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Abstract: We consider F : M → N a minimal oriented compact real 2n-submanifold M , im-

mersed into a Kähler-Einstein manifold N of complex dimension 2n, and scalar curvature R.

We assume that n ≥ 2 and F has equal Kähler angles. Our main result is to prove that, if n = 2

and R 6= 0, then F is either a complex submanifold or a Lagrangian submanifold. We also prove

that, if n ≥ 3 and F has no complex points, then : (A) If R < 0, then F is Lagrangian; (B) If

R = 0, the Kähler angle must be constant. We also study pluriminimal submanifolds with equal

Kähler angles, and prove that, if they are not complex submanifolds, N must be Ricci-flat and

there is a natural parallel homothetic isomorphism between TM and the normal bundle.

Key Words: Minimal, pluriharmonic, Lagrangian submanifold, Kähler-Einstein manifold,

Kähler angles
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1 Introduction

Let (N, J, g) be a Kähler manifold of complex dimension 2n and F : M → N an immersed

submanifold of real dimension 2n. We denote by ω the Kähler form of N , ω(X, Y ) =

g(JX, Y ). On M we take the induced metric gM = F ∗g. N is Kähler-Einstein if its Ricci

tensor is a multiple of the metric, RicciN = Rg. At each point p ∈ M , we identify F ∗ω

with a skew-symmetric operator of TpM by using the musical isomorphism with respect

to gM , namely gM(F ∗ω(X), Y ) = F ∗ω(X, Y ). We take its polar decomposition

F ∗ω = g̃Jω (1.1)

where Jω : TpM → TpM is a ( in fact unique) partial isometry with the same kernel Kω as

of F ∗w, and where g̃ is the positive semidefinite operator g̃ = |F ∗ω| =
√

−(F ∗ω)2. It turns
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out that Jω : K⊥
ω → K⊥

ω defines a complex structure on K⊥
ω , the orthogonal compliment

of Kω in TpM . Moreover, it is gM -orthogonal. If we denote by Ω0
2k the largest open set of

M where F ∗ω has constant rank 2k, 0 ≤ k ≤ n, then K⊥
ω is a smooth sub-vector bundle

of TM on Ω0
2k. Moreover, g̃ and Jω are both smooth on these open sets. The tensor g̃

is continuous on all M and locally Lipschitz, for the map P → |P | is Lipschitz in the

space of normal operators. Let {Xα, Yα}1≤α≤n be a gM -orthonormal basis of TpM , that

diagonalizes F ∗ω at p, that is

F ∗ω =
⊕

1≤α≤n

[

0 − cos θα
cos θα 0

]

, (1.2)

where cos θ1 ≥ cos θ2 ≥ . . . ≥ cos θn ≥ 0. The angles {θα}1≤α≤n are the Kähler angles of

F at p. Thus, ∀α, F ∗ω(Xα) = cos θαYα, F
∗ω(Yα) = − cos θαXα and if k ≥ 1, where 2k

is the rank of F ∗ω at p, JωXα = Yα ∀α ≤ k. The Weyl’s perturbation theorem applied

to the eigenvalues of the symmetric operator |F ∗ω| shows that, ordering the cos θα in

the above way, the map p → cosθα(p) is locally Lipschitz on M , for each α. A complex

direction of F is a real two-plane P of TpM such that dF (P ) is a complex line of TF (p)N ,

i.e., JdF (P ) ⊂ dF (P ). Similarly, P is said to be a Lagrangian direction of F if ω vani-

shes on dF (P ), that is, JdF (P )⊥dF (P ). The immersion F has no complex directions iff

cos θα < 1 ∀α. M is a complex submanifold iff cosθα = 1 ∀α, and is a Lagrangian subman-

ifold iff cosθα = 0 ∀α. We say that F has equal Kähler angles if θα = θ ∀α. Complex and

Lagrangian submanifolds are examples of such case. If F is a complex submanifold, then

Jω is the complex structure induced by J of N . The Kähler angles are some functions

that at each point p of M measure the deviation of the tangent plane TpM of M from a

complex or a Lagrangian subspace of TF (p)N . This concept was introduced by Chern and

Wolfson [Ch-W] for surfaces, namely F ∗ω = cos θ V olM . This cos θ may have negative

values and is smooth on all M . In our definition, for n = 1, we demanded cos θ ≥ 0, that

is, it is the modulus of the cos θ given for surfaces. This may make our cos θ do not be

smooth. We have chosen this definition, because in higher dimensions we do not have a

preferential orientation assigned to the real planes span{Xα, Yα}.

Our main aim is to find conditions for a minimal submanifold F to be Lagrangian

or complex, or M to be a Kähler manifold with respect to Jω. The first result in this

direction is due to Wolfson, for the case n = 1:

Theorem 1.1 [W] If M is a real compact surface and N is a complex Kähler-Einstein

surface with R < 0, anf if F is minimal with no complex points, then F is Lagrangian.

Some results of [S-V] are a generalization of the above theorem to higher dimensions.

In this paper we study the case of equal Kähler angles. Let us denote by ∇XdF (Y ) =
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∇dF (X, Y ) the second fundamental form of F . It is a symmetric tensor and takes values

in the normal bundle NM = (dF (TM))⊥. F is minimal iff tracegM∇dF = 0. Let ( )⊥

denote the orthogonal projection of F−1TN onto the normal bundle. If F is an immer-

sion with no complex directions at p and {Xα, Yα} diagonalizes F ∗ω at p, then {dF (Zα),

dF (Zᾱ), (JdF (Zα))
⊥, (JdF (Zᾱ))

⊥} constitutes a complex basis of T c
F (p)N , where

Zα =
Xα − iYα

2
= “α”, Zᾱ = Zα =

Xα + iYα

2
= “ᾱ” (1.3)

are complex vectors of the complexified tangent space of M at p. We extend to the com-

plexified vector bundles the Riemannian tensor metric gM (sometimes denoted by 〈, 〉),
the curvature tensors of M and N , and any other tensors that will occur, always by lC-

multilinearity. On M the Ricci tensor of N can be described by the following expression

([S-V]): for U, V ∈ TF (p)N ,

RicciN(U, V ) =
∑

1≤µ≤n

4

sin2 θµ
RN (U, JV, dF (µ), (JdF (µ̄))⊥), (1.4)

where RN denotes the Riemannian curvature tensor of N . An application of Codazzi

equation to the above expression proves that, if N is Kähler-Einstein with R 6= 0, Theo-

rem 1.1 can be generalized to any dimension for totally geodesic maps ([S-V]).

We can also obtain the same conclusion to “broadly-pluriminimal” immersions for

n = 2, and N Kähler-Einstein with negative Ricci tensor ([S-V]). A minimal immersion

F is said to be broadly-pluriminimal, if, for each p ∈ Ω0
2k, with k ≥ 1, F is pluriharmonic

with respect to any gM -orthogonal complex structure J̃ = Jω⊕J ′ on TpM where J ′ is any

gM -orthogonal complex structure of Kω at p, that is, (∇dF )(1,1) = 0. The (1,1)-part of

∇dF is just given by (∇dF )(1,1)(X, Y ) = 1
2
(∇dF (X, Y )+∇dF (J̃X, J̃Y )) ∀X, Y ∈ TpM.

If Kω = 0, this means that F is pluriharmonic with respect to the almost complex struc-

ture Jω (see for example [O-V]). In this case, we say that F is pluriminimal in the usual

sense, or simply pluriminimal. Pluriharmonic immersions are obviously minimal. If F has

equal Kähler angles, then only Ω0
2n is considered, where Kω = 0 and J̃ = Jω. Products

of minimal real surfaces of Kähler surfaces, totally geodesic submanifolds, minimal La-

grangian submanifolds, and complex submanifolds are examples of broadly-pluriminimal

submanifolds. We will see in sections 2 and 3 that the concept of broadly-pluriminimality,

for immersions without complex directions and with equal Kähler angles, may have a geo-

metric interpretation in terms of the torsion of a new Riemannian connection on TM ,

described through an isomorphism Φ from the tangent bundle of M into the normal bun-

dle. Pluriminimal immersions with equal Kähler angles immersed into Kähler-Einstein

manifolds, that are not complex submanifolds, have constant Kähler angle, and only exist

on Ricci-flat manifolds. In this case, Φ defines a parallel homothetic isomorphism between

TM and NM .
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For a minimal immersion F with no complex directions we consider the locally Lips-

chitz map, symmetric on the Kähler angles,

κ =
∑

1≤α≤n

log

(

1 + cos θα
1− cos θα

)

. (1.5)

This map is smooth on each Ω0
2k, non-negative, and vanishes at Lagrangian points. It is

an increasing map on each cos θα. In [S-V] we have given an expression for △κ at a point

p0 ∈ Ω0
2k, which we prove in the appendix of this paper, namely,

△κ = 4i
∑

β

RicciN (JdF (β), dF (β̄)) (1.6)

+
∑

β,µ

32

sin2 θµ
Im(RN(dF (β), dF (µ), dF (β̄), JdF (µ̄)+i cos θµdF (µ̄)))

−
∑

β,µ,ρ

64(cos θµ+cos θρ)

sin2 θµ sin
2 θρ

Re(g(∇βdF (µ), JdF (ρ̄))g(∇β̄dF (ρ), JdF (µ̄)))

+
∑

β,µ,ρ

32(cos θρ − cos θµ)

sin2 θµ sin
2 θρ

(|g(∇βdF (µ), JdF (ρ))|2 + |g(∇̄βdF (µ), JdF (ρ))|2)

+
∑

β,µ,ρ

32(cos θµ + cos θρ)

sin2 θµ
(|〈∇βµ, ρ〉|2 + |〈∇β̄µ, ρ〉|2),

where {Xα, Yα}1≤α≤n is a gM -orthonormal local frame of M , with Yα = JωXα for α ≤ k,

{Xα, Yα}α≥k+1 any gM -orthonormal frame of Kω, and which at p0 diagonalizes F ∗ω. For

F pluriminimal on Ω0
2n and N Kähler-Einstein , we can get the following very simple final

expression on Ω0
2n ([S-V])

△κ = −2R(
∑

1≤β≤n

cos θβ). (1.7)

If F has equal Kähler angles, then the expression of △κ given in (1.6) can also be sub-

stantially simplified. Minimal surfaces with constant curvature and constant Kähler angle

in complex space forms have been classified in [O]. Conditions on the curvature of M ,

N , and/or constant equal Kähler angles lead to some conclusions in our case as well,

as we show in the theorems below. Henceforth, we assume N is Kähler-Einstein. The

expression for △κ, where the Ricci tensor of N appears, and the Weitzenböck formula for

F ∗ω, leading to an integral equation involving the scalar curvature R, some trigonometric

functions of the common Kähler angle, and the gradient of its cosine (Proposition 4.2),

are our tools to obtain the results of this paper. In section 4 we prove our main results,

namely:

Theorem 1.2 Let F be a minimal immersion of a compact oriented manifold M , into a

Kähler-Einstein manifold N , with equal Kähler angles.

(i) If n = 2 and R 6= 0, then F is either a complex or a Lagrangian submanifold.
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(ii) If n ≥ 3, R < 0, and F has no complex points, then F is Lagrangian.

(iii) If n ≥ 3, R = 0, and F has no complex points, then the common Kähler angle must

be constant.

The conclusions in (i) and (ii) give a generalization of Theorem 1.1 to higher dimensions

and equal Kähler angles. The case n = 2 is the most special, because, in this dimension,

immersions with equal Kähler angles have harmonic F ∗ω, as we will see in section 3. The

case n = 3 also has special properties. If the angle is constant we may allow R > 0:

Theorem 1.3 Let F be minimal with constant equal Kähler angles, M compact, ori-

entable, and R 6= 0. Then, F is either a complex or a Lagrangian submanifold.

Theorem 1.4 Let F be minimal with equal Kähler angles, and M compact, orientable,

with non-negative isotropic scalar curvature. If n = 2 or 3, then one of the following cases

holds:

(i) M is a complex submanifold of N .

(ii) M is a Lagrangian submanifold of N .

(iii) R = 0 and cos θ = constant 6= 0, 1, Jω is a complex integrable structure, with

(M,Jω, gM) a Kähler manifold.

For any n ≥ 1, any R, and constant equal Kähler angle, (i), (ii) or (iii) hold as well.

This theorem can be applied, for instance, to flat minimal tori on Calabi-Yau manifolds,

or to spheres or products of S2 with S2 or with flat tori minimaly immersed into Kähler-

Einstein manifolds with positive scalar curvature.

2 The morphism Φ

We consider the following morphism of vector bundles

Φ : TM → NM

X → (JdF (X))⊥

We easily verify that

Φ(X) = JdF (X)− dF (F ∗ω(X)). (2.1)

Both TM and NM are real vector bundles of the same dimension 2n. F has no complex

directions iff Φ is an isomorphism. In fact Φ(X) = 0, iff JdF (X) = dF (Y ) for some

Y , i.e., span{X, Y = “JX”} is a complex direction of F . Assume there are no complex

directions. Then,

ĝ(X, Y ) = gM(X, Y )− gM(F ∗ω(X), F ∗ω(Y )) (2.2)
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defines a Riemannian metric on M . With this metric, Φ : (TM, ĝ) → (NM, g) is an

isomorphism of Riemannian vector bundles. Let us denote by ∇, ∇̂, ∇⊥
, and ∇′, respec-

tively, the Levi-Civita connection of (M, gM), the Levi-Civita connection of (M, ĝ), the

usual connection of NM induced by the Levi-Civita connection of N , and the connection

on TM that makes the isomorphism Φ parallel, namely ∇′ = Φ−1∗∇⊥
. We will also

denote by ∇ the Levi-Civita connection of N and the induced connection on F−1TN , as

well. Thus, if U is a smooth section of NM ⊂ F−1TN , and X, Y are smooth vector fields

on M , we have
∇⊥

X U = (∇XU)⊥ Φ(∇′
XY ) = ∇⊥

X (Φ(Y )).

