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L2–RIEMANN–ROCH INEQUALITIES

FOR COVERING MANIFOLDS

Radu Todor, Ionuţ Chiose, George Marinescu

Abstract. We study the existence of L2 holomorphic sections of invariant line bun-
dles over Galois coverings of Zariski open sets in Moishezon manilolds. We show that

the von Neuman dimension of the space of L2 holomorphic sections is bounded below

under reasonable curvature conditions. We also give criteria for a a compact complex
space with isolated singularities and some related strongly pseudoconcave manifolds

to be Moishezon. Their coverings are then studied with the same methods. As ap-

plications we give weak Lefschetz theorems using the Napier–Ramachandran proof
of the Nori theorem.

Contents

§1 Estimates of the spectrum distribution function
§2 Geometric situations
§3 Coverings of some strongly pseudoconcave manifolds
§4 L2 generalization of a theorem of Takayama
§5 Further remarks
§6 Weak Lefschetz theorems

In this paper we wish to address the following problem. Let M̃ be a complex

manifold and assume there is a discrete group Γ ⊂ Aut M̃ acting freely and properly

discontinuously on M̃ . Suppose that the quotient M = M̃/Γ is a Zariski open set
in a Moishezon manifold X and let E −→ X be a holomorphic line bundle on X .

We denote by p : M̃ −→M the canonical projection.

Problem. Find non-trivial L2 holomorphic sections in p∗Ek over M̃ for large k
provided E satisfies reasonable conditions in terms of curvature positivity.

Let us describe briefly the background of this problem. In two earth-breaking pa-
pers Siu [Si1, Si2] proved the Grauert–Riemenschneider conjecture [GR] by showing
that if E −→ X is a semipositive holomorphic line bundle on a compact manifold
and it is positive at one point then Ek has a lot of holomorphic sections i.e. we have
the Riemann–Roch inequality dimH0(X,Ek) > C kn for large k, where n = dimX .
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Demailly [De1] developped a more powerful method based on Witten’s work [Wi]
to get asymptotic Morse inequalities. Takayama [Ta] generalized the Riemann–
Roch inequality for the case when X is a compact complex space and E is positive
in the neighbourhood of an analytic subset. In order to generalize these results
to the case of coverings we shall use the framework of Atiyah [At] who computed
the von Neumann index of a Γ–invariant elliptic operator. Our main technical de-
vice comes from a paper of Shubin [Sh] in which a proof in the spirit of Witten
of the Novikov–Shubin inequalities is given. The present paper pertains also to
the work of Gromov, Henkin and Shubin [GHS] in which the authors compute the
von Neumann dimension of the space of L2 holomorphic functions on coverings
of strictly pseudoconvex domains. The von Neumann dimension turns out to be
infinite generalizing thus Grauert’s theorem.

Let us describe the content of our paper. In §1 we generalize the Weyl type
formula of Demailly by describing the asymptotic behaviour of the spectrum of a
Γ–invariant laplacian associated to high powers of a Γ–invariant line bundle. Using
this tool we prove in §2 the main theorem which consists of studying manifolds with
pointwise bounded torsion admitting an uniformly positive line bundle outside a
compact set. In §3 we consider a special case of 1–concave manifolds and stongly
pseudoconcave domains associated to compact complex spaces with isolated singu-
larities. Our results are meaningful even for the trivial covering and they extend
the Demailly–Siu criteria for algebraicity from the case of compact manifolds. For
the type of manifolds under discussion we also prove some stability results for the
perturbation of complex structure. In §4 we generalize the L2 Riemann–Roch in-
equality of Takayama [Ta] by considering Galois coverings of smooth Zariski open
sets in compact Moishezon spaces. We also remark that by using the ∂̄–method as
in Napier and Ramachandran [NR] we may extend the result for arbitrary cover-
ings. Paragraph §5 gives applications to the quotients of bounded domains in Cn.
We remark that the von Neuman dimension of the space of L2 holomorphic pluri-
canonical sections is infinite if the volume of the quotient in the Bergman metric
is infinite. At the opposite side we give a positive partial answer to a question of
Griffiths, by showing that the Bergman volume of the quotient is finite provided
the quotient is the regular part of a compact complex space with only isolated
singularities. Finally, §6 is devoted to proving weak Lefschetz theorems for Moishe-
zon manifolds using the analytic proof (and generalization) of Nori’s results due to
[NR].

Aknowledgements. We want to express our wholehearted thanks the following
people: V. Iftimie for iniatiating this project, J. Kollár for bringing the work of
Takayama to our attention and G. Henkin for useful conversations. The third named
author expresses its gratitude to Prof. J. Leiterer for excellent working conditions
and the “Graduiertenkolleg Geometrie und Nichtlineare Analysis ”, especially Prof.
Th. Friedrich, for support.

§1. Estimates of the spectrum distribution function. Let M̃ be a complex
analytic manifold of complex dimension n on which a discrete group Γ acts freely

and properly discontinuously. Let X = M̃/Γ let π : M̃ −→ X be the canonical

projection. We assume M̃ paracompact so that Γ will be countable. Suppose we are

given a holomorphic vector bundle F onX and take its pull-back F̃ = π∗F , which is

a Γ invariant bundle on M̃ . We also fix a Γ invariant hermitian metric on M̃ and on
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F̃ . We consider a relatively compact open set Ω ⋐ X and its preimage Ω̃ = π−1Ω;

Γ acts on Ω̃ and Ω̃/Γ = Ω. In general we will decorate by tildes the preimages of
objects living on the quotient. Let U be a fundamental domain of the action of Γ

on Ω̃. This means that (see e.g. [At]): a) Ω̃ is covered by the translations of U , b)
different translations of U have empty intersection and c) U r U has zero measure
(since ∂Ω is smooth). Since Ω is relatively compact U has the same property. Let us

define the space of square integrable sections L2(Ω̃, F̃ ) with respect to a Γ invariant

metric on M̃ (and its volume form) and a Γ invariant metric on F̃ . Then L2(U, F̃ )

is constructed with respect to the same. There is a unitary action of Γ on L2(Ω̃, F̃ ).

In fact it is easy to see that L2(Ω̃, F̃ ) ∼= L2Γ⊗ L2(U, F̃ ) ∼= L2Γ⊗ L2(Ω, F ).
We have a unitary action of Γ on L2Γ by left translations: γ 7−→ lγ where lγf(x) =

f(γ−1x) for x ∈ Γ, f ∈ L2Γ. It induces an action on L2(Ω̃, F̃ ) by γ 7−→ Lγ = lγ⊗Id.
Finally we denote by D(. , .) the various spaces of smooth compactly supported
sections.

Let us consider a formally self-adjoint, strongly elliptic, positive differential op-

erator P on M acting on sections of F . Denote by P̃ the Γ–invariant differential

operator which is its pull-back to M̃ . From P̃ we construct the following operators:

the Friedrichs extension in L2(Ω̃, F̃ ) of P̃ with domain D(Ω̃, F̃ ) and the Friedrichs

extension in L2(U, F̃ ) of P̃ with domain D(U, F̃ ). From now on we denote these

extensions by P̃ and P0. They are closed self-adjoint positive operators. It is known

that P̃ is also Γ invariant i.e. it commutes with all Lγ . This amounts of saying

that Eλ commutes with Lγ , γ ∈ Γ, where (Eλ)λ is the spectral family of P̃ . On
the other hand the Rellich lemma tells that P0 has compact resolvent and hence
discrete spectrum. We will take the task of comparing the distribution of the two
spectra. Namely since Eλ is Γ invariant its image R(Eλ) is a Γ invariant closed

subspace of the free Hilbert Γ–module L2Γ ⊗ L2(U, F̃ ) ∼= L2(Ω̃, F̃ ). In general for
any Hilbert space H we call the Hilbert space L2Γ ⊗ H a free Hilbert Γ–module.
The action of Γ is defined as above by γ 7−→ Lγ = lγ ⊗ Id. For Γ invariant closed
spaces (called Γ modules) one can associate a positive, possibly infinite real num-
ber, called von Neumann or Γ–dimension, denoted dimΓ. For notions involving the
Γ–dimension and linear algebra for Γ–modules we refer the reader to [At], [Sh] and
[Ko] (in the latter proofs from scratch are given). We give here the barest discus-
sion of this score. Let us denote by AΓ the von Neumann algebra which consists
of all bounded linear operators in L2Γ⊗H which commute to the action of Γ. To
describe AΓ let us consider the von Neumann RΓ algebra of all bounded operators
on L2Γ which commute with all Lγ . It is generated by all right translations. If we
consider the orthonormal basis (δγ)γ in L2Γ where δγ is the Dirac delta function at
γ, then the matrix of any operator A ∈ RΓ has the property that all its diagonal
elements are equal. Therefore we define a natural trace on RΓ as the diagonal
element, that is, trΓA = (Aδe, δe) where e is the neutral element. Now AΓ is the
tensor product of RΓ and the algebra B(H) of all bounded operators on H. If Tr
is the usual trace on B(H) then we have a trace on AΓ by TrΓ = trΓ ⊗Tr. For any
Γ invariant space L ⊂ L2Γ⊗H i.e. for any Γ–module, the projection PL ∈ AΓ and

we define dimΓ L = TrΓ PL. Let us just remark for later use that if L ⊂ L2(Ω̃, F̃ ) is
a Γ–module and fi is an orthonormal basis of L then

dimΓ L =
∑

i

∫

U

|fi|2 . (1.1)
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We denote in the sequel NΓ(λ, P̃ ) = dimΓR(Eλ). Similary we consider the spectral
distribution function (counting function) N(λ, P0) = dimR(E0

λ) where E0
λ is the

spectral family of P0; it equals the number of eigenvalues 6 λ. We want to compare

NΓ(λ, P̃ ) and N(λ, P0). For this purpose we use essentially the analysis of Shubin
[Sh]. However there exist a difference in our method, namely we work at the

beginning with model operator P0 the operator P̃ itself with Dirichlet boundary

conditions on U whereas Shubin considers a direct sum of tangent operators to P̃ .
So we do not have to truncate from the outset the eigenfunctions of the model
P0. (See also Remark 1.3 in [Sh] and compare e.g. formulas (2.7), (2.8) or (3.6)
from [Sh] with our corresponding formulas.) To begin with we need a variational
principle.

Proposition 1.1([Sh]). Let P̃ be a Γ invariant self-adjoint positive operator on a
free Γ–module L2Γ⊗H where H is Hilbert space. Then

NΓ(λ, P̃ ) = sup
{
dimΓ L | L is a Γ−module ⊂Dom(Q̃),

Q̃(f, f) 6 λ‖f‖2, ∀f ∈ L
}

(1.2)

where Q̃ is the quadratic form of P̃ .

Recall that Q̃ is the closed symmetric quadratic given by Dom(Q̃) = Dom(P̃ 1/2),

Q̃(u) = (P̃ 1/2u, P̃ 1/2u). From the variational principle we deduce the following.

