integral, which makes
H MS, can indeed be found easily.

Theorem 2. The remaining first integral can be chosen as

Ii(p,q) = p2i − 2H(p,q) q2i + biq
−2
i , (8)

for any 1 ≤ i ≤ n. Moreover, the set {Ii : 1 ≤ i ≤ n} is also in involution.

Proof. The equations of motion under H are given by

q̇i =
pi

κ+ q2
, (9)

ṗi =
2Hqi + biq

−3
i

κ+ q2
. (10)

Combining both equations one can write

(κ+ q2)q̈i + 2(q · q̇)q̇i −
2Hqi + biq

−3
i

(κ+ q2)
= 0 .

Multiplying this equation by 2(κ+ q2)q̇i one immediately finds

d

dt

[

(κ+ q2)2q̇2i − 2Hq2i + biq
−2
i

]

= 0 ,

4



which yields the desired result. The functional independence of Ii is easily
established through a tedious but straightforward computation. The fact that
{Ii} are in involution follows from

{Ii, Ij} = −2q2i
(

{H, p2j} − 2H {H, q2j }+ bj{H, q−2
j }

)

+ 2q2j
(

{H, p2i } − 2H {H, q2i }+ bi{H, q−2
i }

)

= −2q2i {H, Ij}+ 2q2j{H, Ii} = 0 .

Quadratic integrability is linked to the separability of the HJ equation by a
theorem due to Kalnins and Miller [27]. In fact, it is not difficult to show that
this equation is actually superseparable. If we write S(t,q) = W (q) − 1

2Et the
HJ equation for H reads

(

∂W

∂q

)2

− Eq2 +
∑

j

bjq
−2
j = c+ κE .

Thus one essentially recovers the HJ equation for the SW system with a different
set of constants, namely

HSW(p,q) = p2 − Eq2 +
∑

j

bjq
−2
j .

Therefore,

Proposition 3. H separates in the same coordinate systems as the SW system.

In three dimensions, e.g., it separates in 8 out of the 11 possible orthogonal
coordinate systems [16, 23]. As a matter of fact, it has long been conjectured
that any MS system should separate in multiple coordinate systems, but to our
best knowledge this general claim has not been proved or disproved.

3 Integration of the equations of motion

In this section we shall compute the trajectories of the Hamiltonian system (4)
in closed form. It is convenient to start by exploiting the sl(2) symmetry to
compute the evolution of the radial variable

x = κ+ J− = κ+ q2 .

We use the notation

E := 2H =
J+ − c

x
and assume c 6= 0.

The evolution of the sl(2) generators (7) is given by the following set of
equations:

ẋ = {J−, H} =
2J0
x

, (11a)

J̇0 = {J0, H} =
J+ + E(x− κ)

x
, (11b)

J̇+ = {J+, H} =
2EJ0
x

. (11c)
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Using these equations one can write the Casimir (6) as

C = − 1
4x

2ẋ2 + Ex2 + (c− Eκ)x− cκ ≥ 0 .

For the sake of concreteness, let us assume that E > 0 and set

α :=
1

2

(

κ− c

E

)

, (12)

γ2 :=
1

4

(

κ+
c

E

)2

+
C

E
. (13)

In this case
x2ẋ2 = 4E

[

(x− α)2 − γ2
]

, (14)

and one can easily integrate this equation as

± 2
√
E(t− τ) =

√

(x− α)2 − γ2 + α cosh−1
(x− α

γ

)

. (15)

Here τ is an arbitrary constant and γ is the positive square root of γ2. Note
that the equation (14) for the variable x (the squared radius) coincides with the
radial equation in the Kepler problem.

The above expression yields t as a monotonic function of x, so this relation
is globally invertible (in each half-orbit). However, it is not possible to obtain
the inverse function x(t) in closed form. Hence we prefer to parametrize the
trajectory by the radial variable x. In terms of this variable, the first integral (8)
reads

Ii = 4E
[

(x− α)2 − γ2
]

(dqi
dx

)2

− Eq2i + biq
−2
i . (16)

Let us set

Qi = q2i , αi = − Ii
2E

, γ2
i = α2

i + E−1bi, (17)

so that
Eq4i + Iiq

2
i − bi = E

[

(Qi − αi)
2 − γ2

i

]

.