The connections ∇ and ∇̂ have no torsion, because they are Levi-Civita, but ∇′ may

have non-zero torsion T ′. Since both ∇̂ and ∇′ are Riemannian connections of TM for

the same Riemannian metric ĝ, then T ′ = 0 iff ∇̂ = ∇′ iff Φ is parallel. Note that,

if F is Lagrangian, then Φ(X) = JdF (X) ∈ NM , J(NM) = dF (TM), and ĝ = gM ,

∇̂=∇. Therefore, ∇XΦ (Y ) = (J∇XdF (Y ))
⊥
= 0, that is, Φ is parallel, and so ∇′=∇,

as well. In the next section (Corollary 3.2), we will see a converse of this. We extend

Φ : TM c → NM c to the complexified spaces by lC-linearity.

Lemma 2.1 If {Xα, Yα} is a diagonalizing gM-orthonormal basis of F ∗ω at p, then at p,

and for each α, β
Φ(T ′(Zα, Zβ̄)) = i(cos θα + cos θβ)∇Zα

dF (Zβ̄)

Φ(T ′(Zα, Zβ)) = i(cos θα − cos θβ)∇Zα
dF (Zβ).

Proof.
Φ(∇′

XY ) = ∇⊥
X (Φ(Y )) = (∇X(Φ(Y )))

⊥
= (∇X(JdF (Y )− dF (F ∗ω(Y ))))

⊥

= (J∇XdF (Y ) + JdF (∇XY )−∇XdF (F ∗ω(Y )))
⊥
.

Therefore, using the symmetry of the ∇dF and the fact that ∇ is torsionless,

Φ(T ′(X, Y )) = Φ(∇′
XY −∇′

YX− [X, Y ]) = −∇XdF (F ∗ω(Y ))+∇Y dF (F ∗ω(X)). (2.3)

The lemma follows now immediately. ✷

For each U ∈ NMp, let us denote by AU : TpM → TpM the symmetric operator

gM(AU(X), Y ) = g(∇dF (X, Y ), U). From Lemma 2.1 and (2.3) we have

Proposition 2.1 If F is an immersion without complex directions, then:

(i) Φ is parallel iff F ∗ω anti-commutes with AU , ∀U ∈ NM .

(ii) If F has equal Kähler angles, on Ω0
2n, T

′ is of type (1, 1) with respect to Jω.

(iii) On Ω0
2n, F is pluriminimal iff T ′ is of type (2, 0) + (0, 2) with respect to Jω.

(iv) If F is broadly-pluriminimal, then, for p ∈ Ω0
2k with k ≥ 1, T ′ is of type (2, 0)+(0, 2)

with respect to any gM-orthogonal complex structure J̃ = Jω⊕J ′ on TpM , where J ′ is any

gM -orthogonal complex structure of Kω.
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Remark 1. If we call ωNM the restriction of the Kähler form ω to the normal bundle

NM , we see that, if {Xα, Yα} is a diagonalizing gM -orthonormal basis of F ∗ω at a point

p, then {Uα = Φ( Yα

sin θα
), Vα = Φ( Xα

sin θα
)} is a diagonalizing g-orthonormal basis of ωNM .

Moreover, NM has the same Kähler angles as F . Let JNM denote the complex structure

on NM defined by this basis, that is, the one that comes from the polar decomposition

of ωNM . Then, ΦJω = −JNMΦ.

We should also remark the following:

Proposition 2.2 If F is an immersion with parallel 2-form F ∗ω, then the Kähler angles

are constant and, in particular, M = Ω0
2k for some k. In this case, considering TM with

the Levi-Civita connection ∇, Kω and K⊥
ω are parallel sub-vector bundles of TM , and

Jω ∈ C∞(K⊥∗
ω ⊗K⊥

ω ), g̃, ĝ ∈ C∞(
⊙2 T ∗M) are parallel sections. Furthermore, (X, Y, Z)→

g(∇ZdF (X), JdF (Y )) is symmetric on TM , and, if F has no complex directions, ∇̂=∇.

Moreover, if cos θα1
> . . . > cos θαr

are the distinct eigenvalues of F ∗ω, the corresponding

eigenspaces Eαt
define a smooth integrable distribution of TM whose integral submanifolds

are parallel submanifolds of M . The integral submanifolds of Eαr
are isotropic in N if

cos θαr
= 0, and the ones of Eα1

are complex submanifolds of N if cos θα1
= 1. The other

ones are Kähler manifolds with respect to Jω, and F restricted to each one of them is an

immersion of constant equal Kähler angles θαt
with respect to J .

Proof. If X, Y are smooth vector fields on M and Z ∈ TpM , an elementary computation

gives

∇ZF
∗ω(X, Y ) = −g(∇ZdF (X), JdF (Y )) + g(∇ZdF (Y ), JdF (X)), (2.4)

which proves the symmetry of (X, Y, Z) → g(∇ZdF (X), JdF (Y )). From (2.2) we see

that ĝ is parallel. Consequently, outside complex directions, ∇ = ∇̂. If we parallel

transport a diagonalizing orthonormal basis {Xα, Yα} of F ∗ω at p0 along geodesics, on

a neighbourhood of p0, since F ∗ω is parallel we get a diagonalizing orthonormal frame

on a whole neighbourhood with the property ∇Xα(p0) = ∇Yα(p0) = 0. It also follows

that cos θα remains constant along geodesics, so it is constant, and Jω(Xα) = Yα on a

neighbourhood of p0, with ∇Jω = 0 at p0, and so Jω is parallel. Similarly we see that g̃

is parallel. If we extend F ∗ω to the complexified tangent space T c
p0
M , then F ∗ω(Zα) =

i cos θαZα, and F ∗ω(Zᾱ) = −i cos θαZᾱ. Obviouly, the corresponding eigenspaces of F ∗ω,

are parallel sub-vector bundles of T cM . ✷

3 Immersions with equal Kähler angles

If F has equal Kähler angles, then

F ∗ω = cos θ Jω and ĝ = sin2 θ gM ,
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with cos θ a locally Lipschitz map on M , smooth on the open set where it does not

vanish, and Ω0
2k = ∅ ∀k 6= 0, n. Note that sin2 θ and cos2 θ are smooth on all M . The set

L = cos θ−1({0}) is the set of Lagrangian points, for, at these points, the tangent space

of M is a Lagrangian subspace of the tangent space of N . Its subset of interior points is

Ω0
0. Similarly, we say that C = cos θ−1({1}) is the set of complex points. On the open

set Ω0
2n = cos θ−1(IR ∼ {0}) = M ∼ L, Jω defines a smooth almost complex structure

gM -orthogonal. On the open set cos θ−1(IR ∼ {1}) = M ∼ C, ĝ is a smooth metric

conformally equivalent to gM . Thus, if n ≥ 2, ∇̂= ∇ iff θ is constant. Since the Kähler

angles are equal, any smooth local orthonormal frame of the type {Xα, Yα = JωXα}
diagonalizes F ∗ω on the whole set where it is defined. From F ∗ω = cos θJω, we get

∇XF
∗ω = d cos θ(X)Jω + cos θ∇XJω, with Jω orthogonal to ∇XJω with respect to the

Hilbert-Schmidt inner product (because ‖Jω‖2 = 2n is constant). Hence, considering F ∗ω

an operator on TM , on Ω0
2n ∪ Ω0

0

‖∇F ∗ω‖2 = 2n‖∇ cos θ‖2 + cos2 θ‖∇Jω‖2. (3.1)

We observe that M ∼ (Ω0
2n ∪ Ω0

0) is a set of Lagrangian points with no interior. On Ω0
2n,

we have then, ∇F ∗ω = 0 iff ∇Jω = 0 and θ is constant. Note that ‖∇F ∗ω‖2, considering
F ∗ω an operator on TM , is twice the square norm when considering F ∗ω a 2-form. From

(2.3) we get, on M ∼ C,

Φ(T ′(X, Y )) = 2 cos θ(∇dF )(1,1)(JωX, Y ). (3.2)

The right-hand side of (3.2) is defined to be zero at a Lagrangian point. Consequentely

Proposition 3.1 If F is an immersion with equal Kähler angles and without complex

points, then T ′ = 0, that is, ∇′= ∇̂ iff Φ is parallel iff F is Lagrangian or pluriminimal.

In particular, if F is minimal, Φ is parallel iff F is broadly-pluriminimal.

Let Re(u+ iv) = u, for u, v ∈ NM .

Proposition 3.2 If F is any immersion with equal Kähler angles, then, outside complex

and Lagrangian points,

Φ(
1−n

4
∇ log sin2 θ) =

4 cos θ

sin2 θ
Re



i
∑

β,µ

(g(∇̄µdF (µ), JdF (β))−g(∇̄µdF (β), JdF (µ)))Φ(β̄)


 ,

where ∇ log sin2 θ is the gradient with respect to gM .

If F is a complex submanifold on a open set, then Jω is the induced complex structure on

M and∇dF is of type (2, 0). Applying Proposition 2.2 on Ω0
0, and Proposition 3.1 on open

sets without complex and Lagrangian points, and noting that {Φ(β),Φ(β̄) = Φ(β)}1≤β≤n

multiplied by
√
2

sin θ
constitutes an unitary basis of NM c, we immediately conclude
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Corollary 3.1 If F is an immersion with equal Kähler angles, and n ≥ 2, then θ is

constant iff
∑

µ

g(∇̄µdF (µ), JdF (β)) =
∑

µ

g(∇̄µdF (β), JdF (µ)) ∀β. (3.3)

Note that (3.3) is a sort of symmetry property, and the first term is just n
2
g(H, JdF (β)),

where H = 1
2n
tracegM∇dF = 2

n

∑

µ∇dF (µ̄, µ) is the mean curvature of F .

Theorem 3.1 If n ≥ 2 and F is a pluriminimal immersion with equal Kähler angles then

cos θ = constant. Moreover, if it is not a complex submanifold, then ∇= ∇̂= ∇′, and
N must be Ricci-flat. In particular, Φ defines a parallel homothetic isomorphism from

(TM, gM) onto (NM, g).

Proof. On a neighbourhood of a non-complex point, from Proposition 3.1, ∇̂ = ∇′,
and from Corollary 3.1, cos θ is constant. Then ∇̂ = ∇, as well. So if F is not a

complex submanifold, it has no complex points anywhere. Finally, (1.7) for pluriminimal

immersions with κ = constant gives R = 0. ✷

The above theorem and Proposition 3.1 lead to:

Corollary 3.2 If F is a minimal immersion with equal Kähler angles, without complex

points, n ≥ 2, and R 6= 0, then F is Lagrangian iff Φ is parallel.

To prove Proposition 3.2 we will need to relate the three connections of M , ∇, ∇̂and ∇′.
Let {e1, . . . , e2n} = {Xµ, Yµ = JωXµ}1≤µ≤n be a local gM -orthonormal frame outside the

Lagrangian and complex set, and ∂1, . . . , ∂2n a local frame of M defined by a coordinate

chart. Set gij = gM(∂i, ∂j), ĝij = ĝ(∂i, ∂j) = sin2 θgij , and es =
∑

i λsi∂i. The Christofel

symbols are given by 2Γ̂k
ij =

∑

s ĝ
ks(∂iĝsj+∂j ĝis−∂sĝij) = δkj∂i log sin

2 θ+δki∂j log sin
2 θ−

∑

s g
ksgij∂s log sin

2 θ + 2Γk
ij . Hence

∇̂∂i∂j −∇∂i∂j =
∑

k

(Γ̂k
ij − Γk

ij)∂k =
1

2
(∂i(log sin2 θ)∂j + ∂j(log sin

2 θ)∂i − gij∇(log sin2 θ))

Since
∑

ij gijλsiλsj = 1,
∑

s ∇̂eses−∇eses =
∑

sij λsiλsj(∇̂∂i∂j−∇∂i∂j) = (1−n)∇ log sin2 θ.

Therefore,
∑

µ

∇̂̄µµ−∇̄µµ =
1

4

∑

µ

(∇̂Xµ
Xµ+∇̂Yµ

Yµ−∇Xµ
Xµ−∇Yµ

Yµ)− i(∇̂Xµ
Yµ−∇̂Yµ

Xµ−∇Xµ
Yµ+∇Yµ

Xµ)

=
1

4

∑

s

(∇̂eses −∇eses) +
i

4

∑

µ

([Yµ, Xµ]− [Yµ, Xµ]) =
(1− n)

4
∇ log sin2 θ. (3.4)

Set S ′(X, Y ) = ∇′
XY − ∇̂XY . Then S ′(X, Y )− S ′(Y,X) = T ′(X, Y ). Similarly we get
∑

µ

∇′̄
µµ− ∇̂̄µµ =

1

4
tracegMS ′ − i

4

∑

µ

T ′(Xµ, Yµ). (3.5)



Salavessa - Valli 10

Lemma 3.1 ∀X ∈ TpM ,
∑

i ĝ(S
′(ei, ei), X) = −∑i ĝ(T

′(ei, X), ei).