Proposition 1.2 (Estimate from below). The counting functions for P̃ and P0

satisfy the inequality

NΓ(λ, P̃ ) > N(λ, P0) , λ ∈ R (1.3)

Proof. Let us denote by λ0 6 λ1 6 . . . the spectrum of P0. Let {ei}i be an

orthonormal basis of L2(U, F̃ ) which consists of eigenfunctions of P0 corresponding

to the eigenvalues {λi}i; if we let ẽi = 0 on Ω̃r U and ẽi = ei on U , ẽi ∈ Dom(Q̃),

{Lγ ẽi}i,γ is an orthonormal basis of L2(Ω̃, F̃ ) and ẽi,γ = Lγ ẽi ∈ Dom(Q̃). We have

Q̃(ẽi,γ , ẽi′ ,γ′ ) = δi,i′ δγ,γ′λi. Let Φ0
λ be the subspace spanned by {ei : λi 6 λ} in

L2(U, F̃ ) and Φλ the closed subspace spanned by {ẽi,γ : λi 6 λ} in L2(Ω̃, F̃ ). Then
by (1.1)

dimΓ Φλ =
∑

λi6λ γ∈Γ

∫

U

|ẽi,γ |2 =
∑

λi6λ

‖ei‖2U = dimΦ0
λ = N(λ, P0)

since ẽi,γ |U vanishes unless γ is the identity, and then it equals ei . If f is a linear

combination of ẽi,γ , λi 6 λ, then Q̃(f, f) 6 ‖f‖2 and, as Dom(Q̃) is complete in the

graph norm, we obtain that Φλ ⊂ Dom(Q̃) and Q̃(f, f) 6 λ‖f‖2, f ∈ Φλ. From

the variational principle it follows that NΓ(λ, P̃ ) > N(λ, P0). �

The next step is an estimate from above of NΓ(λ, P̃ ). Before let us say something
about Γ–morphisms. If L1, L2 are two Γ–modules then an bounded liniar operator
T : L1 −→ L2 is called a Γ–morphism if it commutes with the action of Γ. As for
the usual dimension the following statements are true (see [Ko]). If T is injective
then dimΓ L1 6 dimΓ L2 and if T has dense image then dimΓ L1 > dimΓ L2. We
denote by rankΓ T = dimΓR(T ). For the following we refer to [Sh], Lemma 3.7.
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Lemma 1.3. Let us consider the same setting as in the variational principle. As-

sume there is T : L2(Ω̃, F̃ ) → L2(Ω̃, F̃ ) a Γ–morphism such that ((P̃ + T )f, f) >

µ‖f‖2, f ∈ Dom(P̃ ) and rankΓ T 6 p. Then

NΓ(µ− ε, P̃ ) 6 p, ∀ε > 0. (1.4)

In order to get an estimate from above we have to enlarge a little bit the funda-

mental domain U and compare the counting function of P̃ to the counting function

of the Friedrichs extension of P̃ restricted to compactly supported forms in the en-

larged domain. For h > 0, the enlarged domain is Uh = {x ∈ Ω̃ | d(x, U) < h} where
d is the distance on M̃ associated to the Riemann metric on M̃ . Then we take the
tranlations Uh,γ := γUh. Next we construct a partition of unity. Let ϕ(h) ∈ C∞(Ω̃),

ϕ(h) ≥ 0, ϕ(h) = 1 on Ū and suppϕ(h) ⊂ Uh, ϕ
(h)
γ = ϕ(h) ◦ γ−1. We define the

function J
(h)
γ ∈ C∞(Ω̃) by J

(h)
γ = ϕ

(h)
γ

(∑
γ(ϕ

(h)
γ )2

)− 1

2 so that
∑
γ∈Γ(J

(h)
γ )2 = 1. If

P̃ is of order 2, which will be assumed throughout the section, then by [Sh,Lemma
3.1] (Shubin’s IMS localization formula, see [CFKS]) we know how to recover the

operator P̃ from its localisations J
(h)
γ P̃ J

(h)
γ :

P̃ =
∑

γ∈Γ

J (h)
γ P̃ J (h)

γ −
∑

γ∈Γ

σ0(P̃ )(dJ
(h)
γ ) (1.5)

where σ0 is the principal symbol of P̃ . In (1.5) J
(h)
γ are thought as multiplication

operators on L2(Ω̃, F̃ ) – for which Dom(P̃ ) is invariant – while
∑
γ∈Γ σ0(P̃ )(dJ

(h)
γ )

is the multiplication by a bounded function. Since the derivative of J
(h)
γ is O(h−1)

and the order of P̃ is 2 we see that the latter function is bounded by C h−2 for

some constant C > 0 (here we use that the symbol is periodic and that ϕ
(h)
γ are the

translates of ϕ(h)). Therefore the operatorial norm of the multiplication satisfies
the same estimate and we deduce from (1.5) that

P̃ >
∑

γ∈Γ

J (h)
γ P̃J (h)

γ − C

h2
Id (1.6)

We consider now the operator P̃ with domain D(Uh, F̃ ) and take its Friedrichs

extension denoted P
(h)
0 . We will compare NΓ(λ, P̃ ) with the counting function

of P
(h)
0 . Let us fix λ. Denote by (E

(h)
λ ) the spectral family of P

(h)
0 and fix a

positive constant M = M (λ) such that M > λ − inf spectrumP
(h)
0 to the effect

that P
(h)
0 +M E

(h)
λ > λ Id . We define now a localisation of E

(h)
λ by taking the

bounded operators G
(h)
γ on L2(Ω̃, F̃ ) given by G

(h)
γ = J

(h)
γ LγM E

(h)
λ L−1

γ J
(h)
γ and

then summing over Γ, G(h) =
∑
γ∈ΓG

(h)
γ . We have

P̃ +G(h) >
∑

γ∈Γ

(
J (h)
γ P̃ J (h)

γ + J (h)
γ LγM E

(h)
λ L−1

γ J (h)
γ

)
− C

h2
Id

=
∑

γ∈Γ

J (h)
γ Lγ(H

(h)
0 +M E

(h)
λ )L−1

γ J (h)
γ − C

h2
Id (1.7)

>
∑

γ∈Γ

J (h)
γ LγλL

−1
γ J (h)

γ − C

h2
Id =

(
λ− C

h2

)
Id .
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It is clear that G(h) will play the role of T in Lemma 2.3. We must check one more
hypothesis.

Claim 1.4.
rankΓG

(h) ≤ N(λ, P
(h)
0 ) (1.8)

Proof. We start with the bounded operator Ḡ(h) on L2(Us, F̃ ), given by Ḡ(h) =

J
(h)
e M E

(h)
λ J

(h)
e . It is a finite rank operator, rank Ḡ(h) 6 rankE

(h)
λ = N(λ, P

(h)
0 ).

Next we consider the free Γ–module L2Γ⊗L2(Uh, F̃ ) and the bounded Γ–invariant
operator Id⊗Ḡ(h). Then R(Id⊗Ḡ(h)) = L2Γ ⊗ R(Ḡ(h)) so that rankΓ Id⊗Ḡ(h) =

rank Ḡ(h). We identify now the space L2Γ ⊗ L2(Uh, F̃ ) with
⊕

γ∈Γ L
2(Uh,γ , F̃ ) by

the unitary transform K :
∑
γ δγ ⊗ wγ 7−→ (Lγwγ)γ . Thus

⊕
γ∈Γ L

2(Uh,γ, F̃ ) is

naturally a free Γ–module for which K is Γ invariant. We transport Id⊗Ḡ(h) on⊕
γ∈Γ L

2(Uh,γ, F̃ ) by K and we think it as acting on this latter space. We con-

struct then a restriction operator V :
⊕

γ∈Γ L
2(Uh,γ, F̃ ) −→ L2(Ω̃, F̃ ) , V ((wγ)γ) =∑

γ∈Γ wγ which is a surjective Γ–morphism. We have also the Γ–morphism I from

L2(Ω̃, F̃ ) to
⊕

γ∈Γ L
2(Uh,γ, F̃ ), I(u) = (u ↾Uh,γ

)γ which is obviously bounded. With

our identifications we have G(h) = V (Id⊗Ḡ(h)) I . As in the case of usual dimen-
sion rankΓ V (Id⊗Ḡ(h)) I 6 rankΓ(Id⊗Ḡ(h)) (see [Sh], Lemma 3.6).Therfore we

conclude rankΓG
(h) 6 rankΓ(Id⊗Ḡ(h)) = rank Ḡ(h) 6 N(λ, P

(h)
0 ) . �

Proposition 1.5 (Estimate from above). There is a constant C ≥ 0 such that

NΓ(λ, P̃ ) 6 N

(
λ+

C

h2
, P

(h)
0

)
λ ∈ R, h > 0 (1.9)

Proof. The hypothesis of Lemma 2.3 are fulfilled for T = G(h), µ = λ−C h−2 and

p = N(λ, P
(h)
0 ) as (1.7) and (1.8) show. Thus NΓ

(
λ− C

h2 − ε, P̃
)
6 N(λ, P

(h)
0 ), if

ε > 0. Replacing λ with λ+C h−2+ε, we obtain NΓ(λ, P̃ ) 6 N
(
λ+ C

h2 + ε, P
(h)
0

)
.

When ε −→ 0 the estimate (1.9) follows since the spectrum distribution function
is right continuous by definition. �

The estimates from below and above for NΓ(λ, P̃ ) enable us to study as a by–
product the behaviour for λ −→ ∞ to obtain the Weyl asymptotics for periodic
operators (Shubin, see [RSS] and the references therein).

Corollary 1.6. If P̃ is a periodic, positive, second order elliptic operator as above
then

lim
λ→∞

λ−n/2NΓ(λ, P̃ ) = lim
λ→∞

λ−n/2N(λ, P0)

= (2π)−n
∫

U

∫

T∗

x M̃

N(1, σ0(P̃ )(x, ξ))dξ dx

where σ0(P̃ )(x, ξ) ∈ Herm(F̃ , F̃ ) is the principal symbol of P̃ and N(1, σ0(P̃ )(x, ξ))
is the counting function for the eigenvalues of this hermitian matrix.

Proof. First let us remark that the last equality is the classical Weyl type formula
as established by Carleman, G̊arding and others, see [RSS], p.72. It is obvious that
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lim inf λ−n/2N(λ, P0) 6 lim inf λ−n/2NΓ(λ, P̃ ) by the estimate from below. On the
other hand the estimate from above gives

lim supλ−n/2NΓ(λ, P̃ ) 6 lim sup

(
1 +

C

λh2

)n/2 (
λ+

C

h2

)−n/2
N

(
λ+

C

h2
, P

(h)
0

)

6 lim supµ−n/2N(µ, P
(h)
0 ) = (2π)−n

∫

Uh

∫

T∗

x M̃

N(1, σ0(P̃ )(x, ξ))dξ dx

for a fixed small h. We make h −→ 0 and obtain the desired formula. �

We are going to apply the above results to the semi-classical asymptotics as

k −→ ∞ of the spectral distribution function of the laplacian k−1∆̃′′ on M̃ . Let

G be a hermitian holomorphic bundle on M and G̃ = p∗G its pull-back. We
define D(0,q)(. , .) to be the space of smooth compactly supported (0, q) forms.

Let ∂̄ : D0,q(M̃, G̃) −→ D0,q+1(M̃, G̃) be the Cauchy–Riemann operator and

ϑ : D0,q+1(M̃, G̃) −→ D0,q(M̃, G̃) the formal adjoint of ∂̄ with respect to the

given hermitian metrics on M̃ , G̃. Then ∆̃′′ = ∂̄ϑ + ϑ∂̄ is a formally self-adjoint,
strongly elliptic, positive and Γ–invariant differential operator.