Then one can perform the integration of Eq. (16) to obtain

∫

dQi
√

(Qi − αi)2 − γ2
i

= ϕi +

∫

dx
√

(x− α)2 − γ2
,

i.e.,

cosh−1

(

Qi − αi

γi

)

= ϕi + cosh−1
(x− α

γ

)

,

where ϕi are constants and γi ≥ 0. The full solution of this equation is therefore
given by

Qi = αi + γi cosh(X + ϕi)

= αi + γ−1γi coshϕi (x− α) + γi sinhϕi

∣

∣

∣

∣

1−
(x− α

γ

)2
∣

∣

∣

∣

1/2

, (18)

with X := cosh−1(γ−1(x − α)). Eqs. (15) and (18) are the main results of this
section.
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All the orbits with positive energy are recovered through an appropriate
choice of the 2n parameters

{

τ, αi, ϕj : 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n
}

, (19)

where τ was defined in Eq. (15). In what follows we shall express the remaining
quantities in terms of this fundamental set.

If we sum over i in Eq. (18) and use that x = κ +
∑

iQi, we immediately
find

x− κ =
∑

i

αi + γ−1(x− α)
∑

i

γi coshϕi +

∣

∣

∣

∣

1−
(x− α

γ

)2
∣

∣

∣

∣

1/2
∑

i

γi sinhϕi .

Therefore we reach the following compatibility conditions:

∑

i

αi + κ = α , (20a)

∑

i

γi coshϕi = γ , (20b)

∑

i

γi sinhϕi = 0 . (20c)

Eq. (20a) gives the value of α in terms of {αj} and Eq. (20b) consistently
provides the value of the Casimir by means Eq. (13). Eq. (20c), which imposes
the constraint

∑

i

sinhϕi

(

α2
i + E−1bi

)1/2
= 0

on the the parameters {αi, ϕj} by virtue of Eq. (17), is responsible for the fact
that only 2n − 1 among these parameters have been included in the set (19).
Note that Eqs. (12) and (20a) can be combined to express E as a function of
{αi} as

E = − c

κ+ 2
∑

i αi
.

Finally, this permits to express γi in terms of {αj} by means of Eq. (17). We
omit the discussion of the case E ≤ 0, which goes along the same lines.

4 The geometric content of H
It is apparent that H is a (nonconstant) multiple of the SW system. What we
want to stress in this section is that their connection does not end here: H is in
fact the intrinsic SW Hamiltonian in the manifold Mn. And what makes this
space remarkable is that its intrinsic SW model is also MS.

It is apparent from Eq. (3) that the Riemannian manifold Mn is spherically
symmetric, this SO(n) symmetry being a consequence of the sl(2) coalgebra
structure outlined in Sec. 2. Its curvature is certainly nonconstant; for the sake
of completeness we note that its scalar curvature is negative and given by

R = −(n− 1)
3(n− 2)q2 + 2κn

(κ+ q2)3
.
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One can define intrinsic versions of the Kepler and harmonic oscillator po-
tentials on Mn. To this end, denote by ∆M3 the Laplace–Beltrami operator
on M3 and let V3 ∈ C∞(M3\{0}) be its (minimal symmetric) Green function,
i.e., a function V3(q) = v(|q|) satisfying

−∆M3V3 = δM3 .

Here v ∈ C∞(R+\{0}) and δM3 stands for the delta distribution in M3 sup-
ported at the origin. It can be proved [13] that such a function exists and is
unique.

Definition 4. The Kepler and harmonic oscillator potentials in Mn are

VKepler(q) := K v(|q|) , VHarm(q) := K v(|q|)−2 ,

where K ∈ R is an arbitrary constant.

Remark 5. The above definition, which is based on the potential theory of these
spaces, can be easily extended to any spherically symmetric Riemannian space
with the appropriate behavior at infinity [30]. Such a prescription reproduces the
intrinsic Kepler and harmonic potentials on constant curvature spaces (see [12]
and references therein). The case of U(2)-symmetric Kähler 4-manifolds, which
had already appeared in the literature [33], is based on the same ideas but does
not fit into this framework. Certainly the above prescription does not generally
lead to MS potentials.

Let q ∈ M3 and define r = |q|. It can be readily verified that the action of
the Laplace–Beltrami operator in M3 on some function f(r) is

∆M3f =
1

r2(κ+ r2)

d

dr

(

r2
√

κ+ r2
df

dr

)

.

By setting the above expression equal to zero for r > 0 it is straightforward to
find that the function v defined above is

v(r) =

√
κ+ r2

r

up to a multiplicative constant. Hence the Kepler and harmonic oscillator po-
tentials in Mn are respectively given by

VKepler(q) = K

√

κ+ q2

|q| , VHarm(q) =
Kq2

κ+ q2
.

This shows that the MS Hamiltonian (1) is in fact the intrinsic SW systems,
i.e.,

H(p,q) = ‖p‖2Mn + VHarm(q) + (κ+ q2)−1
∑

j

bj q
−2
j ,

with ‖ · ‖Mn representing the metric on the cotangent bundle of Mn.
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