Proof. We may assume that the local referencial ∂i is ĝ-orthonormal at a fixed poit p0.

On a neighbourhood of p0, we define Γ′k
ij and S ′k

ij as

∇′
∂i∂j =

∑

k

Γ′k
ij∂k S ′(∂i, ∂j) =

∑

k

S ′k
ij∂k =

∑

k

(Γ′k
ij − Γ̂k

ij)∂k.

Then T ′
ij
k = Γ′k

ij − Γ′k
ji , and, at p0, Γ′k

ij = ĝ(∇′
∂i∂j , ∂k), S ′k

ij = ĝ(S ′(∂i, ∂j), ∂k) =

Γ′k
ij − Γ̂k

ij. ∇′ is a Riemannian connection with respect to ĝ. Then

∂iĝjk(p0) = ĝ(∇′
∂i∂j , ∂k) + ĝ(∂j ,∇′

∂i∂k) = Γ′k
ij + Γ′j

ik

Hence, at p0

2Γ̂k
ij =

∑

s

ĝks(∂iĝsj + ∂j ĝis − ∂sĝij) = Γ′j
ik + Γ′k

ij + Γ′k
ji + Γ′i

jk − Γ′j
ki − Γ′i

kj

= (Γ′k
ij + Γ′k

ji)+(Γ′j
ik − Γ′j

ki)+(Γ′i
jk − Γ′i

kj) = (Γ′k
ij + Γ′k

ji) + T ′j
ik + T ′i

jk

But Γ′k
ij + Γ′k

ji = 2Γ′k
ij + (Γ′k

ji − Γ′k
ij) = 2Γ′k

ij + T ′k
ji . Thus

S ′k
ij = Γ′k

ij − Γ̂k
ij =

1

2
(T ′k

ij − T ′j
ik + T ′i

kj).

That is, at p0, ĝ(S ′(∂i, ∂j), ∂k) =
1
2
(ĝ(T ′(∂i, ∂j), ∂k)− ĝ(T ′(∂i, ∂k), ∂j) + ĝ(T ′(∂k, ∂j), ∂i)).

We may assume that, at p0, ∂i(p0) =
ei

sin θ
, leading to the Lemma. ✷

Proof of Proposition 3.2. Following the proof of Lemma 2.1, Φ(∇′
Xµ−∇Xµ) =

= ((J − i cos θ)∇XdF (µ))⊥ . Hence, from (3.4),

Φ(
(1−n)

4
∇ log sin2 θ) = Φ(

∑

µ

∇̂̄µµ−∇̄µµ) = ((J − i cos θ)
nH

2
)
⊥
−
∑

µ

Φ(∇′̄
µµ−∇̂̄µµ).

But, from (3.5),
∑

µ Φ(∇′̄
µµ − ∇̂̄µµ) =

1
4
Φ(tracegMS ′)− i

4
Φ(
∑

µ T
′(Xµ, Yµ)). The skew-

symmetry of T ′ and (3.2) implies that

Φ(
∑

µ

T ′(Xµ, Yµ)) = −2i
∑

µ

Φ(T ′(µ, µ̄)) = 4 cos θ∇µdF (µ̄) = 2n cos θH.

Thus,
∑

µ Φ(∇′̄
µµ− ∇̂̄µµ) =

1
4
Φ(tracegMS ′)− ni

2
cos θH. Therefore,

Φ(
(1− n)

4
∇ log sin2 θ) =

1

4
(2n(JH)⊥ − Φ(TracegMS ′)). (3.6)

Using Lemma 3.1, (3.2), and Φ(µ) = JdF (µ)− i cos θdF (µ), we have

Φ(TracegMS ′) =
∑

j,k

ĝ(S ′(ej , ej),
ek

sin θ
)Φ( ek

sin θ
) =

∑

j,k

−ĝ(T ′(ej,
ek

sin θ
), ej)Φ(

ek

sin θ
)

=
−4

sin2 θ

∑

µ,β

((ĝ(T ′(µ, β), µ̄)+ĝ(T ′(µ̄, β), µ))Φ(β̄) + (ĝ(T ′(µ, β̄), µ̄)+ĝ(T ′(µ̄, β̄), µ))Φ(β))

= − 4

sin2 θ

∑

µ,β

(g(Φ(T ′(µ̄, β)),Φ(µ))Φ(β̄) + g(Φ(T ′(µ, β̄)),Φ(µ̄))Φ(β) )

=
8i cos θ

sin2 θ

∑

µ,β

(g(∇̄µdF (β), JdF (µ))Φ(β̄)− g(∇µdF (β̄), JdF (µ̄))Φ(β)).
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Writing (JH)⊥ in terms of Φ(β) and Φ(β̄),

2n(JH)⊥ =
∑

β

4n

sin2 θ
(g(JH,Φ(β))Φ(β̄) + g(JH,Φ(β̄))Φ(β))

=
∑

β,µ

8i cos θ

sin2 θ
(g(∇̄µdF (µ), JdF (β))Φ(β̄)− g(∇̄µdF (µ), JdF (β̄))Φ(β)),

and substituing these equations into (3.6), we prove Proposition 3.2. ✷

3.1 The Weitzenböck formula for F ∗ω

For simplicity let us use the notation

gXY Z = g(∇XdF (Y ), JdF (Z)).

We also observe that, from

∀µ i

2
cos θ = F ∗ω(µ, µ̄), (3.7)

valid on an open set, and from (2.4), we obtain ∀µ

i

2
d cos θ(X) = d(F ∗ω(µ, µ̄))(X) =∇XF

∗ω(µ, µ̄) + F ∗ω(∇Xµ, µ̄) + F ∗ω(µ,∇X µ̄)

= −gXµµ̄+ gX µ̄µ+ 2(〈∇Xµ, µ̄〉+ 〈∇X µ̄, µ〉)F ∗ω(µ, µ̄)

= −gXµµ̄+ gX µ̄µ (no sumation over µ). (3.8)

Then (3.3) is equivalent to g(∇XdF (µ), JdF (µ̄)) = g(∇XdF (µ̄), JdF (µ)), ∀µ (or some

µ). From JωZα = iZα, JωZᾱ = −iZᾱ and the fact that Jω is gM -orthogonal, we get, on

Ω0
2n, ∀α, β, and ∀v ∈ TM

〈∇vJω(α), β〉 = 2i〈∇vα, β〉, 〈∇vJω(α), β̄〉 = 0. (3.9)

Recall that, if ξ is a r+1-form on M , r ≥ 0, with values on a vector bundle E over M

with a connection ∇E
, then δξ, the divergence of ξ, is the r-form on M with values on E

given by

δξ(u1, . . . , ur) = −
∑

s

∇E

es
ξ(es, u1, . . . , ur),

where e1, . . . , em is an orthonormal basis of TpM , ui ∈ TpM , and ∇E
ξ is the covariant

derivative of ξ on
∧r+1 T ∗M ⊗E. Thus, δ is the formal adjoint of d on forms (cf. [E-L]).

Note that δF ∗ω(X) = 〈δF ∗ω,X〉, ∀X ∈ TpM , considering on the left-hand side F ∗ω a

(closed) 2-form on M and on the right-hand side an endomorphism of TM .

Proposition 3.3 Let F be an immersion with equal Kähler angles and ∇ cos θ denote

the gradient with respect to gM . On Ω0
2n, and considering F ∗ω an endomorphism of TM .

δF ∗ω = (n− 2)Jω(∇ cos θ), cos θ(δJω) = (n− 1)Jω(∇ cos θ).
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Thus,

(i) For n = 1, δJω = 0 (obviously!), and δF ∗ω = 0 iff θ is constant.

(ii) For n = 2, δF ∗ω = 0. Moreover, δJω = 0 iff θ is constant.

(iii) For n 6= 1, 2, δF ∗ω = 0 iff δJω = 0 iff θ is constant.

Proof. Considering F ∗ω a 2-form onM , using the symmetry of∇dF and (2.4), ifX∈TpM ,

δ(F ∗ω)(X) =
∑

µ

−2∇µF
∗ω(µ̄, X)− 2∇̄µF

∗ω(µ,X) =
∑

µ

2gµµ̄X−2gµXµ̄+2gµ̄µX−2gµ̄Xµ

=2
∑

µ

(−gXµµ̄+ gX µ̄µ)− 4
∑

µ

(gµ̄Xµ− gµ̄µX).

From (3.8), ni
2
d cos θ(X) =

∑

µ−gXµµ̄+ gX µ̄µ. Therefore,

δ(F ∗ω)(X) = nid cos θ(X)− 4
∑

µ

∇̄µF
∗ω(µ,X). (3.10)

Since F ∗ω is of type (1, 1) with respect to Jω, and ∀Z ∈ T c
pM , ∀µ, β, 〈∇Zβ, µ〉 =

−〈β,∇Zµ〉, we get using (3.9)

∇ZF
∗ω(µ, β) = d(F ∗ω(µ, β))(Z)− F ∗ω(∇Zµ, β)− F ∗ω(µ,∇Zβ)

= 2i cos θ〈∇Zµ, β〉 = cos θ〈∇ZJω(µ), β〉. (3.11)

Note that, since J2
ω = −Id, ∇XJω(JωY ) = −Jω(∇XJω(Y )), ∀X, Y ∈ TpM . So

4
∑

µ

∇̄µJω(µ) =
∑

µ

∇Xµ
Jω(Xµ) +∇Yµ

Jω(Yµ) + i∇Yµ
Jω(Xµ)− i∇Xµ

Jω(Yµ)

= −δJω + i
∑

µ

(−∇Xµ
Jω(JωXµ)−∇Yµ

Jω(JωYµ)) = −(δJω + iJω(δJω)).

Hence, from (3.11), and since Jω is gM -orthogonal, ∀β
∑

µ

∇̄µF
∗ω(µ, β) = −cos θ

4
〈δJω + iJω(δJω), β〉 = −cos θ

2
〈δJω, β〉.

Moreover, id cos θ(β) = d cos θ(Jωβ) = 〈∇ cos θ, Jωβ〉 = −〈Jω(∇ cos θ), β〉. From (3.10),

δF ∗ω(β) = 〈−nJω(∇ cos θ)+2 cos θ δJω , β〉. Thus, if we consider F ∗ω an endomorphism

of TM , and since 〈, 〉, Jω, and F ∗ω are real operators,

δF ∗ω = −nJω(∇ cos θ) + 2 cos θ δJω. (3.12)

On the other hand, F ∗ω = cos θJω. Then, an elementary computation gives

δF ∗ω = −Jω(∇ cos θ) + cos θ δJω. (3.13)

Comparing (3.12) with (3.13) we get the Proposition. ✷

Remark 2. One may check the equation in Proposition 3.2 by using the equalities given
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in the above Proposition and its proof.

If we apply the Weitzenböck formula to the 2-form F ∗ω, for an immersion F : M → N

we get (see e.g [E-L] (1.32))

1

2
△‖F ∗ω‖2 = −〈△F ∗ω, F ∗ω〉+ ‖∇F ∗ω‖2 + 〈SF ∗ω, F ∗ω〉, (3.14)

where 〈, 〉 denotes the Hilbert-Schmidt inner product for 2-forms, and S is the Ricci

operator of
∧2 T ∗M . We note that we use the the sign convention△φ = +TracegMHess φ,

for φ a smooth real map on M . This sign is opposite to the one of [E-L], but here we

use the same sign as in [E-L] for the Laplacian of forms △ = dδ + δd. If R denotes the

curvature tensor of
∧2 T ∗M , and X, Y, u, v ∈ TpM , ξ ∈ ∧2 T ∗

pM , then

R(X, Y )ξ (u, v) = −ξ(RM(X, Y )u , v)− ξ(u , RM(X, Y )v),

SF ∗ω(X, Y ) =
∑

1≤i≤2n

−R(ei, X)F ∗ω (ei, Y ) +R(ei, Y )F ∗ω (ei, X),

Where RM denotes the curvature tensor of M . In general, we use the following sign

convention for curvature tensors: RM(X, Y )Z = −∇X∇Y Z +∇Y∇XZ +∇[X,Y ]Z. Then,

RM(X, Y, Z,W ) = gM(RM(X, Y )Z,W ). It is straightforward to prove

Lemma 3.2 If {Xα, Yα} is a diagonalizing orthonormal basis of F ∗ω at p,

〈SF ∗ω, F ∗ω〉 =
∑

µ

4 cos2 θµRicciM (µ, µ̄) +
∑

µ,ρ

8 cos θµ cos θρR
M(ρ, ρ̄, µ, µ̄)

=
∑

µ,ρ

4(cos θµ+cos θρ)
2RM(ρ, µ, ρ̄, µ̄) + 4(cos θµ−cos θρ)

2RM(ρ̄, µ, ρ, µ̄).

In particular, if F has equal Kähler angles at p, then, at p,

〈SF ∗ω, F ∗ω〉 = 16 cos2 θ
∑

ρ,µ

RM(ρ, µ, ρ̄, µ̄).

Moreover, if (M,Jω, gM) is Kähler in a neighbourhood of p, then 〈SF ∗ω, F ∗ω〉 = 0.