We take Ẽ and G̃ two Γ invariant holomorphic bundles. Let us form the Laplace–

Beltrami operator ∆̃′′
k on (0, q) forms with values in Ẽk⊗ G̃. Thus we will consider

the Γ invariant hermitian bundle F̃ = Λ(0,q)T ∗M̃ ⊗ Ẽk ⊗ G̃ and apply the previous

results for P̃ = k−1∆̃′′
k ↾Ω̃ where the index Ω̃ emphasises that the Friedrichs exten-

sion gives the operator of the Dirichlet problem on Ω̃. Now we have to make a good
choice of the parameter h. We take h = k−

1

4 so that the derivative of the cutting

off function J
(h)
γ is just O(k

1

4 ). Then σ0(k
−1∆̃′′

k)(dJ
(h)
γ ) = k−1|∂̄J (h)

γ |2 = O(k−
1

2 ).

Therefore formula (1.6) becomes 1
k ∆̃

′′
k ↾Ω̃>

∑
γ∈Γ J

(h)
γ

1
k ∆̃

′′
k ↾Ω̃ J

(h)
γ − C√

k
Id . We

have thus proved the following semi–classical estimate for laplacian.

Proposition 1.7. There exists a constant C > 0 such that for λ ∈ R and k > 0
we have

N

(
λ ,

1

k
∆̃′′
k ↾U

)
6 NΓ

(
λ ,

1

k
∆̃′′
k ↾Ω̃

)
6 N

(
λ+

C√
k
,
1

k
∆̃′′
k ↾U

k−1/4

)
(1.10)

Demailly has determined the distribution of spectrum for the Dirichlet problem

for ∆̃′′
k in [De1], Theorem 3.14. For this purpose he introduces ([De1],(1.5)) the

function νE : M̃ ×R −→ R depending on the curvature of Ẽ and then considers the
function ν̄E(x, λ) = limεց0 νE(x, λ+ ε). The function ν̄E(x, λ) is right continuous

in λ and bounded above on compacts of M̃ . Denote by α1(x), . . . , αn(x) the eigen-

values of of the curvature form ic(Ẽ)(x) with respect to the metric on M̃ . We also
denote for a multiindex J ⊂ {1, ..., n}, αJ =

∑
j∈J αj and C(J) = {1, ..., n}r J .

For V ⋐M we introduce

Iq(V, µ) =
∑

|J|=q

∫

V

ν̄E(2µ+ αC(J) − αJ) dσ
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Proposition 1.8 (Demailly). Assume that ∂V has measure zero and that the
laplacian acts on (0, q) forms. Then lim supk k

−nN(λ , 1
k
∆′′
k ↾V ) 6 Iq(V, λ) More-

over there exists an at most countable set N ⊂ R such that for λ ∈ RrN the limit
of the left–hand side expression exists and we have equality.

We return now to the case of a covering manifold and apply Demailly’s formula
in (1.10). Let us fix ε > 0. For sufficiently large k we have U

k−
1

4
⊂ Uε so the

fact that the counting function is increasing and the variational principle yield

N(λ+ C√
k
, 1
k
∆̃′′ ↾U

k−1/4
) 6 N(λ+ ε, 1

k
∆̃′′ ↾U

k−1/4
) 6 N(λ+ ε, 1

k
∆̃′′ ↾Uε

). Hence by

(1.10) and Proposition 1.8 (∂Uε is negligible for small ε),

lim sup
k

k−nNΓ(λ ,
1

k
∆̃′′
k ↾Ω̃) 6 Iq(Uε, λ+ ε).

The use of dominated convergence to make ε −→ 0 in the last integral yield the
asymptotic formula for the laplacian on a covering manifold.

Theorem 1.9. The spectral distribution function of 1
k
∆̃′′
k ↾Ω̃ on L2

0,q(Ω̃, Ẽ
k ⊗ G̃)

with Dirichlet boundary conditions satisfies

lim sup
k

k−nNΓ

(
λ ,

1

k
∆̃′′
k ↾Ω̃

)
6 Iq(U, λ). (1.11)

Moreover, there exists an at most countable set N ⊂ R such that for λ ∈ R r N
the limit exits and we have equality in (1.11).

§2 Geometric situations.
In this section we apply the results from the previous section to the study of

the L2 cohomology of coverings of complex manifolds satisfying certain curvature
conditions. If M is a complete Kähler manifold and E a positive line bundle on M
the L2 estimates of Andreotti–Vesentini–Hörmander allow to find a lot of sections
of Ẽ on a covering M̃ (see e.g. [NR]). We prove here the following.

Theorem 2.1. Let (M,ω) be an n–dimensional complete hermitian manifold such
that the torsion of ω is bounded and let (E, h) be a holomorphic hermitian line
bundle. Let K ⋐ M and a constant C0 > 0 such that ıc(E, h) > C0ω on M rK.

Let p : M̃ −→M be a Galois covering with group Γ and Ẽ = p∗E and let Ω be any
open set with smooth boundary and K ⋐ Ω ⋐M . Then

dimΓH
n,0
(2) (M̃, Ẽk) >

kn

n!

∫

Ω(61,h)

( ı

2π
c(E, h)

)n
+ o(kn) , k >> 0 ,

where Hn,0
(2) (M̃, Ẽk) is the space of (n, 0)–forms with values in Ẽk which are L2 with

respect to any metric on M̃ and the pullback of h and Ω(6 1, h) is the subset of Ω
where ıc(E, h) is non–degenerate and has at most one negative eigenvalue.

Proof. We endow M̃ with the metric ω̃ = p∗ω and Ẽ with h̃ = p∗h. All the norms,
Laplace–Beltrami operators, spaces of harmonic forms and L2–cohomology groups

are with respect to ω̃ and h̃. In particular the operators ∂̄ and Lapalce–Beltrami
are Γ–invariant. It is standard to see that ω̃ is also complete. To justify this let us

first take a compact set K ⋐ X and consider K̃ = p−1K. The metric ω̃ε is complete
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on K̃ in the following sense. There exist functions ϕε ∈ C∞(K̃) with values in [0, 1]

such that suppϕε is compact in K̃, the sets {z ∈ K̃ : ϕε(z) = 1} form an exhaustion

of K̃ and sup |dϕε| = O(ε) as ε −→ 0. This is seen as usual by observing that the

balls are relatively compact in K̃ and then taking cut–off functions. Since M is
complete there exist an exhaustion Kν with compacts and functions ψν ∈ C∞(M)
with values in [0, 1] and suppψν ⋐ Kν+1 such that Kν ⊂ {z ∈ M : ψν(z) = 1}
and sup |dψν | 6 2−ν . Let us choose now a point z0 ∈ K̃0 and fix fundamental

domains Uν for the action of Γ on K̃ν such that z0 ∈ Uν . We also choose an

exhaustion by finite sets I0 ⊂ I1 ⊂ · · · ⊂ Iν ⊂ · · · ⊂ Γ of Γ. Indeed, since M̃

is paracompact Γ is countable. For each ν let us take ϕν ∈ C∞(K̃ν+1) such that
ϕν = 1 on ∪{γUν+1 : γ ∈ Iν+1} and sup |dϕν | 6 2−ν . We consider also the

function ψ̃ν = ψν ◦ p. Then the functions ψ̃νϕν have compact support in M̃ , the

sets where they equal 1 exhaust M̃ and their derivative is O(2−ν−1), which proves

that M̃ is complete. We remark here that U = ∪νUν is a fundamental domain for

the action of Γ on M̃ and that if G̃ is a Γ–invariant bundle on M̃ then L2(M̃, G̃)
is a free Γ–module.

We take Ω as in the hypothesis and let U be a fundamental domain of Ω̃ as in

§1. Since p is locally biholomorphic we see that ıc(Ẽ, h̃) > C0ω̃ on M̃ r K̃. Let u

be a smooth (n, 1) form on M̃ with values in Ẽk and compactly supported outside

K̃. We apply now the Bochner–Kodaira–Nakano formula for u:

3
(
∆̃′′
ku, u

)
> 2

([
ıc(Ẽk), Λ̃

]
u, u

)
−

(
‖τ u‖2 + ‖τ̄ u‖2 + ‖τ∗ u‖2 + ‖τ̄∗ u‖2

)
,

where Λ is the operator of taking the interior product with ω̃ and the τ ’s are the
torsion operators of the metric ω̃. More precisely τ = [Λ, ∂ω̃]. Therefore there
exists a constant C1 > 0 (depending just on the metric ω) such that

3
(
∆̃′′
ku, u

)
> 2C0 k ‖u‖2 − C1 ‖u‖2 ,

and hence (
∆̃′′
ku, u

)
>
C0 k

2
‖u‖2 , k >

C1

2C0

. (2.1)

Indeed, by hypothesis the torsion operators are pointwise bounded. Moreover

([ıc(Ẽk, h̃k),Λ]u, u) > k α1 |u|2 where α1 6 · · · 6 αn are the eigenvalues of ıc(Ẽ, h̃)
with respect to ω̃.

Let ρ ∈ C∞(M) such that ρ = 0 on L and ρ = 1 on M r Ω, where L is a

neighbourhood of K in Ω. We put ρ̃ = ρ ◦ p. Let u ∈ Dn,1(M̃, Ẽk), so that ρ̃ u has

support outside K̃. We use now the elementary estimate:

(
∆̃′′
k(ρ̃ u), ρ̃ u

)
6

3

2

(
∆̃′′
ku, u

)
+ 6 sup |dρ̃ |2‖u‖2 . (2.2)

Obviously C2 = 6 sup |dρ̃ |2 <∞. Estimates (2.1) and (2.2) yield

‖u‖2 6
12

C0 k

(
∆̃′′
ku, u

)
+ 4

∫

Ω̃

∣∣(1− ρ̃ )u
∣∣2 , k >

max{C1, 16C2}
2C0

(2.3)
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for any compactly supported u. Since the metric ω̃ is complete the density lemma of

Andreotti and Vesentini [AV] shows that ∆̃′′
k is essentially self–adjoint. Thus (2.3) is

true for any u in the domain of the quadratic form Q̃k of the self–adjoint extension

of k−1∆̃′′
k . From relation (2.3) we infer that the spectral spaces corresponding

to the lower part of the spectrum of k−1∆̃′′
k on (n, 1)–forms can be injected into

the spectral spaces of the Γ–invariant operator k−1∆̃′′
k ↾Ω̃ which correspond to the

Dirichlet problem on Ω̃ for k−1∆̃′′
k . The latter operator was studied in §1. This

idea appears in Witten’s proof (see Henniart [He]) and in [Bou] in the context of q–
convex manifolds in the sense of Andreotti–Grauert. We claim that for λ < C0/24,

L1
k(λ) −→ L1

k,Ω̃
(12λ+ C3k

−1) , u 7−→ E12λ+C3k−1(k−1∆̃′′
k ↾Ω̃)(1− ρ̃)u , (2.4)

is an injective Γ–morphism, where L1
k(λ) = Range

(
Eλ(k

−1∆̃′′
k ↾Ω̃)

)
is the spectral

space of k−1∆̃′′
k on (n, 1)–forms, L1

k,Ω̃
(µ) = RangeEµ(k

−1∆̃′′
k ↾Ω̃), the spectral

spaces of k−1∆̃′′
k ↾Ω̃ and C3 = 8C2. To prove the claim let us remark that the

map (2.4) is the restriction of an operator on L2
0,1(M̃, Ẽk⊗K

M̃
) of the same form;

this is continuous and Γ–invariant being a composition of a multiplication with a
bounded Γ–invariant function and a Γ–invariant projection. To prove the injectivity

we choose u ∈ L1
k(λ), λ < C0/24 to the effect that Q̃k(u) 6 λ‖u‖2 6 (C0/24)‖u‖2.

Plugging this relation in (2.3) we get

‖u‖2 6 8

∫

Ω̃

∣∣(1− ρ̃ )u
∣∣2 , u ∈ L1

k(λ) , λ < C0/24 . (2.5)

Let us denote by Q̃k,Ω̃ the quadratic form of k−1∆̃′′
k ↾Ω̃. Then by (2.2) and (2.5),

Q̃k,Ω̃
(
(1 − ρ̃)u

)
6 3

2
Q̃k(u) +

C2

k
‖u‖2 6

(
12λ+ 8C2

k

) ∫
Ω̃

∣∣(1 − ρ̃ )u
∣∣2 which shows

that if E(12λ+C3k
−1, k−1∆̃′′

k ↾Ω̃) (1− ρ̃)u = 0 then (1− ρ̃)u = 0 so that u = 0 by
(2.5). Therefore (2.4) is injective and hence

N1
Γ

(
λ,

1

k
∆̃′′
k

)
6 N1

Γ

(
12λ+

C3

k
, ∆̃′′

k ↾Ω̃

)
, λ < (C0/24) , (2.6)

and thus the spectral spaces L1
k(λ), λ < C0/24, are of finite Γ–dimension.

Now we can apply Theorem 1.9 for k−1∆̃′′
k ↾Ω̃ on Ω̃ (with G̃ = K

M̃
). By the

variational principle we have that N0
Γ
(λ, 1k ∆̃

′′
k) > N0

Γ
(λ, 1k ∆̃

′′
k ↾Ω̃) and by Theorem

1.9 for q = 0

lim inf
k

k−nN0
Γ

(
λ,

1

k
∆̃′′
k

)
> I0(U, λ) , λ < C0/24 , λ ∈ RrN (2.7)

We find now an upper bound. Fix an arbitrary δ > 0. For k > C3/δ we have

N1(λ, k−1∆̃′′
k) 6 N1

Γ
(12λ + C3 k

−1∆̃′′
k ↾Ω̃) 6 N1

Γ
(12λ + δ, ∆̃′′

k ↾Ω̃) hence by (1.11)

lim supk k
−nN1

Γ
(λ, 1

k
∆̃′′
k) 6 I1(U, 12λ+ δ). We can let δ −→ 0 so that

lim sup
k

k−nN1
Γ

(
λ,

1

k
∆̃′′
k

)
6 I1(U, 12λ) , λ < C0/24 . (2.8)
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We consider the group Hn,0
(2) (M̃, Ẽk) = {u ∈ L2

n,0(M̃, Ẽk, ω̃, h̃) : ∂̄u = 0}
which is a Γ–module and we find a lower bound for its Γ–dimension. We know
that the L2 norm doesn’t actually depend on the metric on M̃ . We consider

also the operator ∆̃′′
k defined on L2

n,0(M̃, Ẽk) and denote by L0
k(λ) its spectral

spaces. Since ∆̃′′
k commutes with ∂̄ it follows that the spectral projections of ∆̃′′

k

commute with ∂̄ too, showing thus ∂̄L0
k(λ) ⊂ L1

k(λ) and therefore we have the

Γ–morphism L0
k(λ)

∂̄λ−−→ L1
k(λ) where ∂̄λ denotes the restriction of ∂̄ (by the def-

inition of L0
k(λ), ∂̄λ is bounded by kλ). Since for any Γ–morphism A we have

dimΓR(A) = dimΓ ker(A)
⊥ we see that dimΓ ker ∂̄λ + dimΓR(∂̄λ) = dimΓ L

0
k(λ).

Moreover dimΓR(∂̄λ) 6 dimΓ L
1
k(λ) and they are finite. Therefore by (2.7) and

(2.8), dimΓH
n,0
(2) (M, Ẽk) > dimΓ ker ∂̄λ > kn

[
I0(U, 2λ)− I1(U, 12λ)

]
for λ < C0/24

and λ ∈ R r N . We can now let λ go to zero through these values. The limits
I0(U, 0) and I1(U, 0) are calculated in [De1] and if we identify the fundamental
domain U with Ω the result is exactly the integral from the conclusion. �

To state the following result let us remind that by the definition of Andreotti
and Grauert [AG] a manifold is called 1– concave if there exists a smooth function
ϕ : X −→ (a, b ] where a ∈ {−∞} ∪ R, b ∈ R, such that Xc := {ϕ > c} ⋐ X
for all c ∈ (a, b ] and ϕ is strictly plurisubharmonic outside a compact set. Let
E be a holomorphic line bundle on X . In [Oh], [Ma] one constructs a function

χ : (−∞, 0) −→ R such that
∫ 0

−1
χ(t)1/2dt = ∞, χ′(t)2 6 4χ(t)3 , χ(t) > 4 and

a hermitian metric ω which equals 1
3∂∂̄ϕ near bXc. For convenience we denote

ψ = c − ϕ. We define ω0 = ω + χ(ψ)∂ϕ ∧ ∂̄ϕ, a complete metric on Xc and a

hermitian metric h0 = h exp(−A
∫ ψ
inf ψ

χ(t)dt) on E over Xc.

Theorem 2.2. Let X be a 1–concave manifold of dimension n > 3 and let Xc be
a sublevel set such that the exhaustion function ϕ is strictly plurisubharmonic near

bXc. Let p : X̃c −→ Xc be a Galois covering of group Γ. Assume that X̃c and Ẽ
are endowed with the lifts of the metrics ω0 and h0. Then

dimΓH
0
(2)(X̃c, Ẽ

k) >
kn

n!

∫

Ω(61,h0)

( ı

2π
c(E, h0)

)n
+ o(kn) , k >> 0 . 2.9

for any sufficiently large open set Ω ⋐ Xc.

Proof. The metrics ω0 and h0 satisfy the following conditions:
(i) Denoting by γi the eigenvalues of ıχ(ψ)∂∂̄ψ+ ıχ′(ψ)∂ψ ∧ ∂̄ψ with respect to ω0

we have γ1 6 · · · 6 γn−1 6 −2χ(ψ) and γn 6 χ(ψ) so that γn + · · · + γ2 6
(5− 2n)χ(ψ) 6 −χ(ψ) for n > 3 outside a compact set K := Xe ⋐ Xc.

(ii) The torsion operators of the metric ω0 are pointwise bounded by C2χ(ϕ)
1/2

outside K.
(iii) The eigenvalues of ıc(E, h0) with respect to ω0 are bounded above on Xc by

C1 > 0.
Let us take the lifts ω̃0, h0 and ψ̃ = c−ϕ◦p. It is easy to see that properties (i), (ii)

and (iii) are still valid for ω̃0 and h̃0 and ψ̃ on X̃crK̃. For u ∈ D(0,1)(X̃crK̃, Ẽ
k) we

apply the Bochner–Kodaira–Nakano inequality and take into account the formula

([ıc(Ẽk, h̃k),Λ]u, u) > −k(αn + . . .+ α2)|u|2. Then

3
(
∆̃′′
ku, u

)
>

∫
(−knC1 + kAχ(ψ)− 4C2χ(ψ)) |u|2 .
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For sufficiently A and since χ > 4 we derive easily an estimate analogous to (2.1).
From this point the proof of Theorem 2.1 applies whith just notational changes.
�

§3 Coverings of some strongly pseudoconcave manifolds.
Let us recall the solution of the Grauert-Riemenschneider conjecture ([GR], p.

277) as given by Siu [Si] and Demailly [De1]. Namely the Siu–Demailly criterion
says that if X be a compact complex manifold and E a line bundle over X . and
either E is semi-positive and positive at one point (Siu’s criterion), or

∫

X(61)

(
ıc(E)

)n
> 0 (D)

(Demailly’s criterion) then dimH0(X,Ek) ≈ kn, for large k and X is Moishezon.
Our aim is to extend this result in two directions. We allow X to belong to certain
classes of strongly pseudoconcave manifolds and we study (directly) Galois coverings
of such manifolds.

For 1– concave and compact manifolds (all which are pseudoconcave in the sense
of Andreotti [An]) the transcendence degree of the meromorphic function field is
less than or equal to the dimension of X . In the latter case we say that the manifold
is Moishezon by extending the terminology from compact manifolds.

If, in the Andreotti–Grauert definition, the function ϕ can be taken such that
a = inf ϕ = −∞, we say that X is hyper 1– concave. Let us note that not all 1–
concave manifolds are hyper 1– concave. Indeed, the complement of S1 ⊂ C ⊂ P1

in P1 is 1– concave but cannot possibly be hyper 1– concave since S1 is not a polar
set in C (I have learnt this example from M. Colţoiu and V. Vâjâitu).

Let us describe some examples. Let Y be a compact complex manifold, S a
complete pluripolar set (the set where a strictly psh function takes the value −∞).
Then M = Y r S is hyper 1– concave. Conversely, if dimM > 3 any hyper 1–
concave manifold M is biholomorphic to a complement of a pluripolar set in a
compact manifold as a consequence of Rossi’s compactification theorem. Another
example of hyper 1– concave manifold is Reg (X) where M is a compact complex
space with isolated singularities. Suppose that p is an isolated singular point and
that the germ (X, p) is embedded in the germ (CN , 0) and z = (z1, . . . , zN ) are local
coordinates in the ambient space CN . The function ϕ is then obtained by cutting-
off functions of the type − log(|z|2). If M is a complete Kähler manifold of finite
volume and bounded negative sectional curvature, M is hyper 1– concave. This is
shown by Siu–Yau in [SY] by using Buseman functions. Moreover, if dimM > 3,
this example falls in the previous case since by [Nad] M can be compactified to an
algebraic space by adding finitely many points.

Theorem 3.1. Let M be a hyper 1– concave manifold carrying a line bundle (E, h)

which is semi-positive outside a compact set. Let M̃ be a Galois covering of group

Γ and Ẽ the lifting of E. Then

dimΓH
n,0
(2) (M̃, Ẽk) >

kn

n!

∫

M(61,h)

( ı

2π
c(E, h)

)n
+ o(kn) , k −→ ∞ ,

where the L2 condition is with respect to h̃ and any metric on M̃ .

Proof. Let us consider a proper function ϕ : M −→ (−∞, 0 ) which is strictly
plurisubharmonic outside a compact set. The fact that ϕ goes to −∞ to the ideal
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boundary of M allows to construct a complete hermitian metric on M which has
moreover the feature of being Kähler outside a compact set. Namely we consider the
function χ = − log(−ϕ) so that ∂∂̄χ = ϕ−2 ∂ϕ ∧ ∂̄ϕ− ϕ−1 ∂∂̄ϕ which is obviously
positive definite on the set where ∂∂̄ϕ is. We can now patch ∂∂̄χ and an arbitrary
hermitian metric onM by using a smooth partition of unity to get a metric ω0 onM
such that ω0 = ∂∂̄χ on M \K, K ⋐M . It is easy to verify that ω0 is complete
since the function −χ is an exhaustion function and ω0 = ω+∂(−χ)∧ ∂̄(−χ) where
ω = −ϕ−1∂∂̄ϕ is a metric on M \K, so that d(−χ) is bounded in the metric ω0 .
Note that ω0 is obviously Kähler on M \K.