For example, if M has constant sectional curvature K, 〈SF ∗ω, F ∗ω〉 = 4(n−1)K‖F ∗ω‖2.
If (M,Jω, gM) is a Kähler manifold of constant holomorphic sectional curvature K then

〈SF ∗ω, F ∗ω〉 = 4K(n∑µ cos
2 θµ− (

∑

µ cos θµ)
2) has constant sign, with equality to zero

iff K = 0 or F has equal Kähler angles. If F ∗ω is parallel, from (3.14), we obtain that

〈SF ∗ω, F ∗ω〉 = 0. In the latter case, if n ≥ 2 and M has constant sectional curvature,

then, either F is Lagrangian, or K = 0.
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We recall the concept of non-negative isotropic sectional curvature, for M with dimen-

sion ≥ 4, defined by Micallef and Moore in [Mi-Mo]. Let

Kisot(σ) =
RM(z, w, z̄, w̄)

||z ∧ w||2 ,

where σ = spanlC{z, w} is a totally isotropic complex two-plane in T cM , that is, u ∈ σ ⇒
gM(u, u) = 0, and where RM(x, y, u, v) is extend to the complexified tangent space by

lC-multilinearity. The curvature of M is said to be non-negative (resp. positive) on totally

isotropic two-planes at p, if K(σ) ≥ 0 (resp. > 0) whenever σ ⊂ T c
pM is a totally isotropic

two-plane over p. If M is compact, simply connected and has positive isotropic sectional

curvature everywhere, then M is homeomorphic to a sphere ([Mi-Mo]). If n ≥ 1, T 2n is

the flat torus, and S2 is the euclidean sphere of IR3, then S2×T 2n, S2×S2, S2×S2×T 2n

have isotropic sectional curvature ≥ 0 but not > 0. If {Xα, Yα} is any orthonormal basis

of TpM , and “µ” denotes Zµ as in (1.3), the expression

Sisot({Zα}1≤α≤n) =
∑

ρ6=µ

Kisot(spanlC{ρ, µ}) = 4
∑

ρ,µ

RM(ρ, µ, ρ̄, µ̄) (3.15)

is a hermitian trace of the curvature of M restricted to the maximal totally isotropic

subspace spanlC{Z1, . . . , Zn} of T cM . To require it to be ≥ 0, for all maximal totally

isotropic subspaces - and we will say that M has non-negative isotropic scalar curvature

- seems to be strictly weaker than to have non-negative isotropic sectional curvature. We

also note that, any other metric conformaly equivalent to the flat metric g0 on the 2n-torus

with non-negative isotropic scalar curvature is homothetically equivalent to g0, hence flat.

In fact, in general, if ĝ = eφgM is a conformaly equivalent metric on M , then, for each

gM -orthonormal basis {Xα, Yα}, Ŝisot({Ẑα}) = e−φSisot({Zα})− (n− 1)e−2φ(2△φ+ (n−
1)‖∇φ‖2), where Ẑα are defined by the ĝ-orthonormal basis {e−φ

2Xα, e
−φ

2 Yα}. To require

2△φ + (n − 1)‖∇φ‖2 ≤ 0, implies, in case of M compact, φ constant. We observe that,

if dimIRM ≥ 6, then Sisot ≡ 0 does not imply M to be flat, but Kisot ≡ 0 implies so. We

also note that, if dimIR(TpM) = 4, the set of curvature operators at p with zero isotropic

sectional curvature, is a vector space of dimension 9.

Recall that, for an immersion with equal Kähler angles, F ∗ω is parallel iff θ is constant

and if cos θ 6= 0, (M,Jω, gM) is a Kähler manifold. We are going to see that an extra

condition on the scalar isotropic curvature of M may imply itself that the Kähler angle

is constant and/or ∇Jω = 0. From Proposition 3.3, for any n ≥ 1, on Ω0
2n ∪ Ω0

0

‖δF ∗ω‖2 = (n− 2)2‖∇ cos θ‖2. (3.16)

In particular, if n 6= 2, ‖∇ cos θ‖2 can be extended as a smooth map on all M (recall that

Ω0
2n∪Ω0

0 is dense on M), and from (3.1) we get that cos2 θ‖∇Jω‖2 is also smooth. Observe
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that ‖δF ∗ω‖2 has the same value considering δF ∗ω a vector or a 1-form, but considering

F ∗ω a 2-form (as in (3.14)) ‖∇F ∗ω‖2 is half of the square norm when considering F ∗ω

an operator of TM (as in (3.1)). For n = 2, F ∗ω is co-closed, and so it is a harmonic

2-form. In fact, since F has equal Kähler angles, F ∗ω = cos θ(X1
∗ ∧ Y 1

∗ +X2
∗ ∧ Y 2

∗ ), and

so ∗F ∗ω = ±F ∗ω, where ∗ is the Hodge star-operator of (M, g), and the ± sign depends

on the orientation of the diagonalizing basis. In particular, F ∗ω is co-closed. For n ≥ 3,

F ∗ω is harmonic iff θ is constant.

Integrating (3.14) onM , using (3.16) and (3.1), and the fact that
∫

M〈△F ∗ω, F ∗ω〉V olM =
∫

M ‖δF ∗ω‖2V olM , we have

0 =
∫

M
((n−(n−2)2)‖∇ cos θ‖2+ 1

2
cos2 θ‖∇Jω‖2)V olM +

∫

M
〈SF ∗ω, F ∗ω〉V olM . (3.17)

The first integrand is smooth on M , for all n ( for n=2 it gives half of (3.1)). The factor

n−(n−2)2 is respectively, >0, =0, <0, according n = 2 or 3, n = 4, and n ≥ 5. If M has

non-negative isotropic scalar curvature, 〈SF ∗ω, F ∗ω〉 ≥ 0, by Lemma 3.2. We conclude:

Proposition 3.4 Let F be a non-Lagrangian immersion with equal Kähler angles of a

compact orientable M with non-negative isotropic scalar curvature into a Kähler manifold

N . If n = 2 or 3, then θ is constant and (M,Jω, gM) is a Kähler manifold. If n = 4,

(Ω0
2n, Jω, gM) is a Kähler manifold (but θ does not need to be constant). For any n ≥ 1

and θ constant, F ∗ω is parallel, i.e., (M,Jω, gM) is a Kähler manifold.

4 Minimal immersions with equal Kähler angles

Let us assume that F : M → N is minimal with equal Kähler angles. On a open set of

M ∼ L where a orthonormal frame {Xα, Yα = Jω(Xα)} is defined, we have from (3.11)

and (2.4), for any p, Z ∈ TpM and µ, γ,

2 cos θ〈∇Zµ, γ〉 = −i∇ZF
∗ω(µ, γ) = igZµγ − igZγµ. (4.1)

Note that F ∗ω(∇Zµ, γ̄) = i cos θ〈∇Zµ, γ̄〉 = −i cos θ〈µ,∇Z γ̄〉 = −F ∗ω(µ,∇Z γ̄). Hence, if

µ 6= γ, ∇ZF
∗ω(µ, γ̄) = d(F ∗ω(µ, γ̄))(Z) = 0. Thus

gZµγ̄ = gZ γ̄µ, ∀µ 6= γ (4.2)

From (3.8), for each µ,

− i

2
d cos θ(Z) = −∇ZF

∗ω(µ, µ̄) = gZµµ̄− gZ µ̄µ (no sumation over µ) (4.3)
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From (1.6), on M ∼ (L ∪ C)

△κ = 4i
∑

β

RicciN (JdF (β), dF (β̄))

+
32

sin2 θ

∑

β,µ

Im(RN (dF (β), dF (µ), dF (β̄), JdF (µ̄)+i cos θdF (µ̄))) (4.4)

−128 cos θ

sin4 θ

∑

β,µ,ρ

Re(gβµρ̄ gβ̄ρµ̄) (4.5)

+
64 cos θ

sin2 θ

∑

β,µ,ρ

(|〈∇βµ, ρ〉|2 + |〈∇β̄µ, ρ〉|2), (4.6)

where now κ = n log
(

1+cos θ
1−cos θ

)

. Since R(X, Y, Z, JW ) is skew-symmetric on (X, Y ) and

symmetric on (Z,W ),
∑

µ,β R
N(dF (β), dF (µ), dF (β̄), JdF (µ̄)) = 0. Then, from the Gauss

equation and minimality of F ,

(4.4) =
∑

β,µ

32

sin2 θ
Im(i cos θRN (dF (β), dF (µ), dF (β̄), dF (µ̄)))

=
32 cos θ

sin2 θ

∑

β,µ

RM(β, µ, β̄, µ̄) + g(∇dF (β, µ̄),∇dF (µ, β̄)).

Using the unitary basis {
√
2

sin θ
Φ(ρ),

√
2

sin θ
Φ(ρ̄)} of the normal bundle,

32 cos θ

sin2 θ

∑

β,µ

g(∇dF (β, µ̄),∇dF (µ, β̄)) =
64 cos θ

sin4 θ

∑

β,µ,ρ

(|gβµ̄ρ|2 + |gβµ̄ρ̄|2) =

=
64 cos θ

sin4 θ

∑

β,µ,ρ

(|gβρ̄µ|2 + |gµ̄βρ̄|2) =
128 cos θ

sin4 θ

∑

β,µ,ρ

|gβρ̄µ|2. (4.7)

From (4.2) and (4.3),

∑

β,µ,ρ

Re(gβµρ̄ gβ̄ρµ̄) =
∑

β,µ

∑

ρ6=µ

|gβρ̄µ|2 +
∑

β,µ

Re(gβµµ̄ gβ̄µµ̄)

=
∑

β,µ,ρ

|gβρ̄µ|2 −
∑

β,µ

|gβµ̄µ|2 +
∑

β,µ

Re(gβµµ̄ gβ̄µµ̄)

=
∑

β,µ,ρ

|gβρ̄µ|2 −
∑

β,µ

Re( i
2
d cos θ(β)gβ̄µµ̄),

so

(4.7) + (4.5) =
128 cos θ

sin4 θ

∑

β,µ

Re( i
2
d cos θ(β)gβ̄µµ̄).

On the other hand, Proposition 3.2 and minimality of F gives,

−
∑

β,µ

4 cos θ

sin2 θ
Re(igβµ̄µ · β̄) = 1− n

4
∇ log sin2 θ =

(n− 1) cos θ

2 sin2 θ
∇ cos θ.
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Consequentely,

128 cos θ

sin4 θ

∑

β,µ

Re( i
2
d cos θ(β)gβ̄µµ̄) =

128 cos θ

sin4 θ

∑

β,µ

Re(− i

2
d cos θ(β̄)gβµ̄µ)

= −64 cos θ

sin4 θ
d cos θ(Re(

∑

β,µ

igβµ̄µ · β̄)) =
8(n− 1) cos θ

sin4 θ
‖∇ cos θ‖2.

That is,

(4.7) + (4.5) =
8(n− 1) cos θ

sin4 θ
‖∇ cos θ‖2. (4.8)

Using (3.9),

‖∇Jω‖2 =
∑

β

4〈∇βJω , ∇β̄Jω〉 =
∑

β

∑

µ,ρ

16(|〈∇βJω(µ), ρ〉|2 + |〈∇βJω(µ̄), ρ̄〉|2)

= 64
∑

β,µ,ρ

(|〈∇βµ, ρ〉|2 + |〈∇β̄µ, ρ〉|2). (4.9)

Thus we see that (4.6) = cos θ
sin2 θ

‖∇Jω‖2. So we have obtained the following formula:

Proposition 4.1 If N is Kähler-Einstein with Ricci tensor RicciN = Rg, and F is a

minimal immersion with equal Kähler angles, on an open set without complex and La-

grangian points,

△κ = cos θ(− 2nR +
32

sin2 θ

∑

β,µ

RM(β, µ, β̄, µ̄)

+
1

sin2 θ
‖∇Jω‖2 +

8(n− 1)

sin4 θ
‖∇ cos θ‖2 ). (4.10)

Note that if n = 1 we get the expression of Wolfson [W], △κ = −2R cos θ.

Proposition 4.2 If N is Kähler-Einstein with Ricci tensor RicciN = Rg, and F is a

minimal imersion with equal Kähler angles, then:

(i) If n = 2, ∫

M
nR sin2 θ cos2 θ V olM = 0. (4.11)

(ii) If n ≥ 3 and F has no complex points,
∫

M
nR sin2 θ cos2 θ V olM =

∫

M
(n− 2)(n− 2 + 2 cot2 θ)‖∇ cos θ‖2 V olM . (4.12)

Proof. Multiplying (4.10) by sin2 θ cos θ, we get, on M ∼ C ∪ L, and using Lemma 3.2,

sin2 θ cos θ△κ = −2n sin2 θ cos2 θR + 2〈SF ∗ω, F ∗ω〉
+cos2 θ‖∇Jω‖2 +

8(n− 1) cos2 θ

sin2 θ
‖∇ cos θ‖2.
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On the other hand, κ = n log
(

1+cos θ
1−cos θ

)

, and so, △κ = 2n
sin2 θ

△ cos θ + 4n cos θ
sin4 θ

‖∇ cos θ‖2.
Hence,

2n cos θ△ cos θ +
4n cos2 θ

sin2 θ
‖∇ cos θ‖2 = (4.13)

= −2n sin2 θ cos2 θR + 2〈SF ∗ω, F ∗ω〉+ cos2 θ‖∇Jω‖2 +
8(n−1) cos2 θ

sin2 θ
‖∇ cos θ‖2.