Let us consider a holomorphic hermitian line bundle E endowed with a metric
h such that ıc(E, h) > 0 on M \K (we stretch K if necessary). We equip E with
the metric hε = h exp(−εχ) and the curvature relative to the new metric satisfies
ıc(E, hε) > ε ω0 on M r K. We are therefore in the conditions of Theorem 2.1.

First observe that hε & h so that Hn,0
(2) (M̃, Ẽk, ω̃0, h̃ε) ⊂ Hn,0

(2) (M̃, Ẽk, ω̃0, h̃) which

is an injective Γ–morphism. By Theorem 2.1

lim inf
k

k−n dimΓH
n,0
(2) (M̃, Ẽk, ω̃0, h̃ε) >

1

n!

∫

Ω(61,hε)

( ı

2π
c(E, hε)

)n

so that

lim inf
k

k−n dimΓH
n,0
(2) (M̃, Ẽk) >

1

n!

∫

Ω(61,hε)

( ı

2π
c(E, hε)

)n
(4.1)

We let now εց 0 in (4.1); since hε converges uniformly together with its derivatives
to h on compact sets we see that we can replace hε with h in the right-hand
side of (4.1). Let M(q, h) be the set where ıc(E, h) is non-degenerate and has
exactly q negative eigenvalues. By hypothesis M(1, h) ⊂ K and on M(0, h) =
M(6 1, h)rM(1, h) the integrand is positive. Hence we can let Ω exhaust X and
we get the inequality from the statement of the theorem. �

We prove now that Siu’s criterion extends tale quale for hyper 1–concave manifolds.

Corollary 3.2. Let M be a hyper 1– concave manifold carrying a line bundle which
is semi-positive outside a compact set and satisfies Demailly’s condition (D). Then
X is Moishezon. In particular the conclusion holds true if E is semi-positive and
positive at one point.

Proof. By Theorem 3.1 (for Γ = {Id}) we have

dimH0(M,Ek ⊗KM ) > dimHn,0
(2) (M,Ek) > C kn

with C > 0 for large k, by condition (D). We note that the first space is finite
dimensional since M is 1–concave. By the Siegel–Serre Lemma (Proposition 5.7
from [Ma]), dimH0(M,Ek ⊗ KM ) 6 C kκ(E), (k > 0), where κ(E) is the supre-
mum over k of the generic rank of the canonical meromorphic mapping from M
to P

(
H0(M,Ek ⊗ KM )∗

)
. We obtain that κ(E) = n, that is, the line bundle

Ek⊗KM gives local coordinates on an open dense set of M for sufficiently large k.
This clearly implies M Moishezon and thereby concludes the proof. �

Remark 3.1.
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(a) We can use this criterion in the Nadel compactification theorem [Nad]. It asserts
that if M is a connected manifold of dimension > 3 satisfying : (i) M is hyper 1–
concave, (ii)M is Moishezon, (iii)M can be covered by Zariski-open sets which are
uniformized by Stein manifolds, then M is biholomorphic toM∗

rS where M∗ is a
compact Moishezon space and S is finite. We see thus that condition (ii) in Nadel’s
theorem may be replaced with the analytic condition: M possesses a line bundle
which is semi-positive outside a compact set and satisfies Demailly’s condition (D).
(b) In general, if M is a hyper 1– convave manifold of dimension n > 3 possesing
a semi–positive line bundle satistying (D) then (by a theorem of Rossi) it can be
compactified so that M is biholomorphic to an open set of a compact Moishezon
manifold which is the complement of a complete pluripolar set. Therefore there
exist a meromorphic mapping defined on X with values in a projective space which
is an embedding outside a proper analytic set of X . To see this we have to apply
the corresponding statement for compact Moishezon manifolds, a result due to
Moishezon. The difficulty in Nadel’s theorem is to show that under additional
hypothesis the pluripolar set is actually a finite set.
(c) The argument in the proof of Corollary 3.2 shows that the integral appearing in
Theorem 3.1 is finite. Thus, if E is positive outside a compact set K then M rK
has finite volume with respect to the metric ıc(E) (this observation stems from
[NT]).
(d) If M possesses a positive line bundle E then ıc(E)+ ı∂∂̄χ is a complete Kähler
metric and Hörmander’s L2 estimates and Andreotti–Tomassini’s theorem [AT]
show that E is ample and M can be embedded in the projective space. So even in
dimension 2 we can compactify M (by [An]).
(f) LetX is a compact complex space of dimension n > 2 and with isolated singular-
ities. Suppose that we have a line bundle E on Reg (X) which is semi-positive in a
deleted neighbourhood of Sing (X) and satisfies (D). Then X is Moishezon. Indeed,
by the previous result we find n = dimX independent meromorphic functions on
Reg (X) which extend to X by the Levi extension theorem. This is a generalization
of Takayama’s criterion [Ta] in the case of isolated singularities. We allow weaker
hypothesis, that is E is defined just on Reg (X) and the curvature condition is just
semi-positivity. The reason is the good exhaustion function we have at hand. In
the general case one has to use the Poincaré metric and the strict positivity near
Sing (X) is essential. Note however that the method of Takayama gives that the
line bundle who forms local coordinates is Ek, while in our proof is Ek ⊗KX .

We want now to study the following type of stongly pseudoconcave manifold.
Let X be an irreducible compact complex space with isolated singularities and
of dimension > 2. We know that Reg (X) is hyper 1– concave and we denote by
ϕ : Reg (X) −→ R the exhaustion function. Since ϕ is strictly plurisubharmonic
outside a compact set we have that the sub–level sets Xc = {ϕ > c} are 1– concave
manifolds i.e. stongly pseudoconcave domains. In our previous paper [Ma] we have
shown that in general if M is a 1–concave manifold of dimension > 3 which carries
a hermitian line bundle E which semi-negative near the boundary and satisfies (D)
then the Kodaira dimension of E is maximal and M is Moishezon. The assumption
about the change of curvature sign (i.e. semi-negativity) near the boundary is
imposed by the construction of complete hermitian metrics ω0 and h0 as in Theorem
2.2 which give the L2 estimate and preserve condition (D) for h0; the negativity of
the Levi form of the sublevel sets ofM requires as a natural curvature condition for
E the semi–negativity. The restriction on dimension comes from the fact that we
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need an L2 estimate in bi–degree (0, 1). Of course, usually we are given an overall
positive bundle E on M . We show that for manifolds Xc as before we can also
apply the criterion in [Ma] alluded to by modifying the metric.

We recall at the outset some terminology. Let us consider a covering {Uα} of X
and embeddings ια : Uα →֒ CNα such that E|Uα

is the inverse image by ια of the
trivial line bundle Cα on CNα . Moreover we consider hermitian metrics hα = e−ϕα

on Cα such that ι∗αhα = ι∗βhβ on Uα ∩ Uβ ∩ Reg (X). The system h = {ι∗αhα} is
called a hermitian metric on E over X . It clearly induces a hermitian metric on E
over Reg (X). The curvature current ıc(E) is given in Uα by ι∗α(ı∂∂̄ϕα) which on
Reg (X) agrees with the curvature of the induced metric.

Theorem 3.3. Let X be an irreducible compact complex space with isolated sin-
gularities and let Xc be the sublevel sets of the hyper 1– concave manifold Reg (X).
Assume that there exists a holomorphic line bundle E −→ X with a smooth her-
mitian metric such that condition (D) is fulfilled on Reg (X). Then for sufficiently
small c there exists a metric on E such that E is negative in the neighbourhood of
bXc and

∫
Xc(61)

(
ıc(E)

)n
> 0.

Proof. Let π : X̃ −→ X be a resolution of singularities of X . Let us denote by
Di the components of the exceptional divisor. Then there exist positive integers ni
such that D :=

∑
niDi admits a smooth hermitian metric such that the induced

line bundle [D] is negative in a neighbourhood Ũ of D (cf. [Sa]). Let us consider
a canonical section s of [D], i.e. D = (s), and denote by |s|2 the pointwise norm
of s with respect to the above metric. By Lelong-Poincaré equation ϕ = log |s|2
is strictly plurisubharmonic on Ũ \ D. By using a smooth function on X̃ with

compact support in Ũ which equals one near D we construct a smooth function χ

on X̃ rD ≃ Reg (X) such that χ = − log(− log |s|2) on Ũ \D.
Since log |s|2 goes to −∞ on D, this is the analogue of the function constructed in
the proof of Theorem 3.1 . As there we show that ı∂χ∧ ∂̄χ 6 ı∂∂̄χ. Let us consider
a metric ω on Reg (X) which on every open set Uα as above is the pullback of a
hermitian metric on the ambient space CNα , ω = ι∗α ωα . We consider then the
metric (Kähler near Sing (X)) ω0 = Aω + ∂∂̄χ where A > 0 is chosen sufficiently
large (to ensure that ω0 is a metric away from the open set where ∂∂̄χ is positive
definite). It is easily seen that ω0 is complete by the same argument as in the proof
of Theorem 3.1 . This kind of metrics were introduced by Saper in [Sa]. They have
finite volume.

Let us consider now a neighbourhood U of the singular set. We assume that U is
small enough so that there are well defined on U a potential ρ for ω and a potential
η for the curvature ıc(E) (they are restrictions from ambient spaces). By suitably
cutting-off we may define a function ψ ∈ C∞(Reg (X)) such that ψ = −χ− η−Aρ
near Sing (X) . Remark that since ıc(E) is bounded above by a continuous (1, 1)
form near Sing (X) the potential −η is bounded above near the singular set. This
holds true for ρ too (it is smooth) so that ψ tends to ∞ at the singular set Sing (X).
Let us consider a smooth function γ : R −→ R such that

γ(t) =

{
0 if t 6 0 ,

t if t > 1 .

and the functions γν : R −→ R given by γν(t) = γ(t − ν) for all positive integers
ν . Let us denote the hermitian metric on E by h and let us consider the following
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metric on E : hν = h exp
(
− γν(ψ)

)
, with curvature

ıc(E, hν) = ıc(E, h) + γ′ν(ψ)∂∂̄ψ + γ′′ν (ψ)∂ψ ∧ ∂̄ψ .

On the set {ψ > ν + 1} we have γν(ψ) = ψ − ν so that γ′ν(ψ) = 1 and γ′′ν (ψ) = 0
and therefore ıc(E, hν) = ıc(E, h) + ∂∂̄ψ. Since ψ goes to ∞ when we approach
the singular set we may choose ν0 such that for ν > ν0 we have {ψ > ν + 1} ⊂ U
where U is a sufficiently small neighbourhood of Sing (X). Bearing in mind the
meaning of η and ρ together with the definition of ω0 it is straightforward that
ıc(E, hν) = −ω0 on {ψ 6 ν + 1}, that is (E, hν) is negative on this set. We denote
Ων the compact set {ψ 6 ν + 2} . We decompose this set in Ω′

ν = {ψ 6 ν} and
Ω′′
ν = {ν 6 ψ 6 ν + 2}. On Ω′

ν we have γν(ψ) = 0 and ıc(E, hν) = ıc(E, h) . We
infer that

∫

Ω′

ν(61,hν)

(
ıc(E, hν)

)n
=

∫

Ω′

ν(61,h)

(
ıc(E, h)

)n

=

∫

Reg (X)(61,h)

1Ω′

ν
α1 · · ·αn dV0 (4.2)

where α1, . . . , αn are the eigenvalues of ıc(E, h) with respect to ω0 and dV0 is the
volume form of the same metric. Since ıc(E, h) is dominated by the euclidian
metric near Sing (X), ıc(E, h) is dominated by ω and by ω0. Hence the product
α1 · · ·αn is bounded on Reg (X). Since Reg (X)(6 1) has finite volume with re-
spect to ω0 the functions |1Ω′

ν
α1 · · ·αn| are bounded by an integrable function.

On the other hand 1Ω′

ν
−→ 1 when ν −→ ∞ so that the integrals in (4.2) tend

to
∫
Reg (X)(61,h)

(
ıc(E, h)

)n
which is assumed to be positive. Thus it suffices to

show that the integral on the set Ω′′
ν i.e.

∫
Ω′′

ν (61,hν)

(
ıc(E, hν)

)n
tends to zero as

ν −→ ∞. For this purpose we use the obvious bound

∫

Ω′′

ν (61,hν)

( ı

2π
c(E, hν)

)n
6 sup | δ1 · · · δn| · vol (Ω′′

ν)

where δ1, . . . , δn are the eigenvalues of ıc(E, hν) with respect to ω0 and the volume
is taken in the same metric. We use now the minimum-maximum principle to
see that: (i) δ1 is bounded below and δ2, . . . , δn are bounded above on the set of
integration Ω′′

ν(1, hν) and (ii) δ1, . . . , δn are upper bounded on Ω′′
ν(0, hν). For this

we need the domination of ıc(E, h) by ω and the boundedness of γ′ν and γ′′ν . Since
vol (Ω′′

ν) −→ 0 as ν −→ ∞ our contention follows. Hence for large ν the metric hν
does the required job. �

Remark 3.2. We have seen that Siu’s criterion generalizes to compact complex
spaces with isolated singularities. Demailly’s criterion extends too. Let X be an
irreducible compact complex space of dimension n > 3 with isolated singularities
and E a smooth hermitian line bundle overX . Assume that condition (D) is fulfilled
on Reg (X). Then X is Moishezon. Indeed, for small c the sets Xc are Moishezon
by Corollary 4.3 of [Ma] and the meromorphic functions from Xc extend to X . In
fact the result holds also for n = 2 with a proof very similar to that of Theorem 4.4.
We note also that we can allow the metric h of E to be singular at Sing (X) but
the cuvature current ıc(E) should be dominated (above ans below) by the euclidian
metric near Sing (X). The proof of Theorem 4.4 goes through with minor changes.
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Since the manifold Xc is compact Theorem 4.4 can be used to prove some sta-
bility results for certain perturbation of the complex structure of Xc. Since our
approach relies on the use of a sufficiently positive line bundle E we need to con-
sider perturbations of the complex structure which lift to a perturbation of E. This
kind of sitiuation was studied by L. Lempert in [Le].

Proposition 3.4. Let X be a Moishezon variety with isolated singularities and
dimension n > 3. Let J denote the complex structure of Reg (X) and let Z ⊂
Reg (X) be a non–singular hypersurface such that the line bundle E = [Z] satisfies
(D). Then for sufficiently small c and any complex structure J ′ on Xc such that

(1) T (Z) is J ′ invariant and
(2) J ′ is sufficiently close to J in the C∞ topology

there exists a J ′–holomorphic line bundle E′ on Xc which is negative near bXc

and satisfies (D). In particular (Xc,J ′) is a Moishezon pseudoconcave manifold
and any compactification of (Xc,J ′) is Moishezon.

Proof. Let us first choose c0 such that for c < c0 there exists a ‘good’ hermitian
metric h on E over a neighbourhood of Xc, that is, whith negative curvature near
the boundary and satisfying (D). We use now the description of the lifting of J ′ with
properties (1) and (2) as given in [Le]. Namely, Z determines a new J ′ holomorphic
line bundle E′ −→ (Xc,J ′). There exists a finite open covering U = {U} ofXc such
that E and E′ are trivial on each U and they are defined by multiplicative cocycles
{gUV J holomorphic onU ∩ V : U, V ∈ U} and {g′UV J ′ holomorphic onU ∩ V :
U, V ∈ U}. Moreover gUV and g′UV are as close as we please assuming J and J ′ are
sufficiently close. (By ‘close’ we always understand close in the C∞ topology.) Next
we can define a smooth bundle isomorphism E −→ E′ by resolving the smooth
additive cocycle log(g′UV /gUV ) in order to find smooth functions fU , close to 1 on a

neighbourhood of U such that g′UV = fU gUV f
−1
V . Then the isomorphism between

E and E′ is given by f = {fU}. The metric h is given in terms of the covering U by
a collection h = {hU} of smooth strictly positive functions satisfying the relation
hV = hU |gUV |. We define a hermitian metric h′ = {h′U} on E′ by h′U = hU |f−1

U |;
h′U is close to hU . The curvatures forms of E and E′ are given by

ı

2π
c(E) =

1

4π
d ◦ J ◦ d (loghU ) ,

ı

2π
c(E′) =

1

4π
d ◦ J ′ ◦ d (logh′U ) .

Therefore, when J ′ is sufficiently close to J , ı
2π

c(E′) is negative near the boundary

of Xc and, since the eigenvalues of ı
2πc(E

′) are close to those of ı
2πc(E), E′ satisfy

the condition (D) i.e.
∫
Xc(61)

(
ıc(E′)

)n
> 0. We can apply thus the Corrolary 4.3

of [Ma] to the strongly pseudoconcave manifold (Xc,J ′) to conclude that (Xc,J ′)
is Moishezon. �

Remark 3.3. If [Z] is positive, part of the stability property follows from the rigidity
of embeddings with positive normal bundle. Indeed, assume NZ = [Z] ↾Z is pos-
itive in (Xc,J ′) (for any c such that this manifold is still pseudoconcave). Then
Ph. Griffiths [Gri1] has shown that there exists a neighbourhood W of Z such that
the mapping Φ : (Xc,J ′)−− → PN given by [mZ] is an embedding of W for large
m . Thus (Xc,J ′) is Moishezon. Our result deals with the slightly more general
situation of a ‘big’ embedding i.e. when [Z] is not ample but satisfies condition (D).
Moreover we have a useful quantitative way of measuring whether the perturbed
structure is Moishezon.



18 RADU TODOR, IONUŢ CHIOSE, GEORGE MARINESCU

Corollary 3.5. Let (Xc,J ′) and E′ be as in Proposition 4.6. Then there exists
hermitian metrics on Xc and E

′ and a positive constant C such that for any Galois

covering X̃c −→ Xc of group Γ we have

dimΓH
0
(2)(X̃c , Ẽ′k) > C kn + o(kn) , k −→ ∞ .

the L2 condition being with respect to lifts of the hermitian metrics on Xc and E
′.

Proof. We know that we have on E′ a metric h satisfying the conclusion of Theorem
4.4. Then, as in Theorem 2.2, we can construct metrics ω0 and h0 in order to obtain
(2.9). Note that the integral in (2.9) depends on the modified metric h0 so we cannot
always infer that it is positive even if (E′, h) satisfies (D). But under the assumption
of semi–negativity of h near the boundary we can construct an h0 such that the
integral in (2.9) is positive (cf. Corollary 4.3 of [Ma]). Thus by applying Theorem
2.2 we get the conclusion. �

§4 L2 generalization of a theorem of Takayama.
In this section we study the L2 cohomology of coverings of Zariski open sets

in compact complex spaces. For compact spaces with singularities Takayama [Ta]
generalized Siu–Demailly criterion if E −→ X is a line bundle endowed with a sin-
gular hermitian metric which is smooth outside a proper analytic set Z ⊃ Sing (X)
and defines a strictly positive current near Z.

Using the setting of Takayama’s theorem we shall study coverings of Zariski open
sets in compact complex spaces.

Proposition 4.1. Let X be an n–dimensional compact manifold and let E be a
holomorphic line bundle with a singular hermitian metric h. We assume that:

(1) ıc(E, h) is smooth on M = X r Z where Z is a divizor with only simple
normal crossings ;

(2) ıc(E, h) is a strictly positive current in a neighbourhood of Z .

Let p : M̃ −→M be a Galois covering with group Γ and Ẽ = p∗E. Then,

dimΓH
0
(2)(M̃, Ẽk) >

kn

n!

∫

M(61,h)

( ı

2π
c(E, h)

)n
+ o(kn) , k >> 0 ,

where H0
(2)(M̃, Ẽk) is the space of sections of Ẽk which are L2 with respect to the

pullbacks of the restrictions to M and E ↾M of smooth metrics on X and E.

Proof. This is an equivariant form of Takayama’s main technical result in [Ta].
Namely we construct the Poincaré metric ωε on M (for details see [Zu]) and hε
as in [Ta] and remark that the hypothesis of Theorem 2.1 are satisfied. Moreover
we can work with (0, 1)–forms since the Ricci curvature of the Poincaré metric is
bounded below.

More specifically, we write Z =
∑
Zj and consider a section σj of the line bundle

[Zj ] which vanishes to first order on Zj . Then we endow [Zj ] with a hermitian metric
such that the norm of σj satisfies |σj| < 1. Take then an arbitrary smooth metric
ω′ on X and define ωε = ω′− ε ı ∑ ∂∂̄(− log |σj |2)2 on M = X rZ which for small
ε > 0 is a complete metric on M . Then we consider the following family of metrics
on E ↾M : hε = h

∏
j(− log |σj |2)ε, ε > 0. We check now the hypotheses of Theorem

2.1 is satisfied. First we remark that the torsion operators of the Poincaré metric
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are pointwise bounded with respect to the Poincaré metric since dωε = dω′ and
ωε > ω′. Also the Ricci curvature c(K∗

M̃
) of ω̃ε is bounded below with respect to

ω̃ε by a constant independent of ε (since this is true for ωε). Since E is strictly
positive in the neighbourhood of Z condition (A) is satisfied for a compact K
outside which E is positive (and it doesn’t depend on ε).

Let h′ be a smooth hermitian metric on E over X . Near Z the metric h is locally
represented by a strictly plurisubharmonic weight. Thus h is locally bounded below
near Z and thus h > C h′ on X for some positive constant C. We remark now that

hε > h > C h′ and ωε > ω′ near Z so that we have the inclusion H0
(2)(M̃, Ẽk)ε ⊂

H0
(2)(M̃, Ẽk), (which is an injective Γ–morphism) in the last group the L2 condition

being taken with respect to h̃′ and ω̃′. By Theorem 2.1 for K ⋐ Ω ⋐M

dimΓH
0
(2)(M̃, Ẽk) > dimΓH

0
(2)(M̃, Ẽk)ε >

∫

Ω(61,hε)

( ı

2π
c(E, hε)

)n
+ o(kn) .

We can let ε −→ 0 in the right–hand side in order to replace hε with h. Then we
can let Ω exhaust X to get the inequality from the statement. �

Theorem 4.2. Let X be an irreducible reduced compact Moishezon space and let
M ⊂ Reg(X) be a Zariski open set. There exists a holomorphic line bundle E −→
Reg (X) endowed with a singular hermitian metric whose curvature current ıc(E)

is positive and such that for any Galois covering M̃
p−→M of group Γ we have

dimΓH
0
(2)(M̃, Ẽk) >

kn

n!