Recall that, from (3.1), and considering F ∗ω a 2-form, ‖∇F ∗ω‖2 = 1
2
cos2 θ‖∇Jω‖2 +

n‖∇ cos θ‖2. Since △ cos2 θ = 2 cos θ△ cos θ + 2‖∇ cos θ‖2, substituting this into (4.13),

we have

n△ cos2 θ = −2n sin2 θ cos2 θR + 2〈SF ∗ω, F ∗ω〉+ 2‖∇F ∗ω‖2 + 4(n−2) cos2 θ

sin2 θ
‖∇ cos θ‖2

(4.14)
and, for n = 2,

n△ cos2 θ = −2n sin2 θ cos2 θR + 2〈SF ∗ω, F ∗ω〉+ 2‖∇F ∗ω‖2. (4.15)

Let us now suppose that n ≥ 3. Then, under the condition of no complex points, (4.14) is

valied on Ω0
2n and also on Ω0

0. From smoothness over all M of all maps into consideration

(the first three terms of the right-hand side of (4.14) are smooth, and the last term is also

smooth for n 6= 2), and the fact that the set M ∼ (Ω0
0∪Ω2n

0 ) is a set of Lagrangian points

with no interior, formula (4.14) is valid on all M . Integrating over M , and using (3.17),

we have

∫

M
2nR sin2 θ cos2 θ V olM =

∫

M
(− 2(n−(n− 2)2) +

4(n−2) cos2 θ

sin2 θ
+ 2n)‖∇ cos θ‖2 V olM ,

leading to (4.12). If n = 2, we see that (4.15) is also valid at Lagrangian and complex

points. In fact (see Lemma 3.2 and (3.1)), all terms of (4.15) vanish at interior points

of the Lagrangian and complex sets. Since they are smooth on all M , they must vanish

at boundary points of its complementary in M . Thus, the above equation is valid on all

M , with or without complex or Lagrangian points, and all its terms are smooth. Then,

(4.11) follows by integration on M of (4.15), and use of (3.17). ✷

Proof of Theorem 1.2. and Theorem 1.3 If n = 2 and R 6= 0, (4.11) implies sin2 θ cos2 θ =

0. Hence F is either Lagrangian or a complex submanifold. If n ≥ 3, and F has no

complex points, the right-hand side of (4.12) is non-negative, while the left-hand side

is non-positive for R < 0. Then, sin2 θ cos2 θ = 0 must hold on all M , that is, F is

Lagrangian. If R = 0, the right-hand side of (4.12) must vanish. Then, for n ≥ 3, cos θ

must be constant, and we have proved Theorem 1.2. If cos θ is constant, and if F is not

a complex submanifold, the right-hand side of (4.12) vanishes. Hence, if R 6= 0, F is

Lagrangian, and Theorem 1.3 is proved. ✷
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Proof of Theorem 1.4. If M is not Lagrangian, under the curvature condition on M , by

Proposition 3.4, for n = 2, or 3, (M,Jω, gM) is a Kähler manifold and cos θ is constant.

So, if M is not a complex submanifold, it has no complex directions, and by (4.11), or

(4.12), R = 0. In general, if n ≥ 1 and θ is constant, Proposition 3.4 also applies. ✷

Under the conditions of Theorem 1.4, if M is homeomorphic to a 4 or a 6 dimensional

sphere, minimaly immersed into a Kähler-Einstein manifold, and with equal Kähler angles,

then it must be Lagrangian, for it is well known that such manifolds cannot carry a Kähler

structure. Obviously, any Riemannian manifold M with strictly positive isotropic scalar

curvature cannot carry any Kähler structure. Moreover, such condition for n = 2 would

imply M to be homeomorphic to a 4-sphere. We also remark that we only need to require

Sisot({Zα}) ≥ 0 on the maximal totally isotropic subspace {Zα} defined by a diagonalizing

orthonormal basis of F ∗ω, and outside Lagrangian points, to obtain the same conclusion

given in Theorem 1.4.

As an observation, Theorem 1.4 should be compared with the following lemma:

Lemma 4.1 Let F be a minimal immersion, and n ≥ 2. If cos θ is constant 6= 1, 0, then

(i) (A,B,C) → gABC is symmetric whenever A,B, and C are not all of the same type.

(ii) 〈∇β̄µ, γ〉 = 0, ∀β, µ, γ.
(iii) F ∗ω is an harmonic 2-form.

(iv) 32
∑

β,µR
M(β, µ, β̄, µ̄) = −64

∑

β,µ,ρ |〈∇βµ, ρ〉|2 = −‖∇Jω‖2 ≤ 0.

Proof. Since cos θ is constant, we obtain (4.3) = 0. This, together (4.2), and the symmetry

of ∇dF , proves (i). But (i) and (4.1) implys (ii). (iii) comes from (3.16). Now we prove

(vi). Since F ∗ω is harmonic, fromWeitzenböck formula (3.14) we conclude 〈SF ∗ω, F ∗ω〉 =
−‖∇F ∗ω‖2. Lemma 3.2 and (3.1) (but considering F ∗ω a 2-form) gives (iv). ✷

Remark 3. If N is a Kähler manifold of constant holomorphic sectional curvature equal

to K ( and so R = (2n+1)K
2

), and the isotropic scalar curvature of M satisfies Sisot ≥ c =

constant, we get from Gauss equation, with {Xα, Yα} a diagonalizing orthonormal basis

of F ∗ω,
∑

ρ,µ

RM(µ, ρ, µ̄, ρ̄) =
n(n− 1)

16
sin2 θK −

∑

ρ,µ

‖∇dF (µ, ρ̄)‖2, (4.16)

that c ≤ n(n−1)K
4

. Thus, non-negative isotropic scalar curvature on M is a possible

condition for K ≥ 0. In the case K = 0, that is, N is the flat complex torus, then (4.16)

(with K = 0) is valied for any orthonormal basis {Xα, Yα}. This implies that, for n ≥ 2,

F must be totally geodesic, and so M is flat.
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We also note that if c = nR
4
, the right-hand side of (4.10) becomes > 0, outside

Lagrangian points. An application of the maximum principle at a maximum point of κ

would conclude that F must be Lagrangian. But such a lower bound c is not possible for

the scalar isotropic curvature of M minimaly immersed in N with constant holomorphic

sectional curvature K > 0.

Remark 3. If n ≥ 2 and F is a pluriminimal immersion with equal Kähler angles into a

Kähler-Einstein manifold N , and F is not a complex submanifold, then N must be Ricci-

flat. Moreover, since F has constant equal Kähler angles, the scalar isotropic curvature of

M with respect to the maximal isotropic subspace defined by a diagonalizing orthonormal

basis of F ∗ω will be ≤ 0, with equality to zero iff (M,Jω, gM) is Kähler (see Lemma 4.1).

We leave the following question: Is (M,Jω, gM) Kähler manifold a sufficient condition

for a minimal immersion F , with constant equal Kähler angle, immersed into a Ricci-flat

Kähler manifold N , to be pluriminimal? If N is the flat complex torus and F : M → N

is minimal, under the conditions stated in the question, the Gauss equation implies that

F is pluriminimal. A way to find pluriminimal submanifolds in hyper-Kähler manifolds

is given in the next example, where the assumption of non-negative isotropic curvature

does not imply necessarely F totally geodesic (and M flat), since hyper-Kähler manifolds

do not need to be flat.

Example. Let (N, I, J, g) be an hyper-Kähler manifold of real dimension 8. Thus, I and J

are two g-orthogonal complex structures on N , such that IJ = −JI and ∇I = ∇J = 0,

where ∇ is the Levi-Civita connection relative to g. It is known that such manifolds are

Ricci-flat ([B]). Set K = IJ . For each ν, φ, we take “νφ” = (cos ν, sin ν cosφ, sin ν sin φ) ∈
S2, and define Jνφ = cos νI + sin ν cosφJ + sin ν sinφK. These Jνφ are the complex

structures on N compatible with its hyper-Kähler structure, that is, they are g-orthogonal

and ∇Jνφ = 0.

Two of such complex structures, Jνφ and Jµρ, anti-commute at a point p iff Jνφ(X) and

Jµρ(X) are orthogonal for some non-zero X ∈ TpN , iff νφ and µρ are orthogonal in IR3.

Thus, they anti-commute at a point p iff they anti-commute everywhere. If that is the

case Jνφ ◦Jµρ = Jσǫ, where {νφ, µρ, σǫ} is a direct orthonormal basis of IR3. For each unit

vector X ∈ TpN , set HX = span{X, IX, JX,KX} = span{X, Jνφ(X), Jµρ(X), Jσǫ(X)},
for any orthonormal basis {νφ, µρ, σǫ}. If Y ∈ H⊥

X is another unit vector, then HX⊥HY .

Let ωνφ be the Kähler form of (N, Jνφ, g). Let E be a 4-dimensional vector sub-space of

TpN . We first note that E = HX for some X ∈ E, iff Jνφ(E) ⊂ E for any ν, φ. If that

is the case, then E is not a Lagrangian subspace with respect to any complex structure

Jµρ. In general, E contains a Jνφ-complex line for some νφ iff dim(E ∩HX) ≥ 2 for some
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X ∈ E. If that is the case, and if E is a Lagrangian subspace of TpN with respect to Jµρ,

then νφ⊥µρ. Furthermore, if E is a Jνφ-complex subspace, then E is Jµρ-Lagrangian iff

there exist an orthonormal basis {X, JνφX, Y, JνφY } of E with HX⊥HY . To see this, let

us suppose E is Jνφ-complex subspace and Jµρ-Lagrangian. We take {X, JνφX, Y, JνφY }
an ortonormal basis of E. Then Y ∈ span{X, JνφX, JµρX}⊥. So Y = tJσǫX + Ỹ , for

some t ∈ IR and Ỹ ∈ H⊥
X , and where {νφ, µρ, σǫ} is an ortonormal basis of IR3. As

E 6= HX , Ỹ 6= 0. From 0 = 〈JµρY, JνφX〉, we get t = 0. Thus, Y ∈ H⊥
X . We observe

that, in general, Jµρ-Lagrangian subspaces do not need to be Jνφ-complex, as for example

E = {X, JνφX, Y, JσǫY }, with Y ∈ H⊥
X , that contains two orthogonal complex lines for

different complex strutures.

Any Jνφ-complex submanifold F : M → N of real dimension 4, such that, for each

point p ∈ M , there exist an orthonormal basis {X, JνφX, Y, JνφY } of TpM with HX⊥HY ,

is, for each µρ, a minimal submanifold of (N, Jµρ, g) with constant equal Kähler angles,

and ±Jνφ is also the complex structure of M which comes from polar decomposition of ωµρ

restricted to M . In fact, such an orthonormal basis of TpM diagonalizes ωµρ restricted to

M , and the Kähler angle θ is such that cos θ = ±〈νφ, µρ〉, where <,> is the inner product

of IR3. Next proposition is an application of Theorem 1.4, for 4-dimensional submanifolds

of N , where ωI is the Kähler form of (N, I, g):

Proposition 4.3 Let F : M → N be a minimal immersion of a compact, oriented

4-dimensional submanifold with non-negative isotropic scalar curvature, and such that

∀νφ ∈ S2, F has equal Kähler angles with respect to Jνφ. If ∃p ∈ M and ∃X ∈ TpM ,

unit vector, such that dim(TpM ∩ HX) ≥ 2, then there exists νφ ∈ S2 such that M is a

Jνφ-complex submanifold. Furthermore, if Jνφ = I then F : M → (N, I, g) is obviously

pluriminimal. If Jνφ 6= I but TpM ∩ H⊥
X 6= {0}, then F ∗ωI = cos νJνφ, and if F is not

JI-Lagrangian, F : M → (N, I, g) is still pluriminimal.

Note that, if TpM = HX , then Jνφ can be chosen equal to I. The first conclusion of

this result is the 4-dimensional version of a result of Wolfson [W], for M a real surface

and N a Ricci-flat K3 surface. In the latter case, there is only one Kähler angle, ∀X
dim(TpM ∩ HX) = 2 is automatically satisfied, and the isotropic scalar curvature is

always zero.

Proof. From the assumption, dim(TpM ∩HX) ≥ 2, we may take a unit vector Z ∈ TpM ∩
HX such that Z⊥X . Then, Z = Jνφ(X) for some νφ. Thus, span{X, Jνφ(X)} ⊂ TpM .

This implies F ∗ωνφ(X, Jνφ(X)) = 1. As the Kähler angles are equal, cos θνφ = 1 at

p. Applying Theorem 1.4 to F : M → (N, Jνφ, g), F
∗ωνφ = cos θνφJωνφ

with cos θνφ

constant. Then cos θνφ = 1 everywhere. That is, M is a Jνφ-complex submanifold.

Moreover, from the second assumption, TpM ∩ H⊥
X 6= {0}, we may take a unit vector
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Y ∈ TpM ∩H⊥
X . Then {X, JνφX, Y, JνφY } constitutes an orthonormal basis of TpM , that

diagonalizes F ∗ωI , and F ∗ωI = cos νJνφ. This means that ν or ν + π is the constant

Kähler angle of F : M → (N, I, g), and, since M is a Jνφ-complex submanifold, it

is pluriharmonic with respect to ±Jνφ, and so, if cos ν 6= 0, it is pluriminimal as an

immersion into (N, I, g). ✷

5 Appendix: The computation of △κ

We prove (1.6) for F minimal and outside complex and Lagrangian points. First, we

compute some derivative formulas of a determinant, which we will need.