∫

M

( ı

2π
c(E)

)n
+ o(kn) , k −→ ∞

where the integration takes place outside Sing supp c(E). The L2 condition is taken
with respect to liftings of smooth hermitian metrics on M and E induced from a
resolution of singularities of X.

Proof. Step 1. Let X be a Moishezon manifold and M = X \ Z a Zariski open
set, where Z is a proper analytic set. Thanks to Moishezon X admits a projective
modification. Therefore there exists a strictly positive integral Kähler current T on
X . Equivalently there exists a holomorphic line bundle E on X possesing a singular
hermitian metric such that the curvature current T = ıc(E) is strictly positive
(bounded below by a smooth hermitian metric). Assume that Sing supp T ⊂ Z.
Then M is biholomorphic to a Zariski open set as in the statement of Proposition
3.1. Indeed, we can blow up Z to make it a divisor with only simple normal
crossings. By replacing E with higher tensor powers and twisting it with the dual
of the exceptional divisor at each step of the blowing up process we can ensure that
on the blow–up we still have a positive line bundle with singular metric along Z.
Thus in this case we can apply Proposition 3.1.
Step 2. To go further let M be a Zariski open set in a Moishezon manifold X . By
a theorem of Demailly [De2] we know that there exists a strictly positive integral
Kähler current T with analytic singularities. As a consequence Sing supp T ⊂ S,
where S is a proper analytic set. As before we can suppose that S ∪ Z is a divisor
with only simple normal crossings. Let E be a line bundle with singular hermitian
metric such that T = ıc(E). Denote by M1 = X \ (S ∪ Z) = M \ S : M1 and

E are as in Proposition 3.1. Let p : M̃ −→ M be a Galois covering of group Γ.
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Setting M̃1 = p−1M1 we have a Galois covering M̃1 −→ M1 of group Γ. Hence,

dimΓH
0
(2)(M̃1, Ẽ

k) > kn

n!

∫
M1

(
ı
2π

c(E)
)n

+ o(kn), for k −→ ∞. The L2 condition

on M̃1 is with respect to liftings of smooth hermitian metrics on X and E. But

a holomorphic section defined outside the analytic set S̃ = p−1S which is square

integrable with respect to a smooth metric on M̃ extends past S̃ as a holomorphic

section on M̃ . We infer dimΓH
0
(2)(M̃, Ẽk) > kn

n!

∫
M

(
ı
2πc(E)

)n
+ o(kn) the integral

being taken on the smooth locus of ıc(E) The L2 condition is taken with respect
to pullbacks of smooth metrics on X and E.
Step 3. Finally let X and M as in hypothesis. By a resolution of singularities M
is biholomorphic to a Zariski open set of a Moishezon manifold. By the preceding
remarks we can conclude. �

The following Proposition is a consequence of Theorem 4.2 in the case of Galois
coverings (taking into acount that the number of sheets of such a covering equals
the cardinal of Γ). However, using Theorem 2.2 of Napier and Ramachandran [NR],
we can prove it for any unramified covering.

Proposition 4.3. Let X be an irreducible reduced compact Moishezon space and
let M ⊂ Reg(X) be a Zariski open set. There exists a holomorphic line bundle

E −→ Reg (X) such that for any unramified covering p : M̃ −→M we have

dimH0
(2)(M̃, Ẽk) > C kn d , k >> 0 (4.1)

where d is the number of sheets of the covering and C > 0.

Proof. In the situation of Step 1 of the preceding proof we see that the Poincaré
metric on M is a complete Kähler metric since M has the Kähler metric ıc(E).

Therefore M̃ possesses a complete Kähler metric and a positive line bundle Ẽ.
By applying the L2 estimates of Hörmander as in [NR, Theorem 2.2] we get the

result for the L2 cohomology with respect to the metrics ω̃ε and h̃ε (notations of
Proposition 4.1). As in the proof of Proposition 4.1 we see that we can actually use
pull-backs of smooth metrics on X . Steps 2 and 3 go through as before. �

§5 Further remarks.
We will apply Theorem 2.1 to the case of a complete Kähler manifold M with

positive canonical bundle KM . The case Γ = {Id} is due to Nadel and Tsuji
[NT]. If D is a bounded domain of holomorphy in Cn we know by a theorem of
Bremermann that the Bergman metric ω = ωB is complete. On the other hand
the Bergman metric is invariant under analytic automorphisms. Thus this metric
descends to a complete Kähler metric on any quotient of the domain by a properly
discontinuous discrete group Γ ⊂ Aut(D). We denoteM = D/Γ and ω∗ the induced
Bergman metric onM = D/Γ. If we denote by B(z, z) the Bergman kernel of D we
know that B−1 can be considered as a hermitian Γ–invariant metric on KD. Since
ω = ∂∂̄ logB(z, z) there exists a hermitian metric on KM such that c(KM ) = ω∗.
We have thus the following.

Proposition 5.1. Let D is a bounded domain of holomorphy in Cn, Γ ⊂ AutD a
discrete group acting properly discontinuously on D and M = D/Γ. Then

dimΓH
0
2 (D,K

k
D) >

(
k

2π

)n ∫

M

ωn∗
n!

+ o(kn) , k −→ ∞



L2–RIEMANN–ROCH INEQUALITIES FOR COVERING MANIFOLDS 21

where the L2 condition is taken with respect to the Bergman metric on D and the
metric B−1 on KD.

Note that the space H0
2 (D,K

k
D) is a space of square integrable functions with

respect to the Bergman metric and to the weight B−k. An immediate consequence
is the following.

Corollary 5.2. Assume that the Bergman metric on M has infinite volume. Then
dimΓH

0
2 (D,K

k
D) = ∞ for k large enough.

We remark that the last conclusion is stronger than the results coming from the
L2 method which gives just dimH0

2 (D,K
k
D) > C |Γ| kn for some positive constant

C ∈ R.
Let us see what become our results in the simplest case of the unit disk D ⊂ C.

Then the Bergman metric equals the hyperbolic metric (1− |z|2)−2dz ∧ dz. If Γ is
a Fuchsian group, we have the following possibilities for large k:

(a) If M = D/Γ is compact, dimΓH
0
2 (D,K

k
D) = k vol(M) + o(k).

(b) If M is non–compact and has a finite number of cusps, the hyperbolic volume
vol(M) is finite and dimΓH

0
2 (D,K

k
D) > k vol(M) + o(k),

(c) If M is non–compact and the discontinuity set Ω ⊂ S1 is a union of intervals,
dimΓH

0
2 (D,K

k
D) = ∞ (since vol(M) = ∞).

According to a conjecture of Griffiths [Gri2, p.50], if D is a bounded domain in
Cn which is topologically a cell and D/Γ is quasi–projective then (i) the Bergman
metric on D/Γ is complete and (ii) the volume of D/Γ with respect to this met-
ric is finite. In the sequel we discuss the conjecture without the topological re-
striction. If D is a domain of holomorphy and M = D/Γ is pseudoconcave (e.g.
codim(M rM) > 2), the answer is yes. Indeed, this follows from the Riemann–
Roch inequalities for Γ = {Id} in Proposition 5.1. If D is not necessarily a domain
of holomorphy but D/Γ can be compactified by adding a finite number of points
we can show that the answer to (ii) is affirmative. We do not assume D/Γ quasi–
projective.

Proposition 5.3. Let D ⋐ C
n be an open set having a properly discontinous group

Γ ⊂ AutD such that there exists a compact complex space Y with D/Γ ⊂ Reg Y
and D/Γ = Y r S, where S is a finite set. Then the volume of D/Γ in the induced
Bergman metric is finite.

Proof. Since M = D/Γ is hyper 1–concave and possesses a positive canonical bun-
dle, we may apply Theorem 3.1 for Γ trivial and E = KM . As Remark 3.1 (c)
shows this gives an upper bound for vol(M) =

∫
M
ωn∗ /n! . �

Remark 5.1. We can prove a complete generalization of the asymptotic Morse in-
equalities of Demailly [De1] for the L2 cohomology of the covering of a compact
manifold X . For this purpose we elabotate the proof of Theorem 2.1. As there
we exploit the idea of Witten–Demailly of constructing a family of subcomplexes
of the L2–Dolbeault complex having the same cohomology. First let us introduce
cohomology. Let us denote by N q(∂̄) the kernel and by Rq(∂̄) the range of ∂̄ ,

by N q(∂̄∗) the kernel of ∂̄∗ and by N q(k−1∆̃′′
k) the kernel of k−1∆̃′′

k , all acting on

L2
0,q(X̃, Ẽ

k⊗ F̃ ) where F̃ is a Γ–invariant holomorphic vector bundle of rank r. We

have H0,q
(2)(X̃, Ẽ

k⊗ F̃ ) := N q(k−1∆̃′′
k) = N q(∂̄)∩N q(∂̄∗) , where the first equality is

the definition of the space of harmonic forms and the second is a consequence of the
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completeness of the metric. If q = 0 then H0,0
(2)(X̃, Ẽ

k ⊗ F̃ ) coincides to the space

of holomorphic L2 sections of Ẽk ⊗ F̃ . We note also the orthogonal decomposition

N q(∂̄) = N q(k−1∆̃′′
k)⊕Rq−1(∂̄) so that

H0,q
(2)(X̃, Ẽ

k ⊗ F̃ ) = N q(∂̄)/Rq−1(∂̄) =: H0,q
(2) (X̃, Ẽ

k ⊗ F̃ )

the last group being the (reduced) L2 cohomology.
We apply the results of §1 in the following form. Since X is compact we can take

the set Ω ⋐ X to be X so that Ω̃ = X̃ . We do not use any special metric but take

an arbitrary metric on X and its pull–back on X̃. Moreover we have ∆̃′′
k = ∆̃′′

k ↾Ω̃.

Since k−1∆̃′′
k commutes with ∂̄ it follows that the spectral projections of k−1∆̃′′

k

commute with ∂̄ too, showing thus ∂̄Lqk(λ) ⊂ Lq+1
k (λ) and therefore we have a

complex of Γ–modules of finite Γ–dimension:

0 −→ L0
k(λ)

∂̄λ−−→ L1
k(λ)

∂̄λ−−→ · · · ∂̄λ−−→ Lnk (λ) −→ 0 . (5.1)

k−1∆̃′′
k commutes also with ∂̄∗ and

(
∂̄λ

)∗
equals the restriction of ∂̄∗ to Lqk(λ).

Keeping this in mind it is easy to see that

N q(∂̄λ)/Rq−1(∂̄λ) =
{
u ∈ Lqk(λ) : ∂̄λu = 0 ,

(
∂̄λ

)∗
u = 0

}
= H0,q

(2)(X̃, Ẽ
k ⊗ F̃ ) .

(5.2)
We can now apply the following lemma (see [Sh]).

Algebraic Lemma. Let 0 −→ L0
d0−−→ L1

d1−−→ · · · dn−−→ Ln −→ 0 be a complex of
Γ–modules (dq commutes with the action of Γ and dq+1dq = 0). If lq = dimΓ Lq is

finite and hq = dimΓH
q(L) where Hq(L) = N(dq)/R(dq−1),

q∑

j=0

(−1)q−jhj 6
q∑

j=0

(−1)q−jlj

for every q = 0, 1, ..., n and for q = n the inequality becomes equality.