Lemma 5.1 Let A : M → Mm×m(lC) be a smooth map of matrices p → A(p) =

[A1, . . . , Am], where Ai(p) is a column vector of lCm and M is a Riemannian mani-

fold with its Levi-Civita connection ∇. Assume that, at p0, A(p0) is a diagonal matrix

D = D(λ1, . . . , λm). Then, at p0

d (det A)(Z) =
∑

1≤j≤m

(
∏

k 6=j

λk)dAj
j(Z),

Hess (det A)(Z,W ) = ∇d(detA)(Z,W ) =

=
∑

1≤j,k≤m

(
∏

s 6=j,k

λs)det
[

dA
j
j(Z) dAk

j (Z)

dA
j
k(W ) dAk

k(W )

]

+
∑

1≤j≤m

(
∏

s 6=j

λs)Hess A
j
j(Z,W ).

In particular, if e1, . . . , er is an orthonormal basis of Tp0M , then, at p0,

△(det A) = Trace Hess (det A) =

=
∑

1≤α≤r

∑

1≤j,k≤m

(
∏

s 6=j,k

λs)det
[

dA
j
j(eα) dAk

j (eα)

dA
j
k(eα) dAk

k(eα)

]

+
∑

1≤j≤m

(
∏

s 6=j

λs)△A
j
j.

On each Ω0
2k, the complex structure Jω and the sub-vector bundle K⊥

ω are smooth. More-

over, Jω is gM -orthogonal. Thus, for each p0 ∈ Ω0
2k, there exists a locally gM -orthonormal

frame of K⊥
ω defined on a neighbourhood of p0, of the form X1, JωX1, . . . , Xk, JωXk. We

enlarge this frame to a gM -orthonormal local frame on M , on a neighbourhood of p0:

X1 , Y1 = JωX1 , . . . , Xk , Yk = JωXk , Xk+1 , Yk+1 , . . . , Xn , Yn (5.1)

where Xk+1, Yk+1, . . .Xn, Yn is any gM -orthonormal frame of Kω, and which at p0 is a dia-

gonalizing basis of F ∗ω. Note that in general it is not possible to get smooth diagonalizing

gM -orthonormal frames in a whole neighbourhood of a point p0, unless , for instance, F
∗ω

has equal Kähler angles. We use the notations in section 3.1. We define a local complex

structure on a neighbourhood of p0 ∈ Ω0
2k as J̃ = Jω ⊕ J ′, where Jω is defined only on

K⊥
ω , and J ′ is the local complex structure on Kω, defined on a neighbourhood of p0 by
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J ′Zα = iZα, J ′Zᾱ = −iZᾱ, ∀α ≥ k + 1. (5.2)

Thus, the vectors Zα are of type (1,0) with respect to J̃ , for ∀α. Since J̃ is gM -orthogonal,

then, ∀α, β, on a neighbourhood of p0,

〈∇Z J̃(α), β〉 = 2i〈∇Zα, β〉 = −〈α,∇Z J̃(β)〉, 〈∇Z J̃(α), β̄〉 = 0, (5.3)

Note that F ∗ω and g̃, where g̃ is given in (1.1), as 2-tensors, are both of type (1, 1) with

respect to J̃ , and have the same kernel Kω. They are related by g̃(X, Y ) = F ∗ω(X, JωY ) =

F ∗ω(X, J̃Y ). Set g̃AB = g̃(A,B), and define B̄ = B, ∀A,B ∈ {1, . . . , n, 1̄, . . . , n̄}, and
set ǫα = +1, ǫᾱ = −1, ∀1 ≤ α ≤ n. Let 1 ≤ α, β ≤ n, A,B ∈ {1, . . . , n, 1̄, . . . , n̄}, and
C ∈ {1, . . . , n} ∪ {k + 1, . . . , n̄}. Then

F ∗ω(α,C) = g(JdF (α), dF (C)) = 0 ∀p near p0

F ∗ω(α, β̄) = g(JdF (α), dF (β̄)) = i
2
δαβ cos θα at p0

g̃AB = iǫBF
∗ω(A,B) = iǫBg(JdF (A), dF (B)) ∀p near p0

g̃αC = g̃ᾱC̄ = 0 ∀p near p0

g̃αβ̄ = g̃ᾱβ = 1
2
δαβ cos θα at p0







































. (5.4)

At a point p0, with Kähler angles θα, gM±g̃ is represented in the unitary basis {
√
2α,

√
2ᾱ},

by the diagonal matrix gM ± g̃ = D(1 ± cos θ1, . . . , 1 ± cos θn, 1 ± cos θ1, . . . , 1 ± cos θn),

and so

det(gM ± g̃) =
∏

1≤α≤n

(1± cos θα)
2. (5.5)

If p0 is a point without complex directions, cos θα 6= 1, ∀α ∈ {1, . . . , n}, then g̃ < gM .

Thus, on a neighbourwood of p0, we may consider the map κ.

κ =
1

2
log

(

det(gM + g̃)

det(gM − g̃)

)

=
∑

1≤α≤n

log(1 + cos θα
1− cos θα

). (5.6)

This map is continuous outside the complex points, and smooth on each Ω0
2k. We wish to

compute △κ on Ω0
2k.

Lemma 5.2 At p0 ∈ Ω0
2k, without complex directions and for Z,W ∈ Tp0M ,

d(det(gM ± g̃))(Z) = ±4
∑

1≤µ≤n

∏

1≤α≤n(1± cos θα)
2

(1± cos θµ)
dg̃µµ̄(Z),

Hess(det(gM ± g̃))(Z,W ) =

= 16(
∏

1≤α≤n

(1± cos θα)
2)
∑

µ,ρ

1

(1± cos θµ)(1± cos θρ)
dg̃µµ̄(Z)dg̃ρρ̄(W )

−8(
∏

1≤α≤n

(1± cos θα)
2)
∑

µ,ρ

1

(1± cos θµ)(1± cos θρ)
dg̃µρ̄(W )dg̃ρµ̄(Z)

±4(
∏

1≤α≤n

(1± cos θα)
2)
∑

µ

1

(1± cos θµ)
Hessg̃µµ̄(Z,W ).
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Proof. Using the unitary basis {
√
2α,

√
2ᾱ} of T c

pM , for p near p0, gM + g̃ is represented

by the matrix

gM ± g̃ =

[

gM ± g̃(
√
2α,

√
2γ̄) gM ± g̃(

√
2α,

√
2γ)

gM ± g̃(
√
2ᾱ,

√
2γ̄) gM ± g̃(

√
2ᾱ,

√
2γ)

]

=

[

δαγ ± 2g̃αγ̄ 0
0 δαγ ± 2g̃ᾱγ

]

that at p0 is the diagonal matrix D(1±cos θ1, . . . , 1±cos θn, 1±cos θ1, . . . , 1±cos θn). The

lemma follows as a simple application of lemma 5.1, and noting that g̃µρ̄ = g̃ρ̄µ. ✷

On Ω0
2k,

2△κ = △ log(det(gM + g̃))−△ log(det(gM − g̃))

=
△(det(gM + g̃))

det(gM + g̃)
− ‖d(det(gM + g̃))‖2

(det(gM + g̃))2
− △(det(gM − g̃))

det(gM − g̃)
+

‖d(det(gM − g̃))‖2
(det(gM − g̃))2

.

From the above lemma and

‖d(det(gM ± g̃))‖2 = 4
∑

β

d(det(gM ± g̃))(β)d(det(gM ± g̃))(β̄)

△det(gM ± g̃) = 4
∑

β

Hess(det(gM ± g̃))(β, β̄)

we have at p0,

2△κ =
∑

β,µ,ρ

64(cos θµ + cos θρ)

sin2 θµ sin
2 θρ

dg̃µρ̄(β̄)dg̃ρµ̄(β) +
∑

β,µ

32

sin2 θµ
Hessg̃µµ̄(β, β̄). (5.7)

Recalling (2.4), and d(F ∗ω(X, Y ))(Z) =∇ZF
∗ω(X, Y ) + F ∗ω(∇ZX, Y ) + F ∗ω(X,∇ZY ),

using (5.4), we obtain

Lemma 5.3 ∀p near p0 ∈ Ω0
2k, Z ∈ T c

pM , and µ, γ ∈ {1, . . . , n}

dg̃µγ̄(Z) = igZµγ̄ − igZ γ̄µ+ 2
∑

ρ

(〈∇Zµ, ρ̄〉g̃ργ̄ + 〈∇Z γ̄, ρ〉g̃µρ̄)
0 = dg̃µγ(Z) = −igZµγ + igZγµ+ 2

∑

ρ

(〈∇Zµ, ρ〉g̃ρ̄γ − 〈∇Zγ, ρ〉g̃µρ̄).

In particular, at p0

dg̃µγ̄(Z) = igZµγ̄ − igZ γ̄µ− (cos θµ − cos θγ)〈∇Zµ, γ̄〉
0 = dg̃µγ(Z) = −igZµγ + igZγµ+ (cos θµ + cos θγ)〈∇Zµ, γ〉.

Lemma 5.4 If F is minimal and p0 ∈ Ω0
2k is a point without complex directions, then for

each µ ∈ {1, . . . , n}
∑

1≤β≤n

Hessg̃µµ̄(β, β̄) =
∑

1≤β≤n

d(dg̃µµ̄(β))(β̄)− dg̃µµ̄(∇β̄β) =

=
∑

1≤β≤n

iRN (dF (β), dF (β̄), dF (µ), JdF (µ̄) + i cos θµdF (µ̄))

+2Im(RN(dF (β), dF (µ), dF (β̄), JdF (µ̄) + i cos θµdF (µ̄)))
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+2
∑

1≤ρ≤n

(cos θρ − cos θµ)

sin2 θρ
(|gβµρ|2 + |gβµ̄ρ̄|2)

−2
∑

1≤ρ≤n

(cos θρ + cos θµ)

sin2 θρ
(|gβµρ̄|2 + |gβµ̄ρ|2)

+
∑

1≤ρ≤n

− 2i〈∇µβ, ρ̄〉gβ̄ρµ̄ − 2i〈∇µβ, ρ〉gβ̄ρ̄µ̄− 2i〈∇µβ̄, ρ̄〉gρβµ̄

+
∑

1≤ρ≤n

2i〈∇β̄µ, ρ̄〉gβρµ̄− 2i〈∇µβ̄, ρ〉gρ̄βµ̄+ 2i〈∇β̄µ, ρ〉gρ̄βµ̄

+
∑

1≤ρ≤n

2i〈∇̄µβ, ρ̄〉gβ̄ρµ+ 2i〈∇̄µβ, ρ〉gβ̄ρ̄µ+ 2i〈∇̄µβ̄, ρ̄〉gρβµ

+
∑

1≤ρ≤n

− 2i〈∇β̄µ̄, ρ̄〉gρβµ+ 2i〈∇̄µβ̄, ρ〉gρ̄βµ− 2i〈∇β̄µ̄, ρ〉gρ̄βµ

+
∑

1≤ρ≤n

2i〈∇β̄µ̄, ρ̄〉gβµρ+ 2i〈∇β̄µ̄, ρ〉gβµρ̄− 2i〈∇β̄µ, ρ〉gβµ̄ρ̄

+
∑

1≤ρ≤n

− 2i〈∇β̄µ, ρ̄〉gβµ̄ρ+ 2i〈∇βµ, ρ̄〉gβ̄ρµ̄− 2i〈∇βµ, ρ̄〉gβ̄µ̄ρ

+
∑

1≤ρ≤n

2i〈∇βµ̄, ρ〉gβ̄µρ̄− 2i〈∇βµ̄, ρ〉gβ̄ρ̄µ

−2
∑

1≤ρ≤n

(cos θµ − cos θρ)(|〈∇βµ, ρ̄〉|2 + |〈∇β̄µ, ρ̄〉|2).

Proof. We denote by ∇X∇Y dF the covariant derivative of ∇Y dF in T ∗M ⊗ F−1TN ,

and by R(X, Y )ξ, the curvature tensor of this connection, namely (R(X, Y )ξ)(Z) =

RN(dF (X), dF (Y ))ξ(Z) − ξ(RM(X, Y )Z). From Lemma 5.3, for p on a neighbourhood

of p0,

dg̃µµ̄(β) = ig(∇βdF (µ), JdF (µ̄))−ig(∇βdF (µ̄), JdF (µ))+2
∑

ρ

(〈∇βµ, ρ̄〉g̃ρµ̄+〈∇βµ̄, ρ〉g̃µρ̄).
Then at p0,

d(dg̃µµ̄(β))(β̄) =

= ig(∇β̄(∇βdF (µ)), JdF (µ̄))+ ig(∇βdF (µ), ∇̄β(JdF (µ̄)))
−ig(∇β̄(∇βdF (µ̄)), JdF (µ))− ig(∇βdF (µ̄),∇β̄(JdF (µ)))
+2

∑

ρ

(∇β̄(〈∇βµ, ρ̄〉)g̃ρµ̄ +∇β̄(〈∇βµ̄, ρ〉)g̃µρ̄)

+
∑

ρ

2〈∇βµ, ρ̄〉dg̃ρµ̄(β̄) + 2〈∇βµ̄, ρ〉dg̃µρ̄(β̄) (5.8)

= ig(∇β̄(∇βdF (µ)), JdF (µ̄))+ ig(∇βdF (µ), J∇̄βdF (µ̄))
+ig(∇βdF (µ), JdF (∇̄βµ̄))− ig(∇β̄(∇βdF (µ̄)), JdF (µ))
−ig(∇βdF (µ̄), J∇β̄dF (µ))− ig(∇βdF (µ̄), JdF (∇β̄µ))
+cos θµ(∇β̄(〈∇βµ, µ̄〉)+∇β̄(〈µ,∇βµ̄〉))+ (5.8)

= ig(∇β̄(∇βdF (µ)), JdF (µ̄)) (5.9)

+ig(∇βdF (µ), J∇β̄dF (µ̄))+
∑

ρ

2i〈∇β̄µ̄, ρ〉gβµρ̄+ 2i〈∇β̄µ̄, ρ̄〉gβµρ
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−ig(∇β̄(∇βdF (µ̄)), JdF (µ)) (5.10)

−ig(∇βdF (µ̄), J∇β̄dF (µ))+
∑

ρ

−2i〈∇β̄µ, ρ〉gβµ̄ρ̄− 2i〈∇β̄µ, ρ̄〉gβµ̄ρ
+cos θµ(∇β̄(〈∇βµ, µ̄〉)+∇β̄(〈µ,∇βµ̄〉)) (5.11)

+(5.8).

The term (5.11) vanish because 〈∇βµ, µ̄〉 = −〈µ,∇βµ̄〉 on a neighbourhood of p0. Mini-

mality of F implies
∑

β

∇β̄(∇βdF (µ)) =

=
∑

β

∇β̄(∇µdF (β)) =
∑

β

∇β̄∇µdF (β) +∇µdF (∇β̄β)

=
∑

β

∇µ∇β̄dF (β)−∇[µ,β̄]dF (β) + (R(µ, β̄)dF )(β) +∇µdF (∇β̄β)

=
∑

β

∇µ(∇β̄dF (β))−∇β̄dF (∇µβ)−∇[µ,β̄]dF (β)

+RN(dF (µ), dF (β̄))dF (β)− dF (RM(µ, β̄)β) +∇µdF (∇β̄β)

=
∑

β

∑

ρ

−2〈∇µβ, ρ̄〉∇β̄dF (ρ) +
∑

ρ

−2〈∇µβ, ρ〉∇β̄dF (ρ̄)

−
∑

ρ

(2〈∇µβ̄, ρ̄〉 − 2〈∇β̄µ, ρ̄〉)∇ρdF (Zβ)

−
∑

ρ

(2〈∇µβ̄, ρ〉 − 2〈∇β̄µ, ρ〉)∇̄ρdF (Zβ)

+RN(dF (µ), dF (β̄))dF (β)− dF (RM(µ, β̄)β)

+
∑

ρ

2〈∇β̄β, ρ̄〉∇µdF (ρ) +
∑

ρ

2〈∇β̄β, ρ〉∇µdF (ρ̄).

Hence

(5.9) =
∑

β

iRN (dF (µ), dF (β̄), dF (β), JdF (µ̄))− cos θµR
M(µ, β̄, β, µ̄)

+
∑

βρ

− 2i〈∇µβ, ρ̄〉gβ̄ρµ̄ − 2i〈∇µβ, ρ〉gβ̄ρ̄µ̄

+
∑

βρ

2i(−〈∇µβ̄, ρ̄〉+ 〈∇β̄µ, ρ̄〉)gρβµ̄+ 2i(−〈∇µβ̄, ρ〉+ 〈∇β̄µ, ρ〉)gρ̄βµ̄

+
∑

βρ

2i〈∇β̄β, ρ̄〉gµρµ̄+ 2i〈∇β̄β, ρ〉gµρ̄µ̄.

Similarly

−(5.10) =
∑

β

iRN(dF (µ̄), dF (β̄), dF (β), JdF (µ)) + cos θµR
M (µ̄, β̄, β, µ)

+
∑

βρ

−2i〈∇̄µβ, ρ̄〉gβ̄ρµ− 2i〈∇̄µβ, ρ〉gβ̄ρ̄µ

+
∑

βρ

2i(−〈∇̄µβ̄, ρ̄〉+ 〈∇β̄µ̄, ρ̄〉)gρβµ+ 2i(−〈∇̄µβ̄, ρ〉+ 〈∇β̄µ̄, ρ〉)gρ̄βµ

+
∑

βρ

2i〈∇β̄β, ρ̄〉gµ̄ρµ+ 2i〈∇β̄β, ρ〉gµ̄ρ̄µ.

Using Bianchi identity,
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iRN (dF (µ), dF (β̄), dF (β), JdF (µ̄))− iRN (dF (µ̄), dF (β̄), dF (β), JdF (µ)) =

= −iRN (dF (β), dF (µ), dF (β̄), JdF (µ̄))− iRN(dF (β̄), dF (β), dF (µ), JdF (µ̄))
−iRN (dF (µ̄), dF (β̄), dF (β), JdF (µ))

= iRN (dF (β), dF (β̄), dF (µ), JdF (µ̄)) + 2Im(RN (dF (β), dF (µ), dF (β̄), JdF (µ̄))),

and by Gauss equation, and minimality of F ,

∑

β

−RM (µ, β̄, β, µ̄)−RM(µ̄, β̄, β, µ) =

=
∑

β

RM(β, µ, β̄, µ̄) +RM(β̄, β, µ, µ̄)−RM(µ̄, β̄, β, µ)

=
∑

β

−RM (β, β̄, µ, µ̄) + 2RM(β, µ, β̄, µ̄)

=
∑

β

− RN(dF (β), dF (β̄), dF (µ), dF (µ̄))

− g(∇βdF (µ), ∇̄βdF (µ̄))+ g(∇βdF (µ̄),∇β̄dF (µ))
+ 2RN(dF (β), dF (µ), dF (β̄), dF (µ̄))

+ 2g(∇βdF (β̄),∇µdF (µ̄))− 2g(∇βdF (µ̄),∇µdF (β̄))

=
∑

β

− RN(dF (β), dF (β̄), dF (µ), dF (µ̄)) + 2RN(dF (β), dF (µ), dF (β̄), dF (µ̄))

− g(∇βdF (µ), ∇̄βdF (µ̄))− g(∇βdF (µ̄),∇µdF (β̄)).

Note that RN(dF (β), dF (µ), dF (β̄), dF (µ̄)) = Im(iRN (dF (β), dF (µ), dF (β̄), dF (µ̄))),
since it is real. Therefore,

∑

β

d(dg̃µµ̄(β))(β̄) =

=
∑

β

iRN (dF (β), dF (β̄), dF (µ), JdF (µ̄) + i cos θµdF (µ̄))

+ 2Im(RN(dF (β), dF (µ), dF (β̄), JdF (µ̄) + i cos θµdF (µ̄)))
− cos θµ g(∇βdF (µ),∇β̄dF (µ̄))− cos θµ g(∇βdF (µ̄),∇µdF (β̄)) (5.12)

+
∑

ρ

−2i〈∇µβ, ρ̄〉gβ̄ρµ̄− 2i〈∇µβ, ρ〉gβ̄ρ̄µ̄

+
∑

ρ

2i(−〈∇µβ̄, ρ̄〉+ 〈∇β̄µ, ρ̄〉)gρβµ̄+ 2i(−〈∇µβ̄, ρ〉+ 〈∇β̄µ, ρ〉)gρ̄βµ̄

+
∑

ρ

2i〈∇β̄β, ρ̄〉gµρµ̄+ 2i〈∇β̄β, ρ〉gµρ̄µ̄ (5.13)

+
∑

ρ

2i〈∇̄µβ, ρ̄〉gβ̄ρµ+ 2i〈∇̄µβ, ρ〉gβ̄ρ̄µ

+
∑

ρ

2i(〈∇̄µβ̄, ρ̄〉 − 〈∇β̄µ̄, ρ̄〉)gρβµ+ 2(〈∇̄µβ̄, ρ〉 − 〈∇β̄µ̄, ρ〉)gρ̄βµ
+
∑

ρ

−2i〈∇β̄β, ρ̄〉gµ̄ρµ− 2i〈∇β̄β, ρ〉gµ̄ρ̄µ (5.14)

+ ig(∇βdF (µ), J∇β̄dF (µ̄))− ig(∇βdF (µ̄), J∇β̄dF (µ)) (5.15)
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+
∑

ρ

2i〈∇β̄µ̄, ρ〉gβµρ̄+ 2i〈∇β̄µ̄, ρ̄〉gβµρ
∑

ρ

−2i〈∇β̄µ, ρ〉gβµ̄ρ̄− 2i〈∇β̄µ, ρ̄〉gβµ̄ρ + (5.8).

Using the unitary basis {
√
2

sin θρ
Φ(ρ),

√
2

sin θρ
Φ(ρ̄)} of the normal bundle, and (2.1)

(5.12) + (5.15) =

= −
∑

β,ρ

2 cos θµ
sin2 θρ

(|gβµρ|2 + |gβµρ̄|2)−
∑

β,ρ

2 cos θµ
sin2 θρ

(|gβµ̄ρ|2 + |gβµ̄ρ̄|2)

−
∑

β,ρ

2 cos θρ
sin2 θρ

(|gβµρ̄|2 − |gβµρ|2)+
∑

β,ρ

2 cos θρ
sin2 θρ

(|gβµ̄ρ̄|2 − |gβµ̄ρ|2)

= 2
∑

β,ρ

(cos θρ − cos θµ)

sin2 θρ
|gβµρ|2 − 2

∑

β,ρ

(cos θρ + cos θµ)

sin2 θρ
|gβµρ̄|2

−2
∑

β,ρ

(cos θρ + cos θµ)

sin2 θρ
|gβµ̄ρ|2 + 2

∑

β,ρ

(cos θρ − cos θµ)

sin2 θρ
|gβµ̄ρ̄|2.

Applying lemma 5.3 and since 〈∇Zµ, µ̄〉+ 〈∇Z µ̄, µ〉 = 0, we have

dg̃µµ̄(∇β̄β) =
∑

ρ

2〈∇β̄β, ρ̄〉dg̃µµ̄(ρ) +
∑

ρ

2〈∇β̄β, ρ〉dg̃µµ̄(ρ̄)

= 2i
∑

ρ

(〈∇β̄β, ρ̄〉gρµµ̄− 〈∇β̄β, ρ̄〉gρµ̄µ+ 〈∇β̄β, ρ〉gρ̄µµ̄− 〈∇β̄β, ρ〉gρ̄µ̄µ)
= (5.13) + (5.14).

Finally

(5.8) =
∑

ρ

2〈∇βµ, ρ̄〉(igβ̄ρµ̄− igβ̄µ̄ρ)− 2〈∇βµ, ρ̄〉(cos θρ − cos θµ)〈∇β̄ρ, µ̄〉
+
∑

ρ

2〈∇βµ̄, ρ〉(igβ̄µρ̄− igβ̄ρ̄µ)− 2〈∇βµ̄, ρ〉(cos θµ − cos θρ)〈∇β̄µ, ρ̄〉

=
∑

ρ

2i〈∇βµ, ρ̄〉gβ̄ρµ̄− 2i〈∇βµ, ρ̄〉gβ̄µ̄ρ+ 2i〈∇βµ̄, ρ〉gβ̄µρ̄− 2i〈∇βµ̄, ρ〉gβ̄ρ̄µ
−2

∑

ρ

(cos θµ − cos θρ)(|〈∇βµ, ρ̄〉|2 + |〈∇β̄µ, ρ̄〉|2).

These expressions lead to the expression of the lemma. ✷

Finally, we have

Proposition 5.1 If F is minimal without complex directions, then for each 0 ≤ k ≤ 2n

at each p0 ∈ Ω0
2k,

△κ = 4i
∑

β

RicciN(JdF (β), dF (β̄))

+
∑

β,µ

32

sin2 θµ
Im(RN(dF (β), dF (µ), dF (β̄), JdF (µ̄) + i cos θµdF (µ̄)))

−
∑

β,µ,ρ

64(cos θµ+cos θρ)

sin2 θµ sin
2 θρ

Re(gβµρ̄gβ̄ρµ̄)
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+
∑

β,µ,ρ

32(cos θρ − cos θµ)

sin2 θµ sin
2 θρ

(|gβµρ|2 + |gβ̄µρ|2)

+
∑

β,µ,ρ

32(cos θµ + cos θρ)

sin2 θµ
(|〈∇βµ, ρ〉|2 + |〈∇β̄µ, ρ〉|2).