The Algebraic Lemma for the complex (5.1) and relation (5.2) yield

q∑

j=0

(−1)q−j dimΓH
0,j
(2)(X̃, Ẽ

k ⊗ F̃ ) 6

q∑

j=0

(−1)q−jN j
Γ

(
λ,

1

k
∆̃′′
k

)

for q = 0, 1, . . . , n and for q = n the inequality becomes equality. We apply now
(1.11):

q∑

j=0

(−1)q−j dimΓH
0,j
(2)(X̃, Ẽ

k ⊗ F̃ ) 6 kn
(
Iq(U, λ)− Iq−1(U, λ) + · · ·

+ (−1)qI0(U, λ)
)
+ o(kn) ,

for k −→ ∞. We can now let λ go to zero through values λ ∈ R \N . We have thus
proved the following.
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Theorem 5.4. Let X̃ be a Galois covering of group Γ of a compact manifold X.
As k → ∞, the following strong Morse inequalities hold for every q = 0, 1, . . . , n :

q∑

j=0

(−1)q−j dimΓH
0,j
(2)(X̃, Ẽ

k ⊗ F̃ ) ≤ r
kn

n!

∫

X(6q)

(−1)q
( ı

2π
c(E)

)n
+ o(kn).

with equality for q = n (asymptotic L2 Riemann-Roch formula).

In particular dimΓH
0
(2)(X̃, Ẽ

k ⊗ F̃ ) > kn

n!

∫
X(61)

(
ı
2πc(E)

)n
+ o(kn). It follows

that if E satisfies (D) then for k −→ ∞

dimΓH
0
(2)(X̃, Ẽ

k ⊗ F̃ ) ≈ kn ,

dimΓH
q
(2)(X̃, Ẽ

k ⊗ F ) = o(kn) , q > 1 .

Hence the usual dimension of the space of holomorphic L2 sections has the same
cardinal as |Γ| for large k. This is a generalization of the result of Napier [Nap]

that X̃ is holomorphically convex with respect to Ẽk for large k if X is projective
and E is positive. If the canonical bundle KX satisfies condition (D), i.e. if there
exists a metric ω on M such that

∫
X(61)

(−Ricω)n > 0 where X(6 1) is the set

of points where −Ricω is nondegenerate and has at most one negative eigenvalue,

then dimΓH
0
(2)(X̃,K

⊗k
X̃

) ≈ kn .

Remark 5.2. In Proposition 4.1 we have treated the case of a singular hermitian line
bundle (E, h) over a compact manifold X . The condition on the singularities were
that they are concentrated on an analytic set and moreover the curvature is positive
near this analytic set. Then we can work on the complement of the analytic set and
by means of the basic estimate study its coverings. If we are interested only in the
coverings ofX then we can rule out the condition of positivity near the singularities.
Namely, when the singularities of the metric are algebraic (cf. [De2]), Bonavero
[Bon] shows that the Morse inequlities are true for the cohomology of Ek twisted
with the corresponding sequence of Nadel’s multiplier ideal sheaves. Given a Galois
covering as above we can adapt his proof to estimate the von Neuman dimension

of the space H0
(2)(X̃, Ẽ

k ⊗ Ik(h̃)) of L2 holomorphic sections in Ẽk twisted with

the Nadel’s multiplier ideal sheaf coming from the singularities of the Γ–invariant

metric h̃ on Ẽk (which is the pull–back of a Nadel multiplier ideal sheaf on X). The
conclusion is that when (D) is true, the integral being taken over the regular set

of the curvature current, then the von Neuman dimension of H0
(2)(X̃, Ẽ

k ⊗ Ik(h̃))
grows as kn for large k.

Remark 5.3. Using the approach of this section we can study the growth of the
cohomology groups of coverings of q–convex and q–concave manifolds. We can ei-
ther use complete metrics or follow [GHS] and use the ∂̄–Neumann problem setting.
Let us give the statements in the latter set-up. Consider a q–convex manifold X
in the sense of [AG], i.e. there exists a smooth exhausting function ϕ : X −→ R

such that ı∂∂̄ϕ has at least n− q + 1 positive eigenvalues outside a compact set K
(n = dimX , 1 6 q 6 n− 1). Consider Xc = {ϕ < c} ⊃ K with smooth boundary.
Then the Levi form of bXc has at least n− q positive eigenvalues. Let us consider a
Galois covering X̃d of a bigger sublevel set Xd ⊃ Xc and denote by X̃c the induced
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covering of Xc. As usual we denote by Γ the group of deck transformations. Let

us consider also a line bundle E over X and denote by Ẽ its lifting to X̃d. Both

X̃c and Ẽ come with the liftings of metrics defined on Xd. We define the (reduced)

L2 cohomology groups Hj
(2)(X̃c, Ẽ

k) with respect to these metrics. By [GHS] we

know that dimΓH
j
(2)(X̃c, Ẽ

k) < ∞ for j > q. With the method used in this paper

we can prove that for j > q and k −→ ∞ :

(1) dimΓH
j
(2)(X̃c, Ẽ

k) = O(kn) .

(2) If E is q–positive outside K (its curvature has at least n − q + 1 positive
eigenvalues) we have an explicit bound,

dimΓH
j
(2)(X̃c, Ẽ

k) 6
kn

n!

∫

X(j)

(−1)j
( ı

2π
c(E)

)n
+ o(kn).

The proof consists of showing that the basic estimate holds in bidegree (0, j) on

X̃c ⊂ L̃, where L is a compact set of Xc , for forms satisfying the ∂̄–Neumann

conditions on bX̃c . This is achieved using the liftings of the metrics constructed
in [AV] where the case Γ trivial is treated. Then we can apply again the analysis
from §1. If E is q–positive outside K then the leading term in (1) simplifies as
shown in (2). These estimates were obtained in the case Γ = {Id} in [Bou] for
certain complete metrics on Xc which permit to prove the same inequalities for the
full cohomology group Hj(Xc, E

k). For the case of coverings we have to restrict
ourselves to L2 cohomology groups. As for coverings of q–concave manifolds we
get the same conclusion as in (1) for j 6 n − q − 1. The nice simplification of
the leading term holds if we impose a negativity condition outside a compact set.
However there are cases of concave manifolds and positive bundles for which we

have an effective estimate of dimΓH
0
(2)(X̃c, Ẽ

k), see §3.
§6 Weak Lefschetz theorems.

Nori [No] generalized the Lefschetz hypersurface theorem. Assume X and Y are
smooth connected projective manifolds and Y is a hypersurface in X with positive
normal bundle and dimY > 1. Then the image of π1(Y ) in π1(X) is of finite in-
dex. Recently, Napier and Ramachandran [NR] proposed an analytic approach and
generalized Nori’s theorem showing that Y may have arbitrary codimension (but
dimY > 1). They use the ∂̄–method on complete Kähler manifolds to separate the
sheets of appropriate coverings. In the sequel we use the Riemann–Roch inequali-
ties to study non–necessarily Kähler manifolds. However our method requires that
the image group is normal since we can deal only with Galois coverings. First we
introduce the notion of formal completion. Let Y be a complex analytic subspace
of the manifold U and denote by IY the ideal sheaf of Y . The formal completion

Û of U with respect to Y is the ringed space (Û ,OÛ ) = (Y, proj limOU/IνY ). If F
is an analytic sheaf on U we denote by F̂ the sheaf F̂ = proj limF ⊗ (O/IνY ). If

F is coherent then F̂ is too. Moreover by Proposition VI.2.7 of [BS] the kernel of

the mapping H0(U,F) −→ H0(Û , F̂) consists of the sections of F which vanish on
a neighbourhood of Y . Hence for locally free F the map is injective.

Theorem 6.1. Let M be a hyper 1–concave manifold carrying a line bundle E
which satisfies (D) and is semi-positive outside a compact set. Let Y be a connected

compact complex subspace of M satisfying: (i) for any k, dimH0(M̂, F̂k) < ∞,
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where Fk = O(Ek⊗KM ), (ii) the image G of π1(Y ) in π1(X) is normal in π1(X).
Then G is of finite index in π1(X).

Proof. We follow the proof given in [NR]. Since G is normal there exists a connected

Galois covering π : M̃ −→ M such that the group of deck transformations is

Γ = π1(M)/G. The cardinal |Γ| equals the index of G in π1(M). Let Ẽ = π−1E. By

Theorem 3.1, there exists C > 0 such that for large k, dimΓH
n,0
(2) (M̃, Ẽk) > C kn.

Let us choose a small open neighbourhood V of Y such that π1(Y ) −→ π1(V )
is an isomorphism; so the image of π1(V ) in π1(M) is G. Hence, if we denote

by  the inclusion of V in M , there exists a holomorphic lifting ̃ : V −→ M̃ ,

π ◦ ̃ = . Since ̃ is locally biholomorphic the pull–back map ̃ ∗ : Hn,0
(2) (M̃, Ẽk) −→

Hn,0(V,Ek) is injective. On the other handH0(V,Fk) →֒ H0(V̂ , F̂k) = H0(M̂, F̂k).
By (i) the latter space is finite dimensional so dimHn,0

(2) (M̃, Ẽk) < ∞. We know

that dimΓH
0
(2)(M̃, Ẽk ⊗ K

M̃
) > 0 for k > C−1/n. If Γ were infinite this would

yield dimHn,0
(2) (M̃, Ẽk) = ∞ which is a contradiction. Therefore |Γ| < ∞ and

dimHn,0
(2) (M̃, Ẽk) > C |Γ| kn > |Γ| for k > C−1/n. Thus |Γ| 6 dimH0(M̂, F̂k) for

large k. �

Remark 6.2.
(a) By a theorem of Grothendieck [Gro], condition (i) is fulfilled if Y is locally a
complete intersection with ample normal bundle NY (or k–ample in the sense of
Sommese, k = dimY − 1).
(b) We can replace condition (i) with the requirement that Y has a fundamental
system of pseudoconcave neighbourhoods {V }. Then dimH0(V,Fk) is finite by
[An]. This happens for example if Y is a smooth hypersurface and NY has at
least one positive eigenvalue or, if Y has arbitrary codimension, if NY is sufficiently
positive in the sense of Griffiths [Gri1].
(c) Condition (ii) is trivially satisfied if π1(Y ) = 0. Thus, if M contains a simply
connected subvariety satisfying either (a) or (b), π1(M) is finite.
(d) By Corollary 3.6, Theorem 6.1 can also be applied to the pertubed structures
considered there.

Using Proposition 4.3 we can can show that Nori’s theorem holds for all Moishe-
zon spaces X .

Theorem 6.2. Let X be an irreducible reduced normal Moishezon compact complex
space and let E be the (positive in the sense of currents) line bundle given by
Theorem 4.2. Suppose that M is a Zariski open set of X and Y ⊂ Reg(M) be

a connected compact complex subspace such that for any k, dimH0(M̂, Êk) < ∞,
where Ek = O(Ek). Then the image G of π1(Y ) in π1(M) is of finite index in
π1(M).

Proof. Since X is normal we have an isomorphism π1(RegM) −→ π1(M), so that

we may assume M ⊂ Reg (X). We find a connected unramified covering p : M̃ −→
M such that p∗π1(M̃) = G. If d is the number of sheets, d = |π1(M)/G|, the index
of G in π1(M). The preceding proof applies by using Proposition 4.3 instead of
Theorem 3.1. and the usual dimension instead of the Γ–dimension. �

Note that Napier and Ramachandran also considered cases when X is not nec-
essarily projective, but their result does not imply diectly Theorem 6.2.
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