Proof. From (5.7) and Lemma 5.4 we get

2△κ =

= +
∑

β,µ,ρ

64(cos θµ + cos θρ)

sin2 θµ sin
2 θρ

dg̃µρ̄(β̄)dg̃ρµ̄(β)

+
∑

β,µ

32i

sin2 θµ
RN(dF (β), dF (β̄), dF (µ), JdF (µ̄) + i cos θµdF (µ̄))

+
∑

β,µ

64

sin2 θµ
Im(RN(dF (β), dF (µ), dF (β̄), JdF (µ̄) + i cos θµdF (µ̄)))

+
∑

β,µ,ρ

64(cos θρ − cos θµ)

sin2 θµ sin
2 θρ

(|gβµρ|2 + |gβµ̄ρ̄|2)

−
∑

β,µ,ρ

64(cos θρ + cos θµ)

sin2 θµ sin
2 θρ

(|gβµρ̄|2 + |gβµ̄ρ|2)

+
∑

β,µ,ρ

− 64i

sin2 θµ
〈∇µβ, ρ̄〉gβ̄ρµ̄− 64i

sin2 θµ
〈∇µβ, ρ〉gβ̄ρ̄µ̄− 64i

sin2 θµ
〈∇µβ̄, ρ̄〉gρβµ̄(5.16)

+
∑

β,µ,ρ

64i

sin2 θµ
〈∇β̄µ, ρ̄〉gβρµ̄− 64i

sin2 θµ
〈∇µβ̄, ρ〉gρ̄βµ̄+

64i

sin2 θµ
〈∇β̄µ, ρ〉gρ̄βµ̄ (5.17)

+
∑

β,µ,ρ

64i

sin2 θµ
〈∇̄µβ, ρ̄〉gβ̄ρµ+

64i

sin2 θµ
〈∇̄µβ, ρ〉gβ̄ρ̄µ+

64i

sin2 θµ
〈∇̄µβ̄, ρ̄〉gρβµ (5.18)

+
∑

β,µ,ρ

− 64i

sin2 θµ
〈∇β̄µ̄, ρ̄〉gρβµ+

64i

sin2 θµ
〈∇̄µβ̄, ρ〉gρ̄βµ− 64i

sin2 θµ
〈∇β̄µ̄, ρ〉gρ̄βµ(5.19)

+
∑

β,µ,ρ

64i

sin2 θµ
〈∇β̄µ̄, ρ̄〉gβµρ+

64i

sin2 θµ
〈∇β̄µ̄, ρ〉gβµρ̄−

64i

sin2 θµ
〈∇β̄µ, ρ〉gβµ̄ρ̄ (5.20)

+
∑

β,µ,ρ

− 64i

sin2 θµ
〈∇β̄µ, ρ̄〉gβµ̄ρ+

64i

sin2 θµ
〈∇βµ, ρ̄〉gβ̄ρµ̄− 64i

sin2 θµ
〈∇βµ, ρ̄〉gβ̄µ̄ρ (5.21)

+
∑

β,µ,ρ

64i

sin2 θµ
〈∇βµ̄, ρ〉gβ̄µρ̄−

64i

sin2 θµ
〈∇βµ̄, ρ〉gβ̄ρ̄µ (5.22)

−
∑

β,µ,ρ

64(cos θµ − cos θρ)

sin2 θµ
(|〈∇βµ, ρ̄〉|2 + |〈∇β̄µ, ρ̄〉|2).

Interchanging ρ with β in the first term of (5.16) (that we named by (5.16)(1), and

similarly to other equations), we see that (5.16)(1) + (5.17)(2) = 0. Interchanging ρ

with β in (5.18)(1), we get (5.18)(1) + (5.19)(2) = 0. In (5.16)(2), 〈∇µβ, ρ〉 is skew-

symmetric on ρ and β, and gβ̄ρ̄µ̄ is symmetric on ρ and β. Hence (5.16)(2) = 0. Similarly

(5.16)(3) = (5.18)(2) = (5.18)(3) = 0. If we interchange ρ with µ in (5.17)(1),

(5.17)(1) + (5.20)(2) = −
∑

β,µ,ρ

64i(sin2 θµ − sin2 θρ)

sin2 θµ sin
2 θρ

〈∇β̄µ̄, ρ〉gβµρ̄.
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Interchanging ρ with µ in (5.17)(3), we get

(5.17)(3) + (5.20)(3) = −
∑

β,µ,ρ

64i(sin2 θµ + sin2 θρ)

sin2 θµ sin
2 θρ

〈∇β̄µ, ρ〉gβµ̄ρ̄.

Interchanging ρ with µ in (5.19)(1), we get

(5.19)(1) + (5.20)(1) =
∑

β,µ,ρ

64i(sin2 θµ + sin2 θρ)

sin2 θµ sin
2 θρ

〈∇β̄µ̄, ρ̄〉gβµρ.

Interchanging ρ with µ in (5.19)(3), we get

(5.19)(3) + (5.21)(1) =
∑

β,µ,ρ

64i(sin2 θµ − sin2 θρ)

sin2 θµ sin
2 θρ

〈∇β̄µ, ρ̄〉gβµ̄ρ.

Interchanging ρ with µ in (5.21)(2),

(5.21)(2) + (5.22)(1) =
∑

β,µ,ρ

64i(− sin2 θµ + sin2 θρ)

sin2 θµ sin
2 θρ

〈∇βµ̄, ρ〉gβ̄µρ̄.

Interchanging ρ with µ in (5.22)(2), we obtain

(5.22)(2) + (5.21)(3) =
∑

β,µ,ρ

64i(sin2 θµ − sin2 θρ)

sin2 θµ sin
2 θρ

〈∇βµ, ρ̄〉gβ̄µ̄ρ.
Therefore,

2△κ =

=
∑

β,µ,ρ

64(cos θµ + cos θρ)

sin2 θµ sin
2 θρ

dg̃µρ̄(β̄)dg̃ρµ̄(β) (5.23)

+
∑

β,µ

32i

sin2 θµ
RN(dF (β), dF (β̄), dF (µ), JdF (µ̄) + i cos θµdF (µ̄)) (5.24)

+
∑

β,µ

64

sin2 θµ
Im(RN(dF (β), dF (µ), dF (β̄), JdF (µ̄) + i cos θµdF (µ̄)))

+
∑

β,µ,ρ

64(cos θρ − cos θµ)

sin2 θµ sin
2 θρ

|gβµρ|2 (5.25)

−
∑

β,µ,ρ

64(cos θρ + cos θµ)

sin2 θµ sin
2 θρ

|gβµρ̄|2 (5.26)

−
∑

β,µ,ρ

64(cos θρ + cos θµ)

sin2 θµ sin
2 θρ

|gβµ̄ρ|2 (5.27)

+
∑

β,µ,ρ

64(cos θρ − cos θµ)

sin2 θµ sin
2 θρ

|gβµ̄ρ̄|2 (5.28)

−
∑

β,µ,ρ

64i(sin2 θµ − sin2 θρ)

sin2 θµ sin
2 θρ

〈∇β̄µ̄, ρ〉gβµρ̄ (5.29)

−
∑

β,µ,ρ

64i(sin2 θµ + sin2 θρ)

sin2 θµ sin
2 θρ

〈∇β̄µ, ρ〉gβµ̄ρ̄ (5.30)

+
∑

β,µ,ρ

64i(sin2 θµ + sin2 θρ)

sin2 θµ sin
2 θρ

〈∇β̄µ̄, ρ̄〉gβµρ (5.31)

+
∑

β,µ,ρ

64i(sin2 θµ − sin2 θρ)

sin2 θµ sin
2 θρ

〈∇β̄µ, ρ̄〉gβµ̄ρ (5.32)
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+
∑

β,µ,ρ

64i(− sin2 θµ + sin2 θρ)

sin2 θµ sin
2 θρ

〈∇βµ̄, ρ〉gβ̄µρ̄ (5.33)

+
∑

β,µ,ρ

64i(sin2 θµ − sin2 θρ)

sin2 θµ sin
2 θρ

〈∇βµ, ρ̄〉gβ̄µ̄ρ (5.34)

−
∑

β,µ,ρ

64(cos θµ − cos θρ)

sin2 θµ
(|〈∇βµ, ρ̄〉|2 + |〈∇β̄µ, ρ̄〉|2). (5.35)

By Lemma 5.3,

(5.23) =
∑

β,µ,ρ

64(cos θµ + cos θρ)

sin2 θµ sin
2 θρ

· (igβ̄µρ̄− igβ̄ρ̄µ− (cos θµ−cos θρ)〈∇β̄µ, ρ̄〉)·
· (igβρµ̄− igβµ̄ρ− (cos θρ−cos θµ)〈∇βρ, µ̄〉)

= −
∑

β,µ,ρ

64(cos θµ + cos θρ)

sin2 θµ sin
2 θρ

gβ̄µρ̄gβρµ̄

+
∑

β,µ,ρ

64(cos θµ + cos θρ)

sin2 θµ sin
2 θρ

|gβµ̄ρ|2 (5.36)

+
∑

β,µ,ρ

64i(cos2 θµ − cos2 θρ)

sin2 θµ sin
2 θρ

gβ̄µρ̄〈∇βρ, µ̄〉 (5.37)

+
∑

β,µ,ρ

64(cos θµ + cos θρ)

sin2 θµ sin
2 θρ

|gβρµ̄|2 (5.38)

−
∑

β,µ,ρ

64(cos θµ + cos θρ)

sin2 θµ sin
2 θρ

gβµ̄ρgβ̄ρ̄µ

−
∑

β,µ,ρ

64i(cos2 θµ − cos2 θρ)

sin2 θµ sin
2 θρ

〈∇βρ, µ̄〉gβ̄ρ̄µ (5.39)

−
∑

β,µ,ρ

64i(cos2 θµ − cos2 θρ)

sin2 θµ sin
2 θρ

〈∇β̄µ, ρ̄〉gβρµ̄ (5.40)

+
∑

β,µ,ρ

64i(cos2 θµ − cos2 θρ)

sin2 θµ sin
2 θρ

〈∇β̄µ, ρ̄〉gβµ̄ρ (5.41)

+
∑

β,µ,ρ

64(cos2 θµ − cos2 θρ)

sin2 θµ sin
2 θρ

(cos θρ − cos θµ)〈∇β̄µ, ρ̄〉〈∇βρ, µ̄〉. (5.42)

Immediately we have, (5.27)+ (5.36) = (5.32)+ (5.41) = (5.33)+ (5.37) = 0, and inter-

changing µ with ρ in (5.26), (5.34) and in (5.40), we get, (5.26)+(5.38) = (5.29)+(5.40) =

(5.34) + (5.39) = 0. Note that
∑

µ,ρ

(cos θµ − cos θρ)

sin2 θµ
|〈∇βµ, ρ̄〉|2 =

∑

µ,ρ

(cos θρ − cos θµ)

sin2 θρ
|〈∇β̄µ, ρ̄〉|2.

Hence (5.35) + (5.42) = 0. Then,

2△κ =
∑

β,µ

32i

sin2 θµ
RN(dF (β), dF (β̄), dF (µ), JdF (µ̄) + i cos θµdF (µ̄)) (5.43)

+
∑

β,µ

64

sin2 θµ
Im(RN(dF (β), dF (µ), dF (β̄), JdF (µ̄) + i cos θµdF (µ̄)))
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+
∑

β,µ,ρ

−64(cos θµ+cos θρ)

sin2 θµ sin
2 θρ

(gβ̄µρ̄gβρµ̄+ gβµ̄ρgβ̄ρ̄µ) (5.44)

+
∑

β,µ,ρ

64(cos θρ − cos θµ)

sin2 θµ sin
2 θρ

(|gβµρ|2 + |gβ̄µρ|2)

−
∑

β,µ,ρ

64i(sin2 θµ + sin2 θρ)

sin2 θµ sin
2 θρ

〈∇β̄µ, ρ〉gβµ̄ρ̄ (5.45)

+
∑

β,µ,ρ

64i(sin2 θµ + sin2 θρ)

sin2 θµ sin
2 θρ

〈∇β̄µ̄, ρ̄〉gβµρ. (5.46)

Using Lemma 5.3, and interchanging ρ by µ when necessary,

(5.45) + (5.46) =

=
∑

β,µ,ρ

− 64i

sin2 θρ
〈∇β̄µ, ρ〉gβµ̄ρ̄−

64i

sin2 θµ
〈∇β̄µ, ρ〉gβµ̄ρ̄+

64i

sin2 θµ
〈∇β̄µ̄, ρ̄〉gβµρ+

64i

sin2 θρ
〈∇β̄µ̄, ρ̄〉gβµρ

=
∑

β,µ,ρ

−64i

sin2 θµ
〈∇β̄µ, ρ〉(gβµ̄ρ̄− gβρ̄µ̄)+

∑

β,µ,ρ

64i

sin2 θµ
〈∇β̄µ̄, ρ̄〉(gβµρ− gβρµ)

=
∑

β,µ,ρ

64

sin2 θµ
〈∇β̄µ, ρ〉(cos θµ + cos θρ)〈∇βµ̄, ρ̄〉+

64

sin2 θµ
〈∇β̄µ̄, ρ̄〉(cos θµ + cos θρ)〈∇βµ, ρ〉

=
∑

β,µ,ρ

64(cos θµ + cos θρ)

sin2 θµ
(|〈∇βµ, ρ〉|2 + |〈∇β̄µ, ρ〉|2).

Obviously
(5.44) =

∑

β,µ,ρ

−128(cos θµ+cos θρ)

sin2 θµ sin
2 θρ

Re(gβµρ̄gβ̄ρµ̄).

From (1.4), (2.1), and the J-invariance of Ricci, (5.43) = 8i
∑

β RicciN (JdF (β), dF (β̄)),

and the expression of the Proposition follows.
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mannienes, Bull. Soc. Math. France 83 (1955), 279-330.

[Ch-W] S.S. Chern & J.G. Wolfson, Minimal surfaces by moving frames, Amer. J. Math. 105

(1983), 59-83.

[E-L] J. Eells & L. Lemaire, Selected topics in harmonic maps, C.B.M.S. Regional Conf. Series

50, A.M.S. (1983).

[Mi-Mo] M.J. Micallef & J.D. Moore, Minimal two-spheres and the topology of manifolds with



Salavessa - Valli 33

positive curvature on totally isotropic two-planes, Annals of Math. 127 (1988), 199-227

[O] Y. Ohnita, Minimal surfaces with constant curvature and Kähler angle in complex space

forms, Tsukuba J. Math. 13 No1 (1989), 191-207.

[O-V] Y. Ohnita & G. Valli Pluriharmonic maps into compact Lie groups and factorization

into unitons, Proc. London Math. Soc. 61 (1990), 546-570.

[S-V] I. Salavessa & G. Valli, Broadly-Pluriminimal Submanifolds of Kähler-Einstein Mani-

folds, preprint submitted for publication.

[W] J. G. Wolfson, Minimal Surfaces in Kähler Surfaces and Ricci Curvature, J. Diff. Geom,

29 (1989), 281–294.


