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The Alexander polynomial of a plane curve

singularity and the ring of functions on it

A.Campillo F.Delgado ∗ S.M.Gusein–Zade †

Abstract

We give two formulae which express the Alexander polynomial ∆C

of several variables of a plane curve singularity C in terms of the ring
OC of germs of analytic functions on the curve. One of them expresses
∆C in terms of dimensions of some factorspaces corresponding to a
(multi-indexed) filtration on the ring OC . The other one gives the
coefficients of the Alexander polynomial ∆C as Euler characteristics
of some explicitly described spaces (complements to arrangements of
projective hyperplanes).

A version of this text has been published in Russian Mathematical
Surveys, v.54 (1999), N 3 (327), p.157–158.

The ring OX of germs of holomorphic functions on a germ X of an ana-
lytic set determines X itself (up to analytic equivalence). Thus all invariants
of X , in particular, topological ones, can “be read” from OX . There arises a
general problem to find expressions for invariants of X in terms of the ring
OX . The Alexander polynomial ∆C of several variables is a complete topo-
logical invariant of a plane curve singularity C ⊂ (C2,0) ([Y]). A formula of
D.Eisenbud and W.Neumann ([EN]) expresses the Alexander polynomial in
terms of an embedded resolution of the curve C. In this note we give two for-
mulae for the Alexander polynomial directly in terms of the ring of germs of
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analytic functions on the curve C. One of them expresses the Alexander poly-
nomial ∆C in terms of dimensions of some factorspaces corresponding to a
(multi-indexed) filtration on the ring OC . The other one gives the coefficients
of the Alexander polynomial ∆C as Euler characteristics of some explicitly
described spaces (complements to arrangements of projective hyperplanes).
It seems to be the first result which describes the coefficients of the Alexander
polynomial (and thus of the zeta–function of the monodromy) as Euler char-
acteristics of some spaces. Another formula which expresses the Lefschetz
numbers of iterates of the monodromy (and therefore the zeta–function of it)
for a hypersurface singularity of any dimension in terms of Euler character-
istics of some subspaces of the space of (truncated) arcs is given in a paper
of J.Denef and F.Loeser (xxx-Preprint series, math.AG/0001105).

Let C be a germ of a reduced plane curve at the origin in C
2 and let

C =
r
⋃

i=1

Ci be its representation as the union of irreducible components (with

a fixed numbering). Let OC2,0 be the ring of germs of holomorphic functions
at the origin in C

2 and let {f = 0} (f ∈ OC2,0) be an equation of the curve
C. Let OC be the ring of germs of analytic functions on C (∼= OC2,0/(f)),
and let ∆C(t1, . . . , tr) be the Alexander polynomial of the link C ∩ S3

ε ⊂ S3

ε

for ε > 0 small enough (see, e.g., [EN]).

Remarks. 1. According to the definition, the Alexander polynomial
∆C(t1, . . . , tr) is well defined only up to multiplication by monomials ±tm =
±tm1

1 ·. . .·tmr

r (t = (t1, . . . , tr), m = (m1, . . . , mr) ∈ Z
r). We fix the Alexander

polynomial assuming that it is really a polynomial (i.e., it does not contain
variables with negative powers) and ∆C(0, . . . , 0) = 1.

2. There is some difference in definitions (or rather in descriptions) of the
Alexander polynomial for a curve with one branch (r = 1) or with many
branches (r > 1) (see, e.g., [EN]). In order to have all the results (Theorems
1 and 2 below) valid for r = 1 as well, for an irreducible curve C, ∆C(t)
should be not the Alexander polynomial, but rather the zeta-function ζC(t)
of the monodromy, equal to the Alexander polynomial divided by (1− t). In
this case ∆C(t) is not a polynomial, but an infinite power series. However for
uniformity of the statements we shall use the name ”Alexander polynomial”
for this ∆C(t) as well.

Let ϕi : (Ci, 0) → (C2, 0) be parametrizations (uniformizations) of the
components Ci of the curve C, i.e., germs of analytic maps such that Imϕi =
Ci and ϕi is an isomorphism between Ci and Ci outside of the origin. For
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a germ g ∈ OC2,0, let vi = vi(g) and ai = ai(g) be the power of the leading
term and the coefficient at it in the power series decomposition of the germ
g ◦ ϕi : (Ci, 0) → C : g ◦ ϕi(ti) = ai · t

vi
i + terms of higher degree (ai 6= 0).

If g ◦ ϕi(t) ≡ 0, vi(g) is assumed to be equal to ∞ and ai(g) is not defined.
The numbers vi(g) and ai(g) are defined for elements g of the ring OC of
functions on the curve C as well.

The semigroup S = SC of the plane curve singularity C is the subsemi-
group of Zr

≥0
which consists of elements of the form v(g) = (v1(g), . . . , vr(g))

for all germs g ∈ OC with vi(g) < ∞; i = 1, . . . , r. The extended
semigroup Ŝ = ŜC of the plane curve singularity C is the subsemi-
group of Z

r
≥0

× (C∗)r which consists of elements of the form (v(g); a(g)) =
(v1(g), . . . , vr(g); a1(g), . . . , ar(g)) for all germs g ∈ OC with vi(g) < ∞,
i = 1, . . . , r ([CDG1]).

It is known that both the semigroup SC and the Alexander polynomial
∆C(t1, . . . , tr) are complete topological invariants of a plane curve singularity,
i.e., each of them determines the germ C up to topological equivalence ([W],
[Y]). Therefore it is interesting to understand a connection between them. In
fact from the formula for the Alexander polynomial in terms of a resolution of
a plane curve singularity (see [EN]) it is not difficult to understand that the
Alexander polynomial ∆C(t1, . . . , tr) may contain with non-zero coefficients
only monomials tv for v from the semigroup SC of the curve C. For the case
of an irreducible curve C (r = 1) the corresponding connection has been
described in [CDG2]. In this case

ζC(t) =
∑

i∈SC

ti

(SC ⊂ Z≥0).

Let π : ŜC → Z
r be the natural projection: (v, a) 7→ v. For an element

v ∈ Z
r, let Fv = π−1(v) ⊂ {v} × (C∗)r ⊂ {v} × C

r be the corresponding fibre
of the extended semigroup ([CDG1]). The fibre Fv is not empty if and only
if v ∈ SC . For v = (v1, . . . , vr) ∈ Z

r, let J(v) = {g ∈ OC : vi(g) ≥ vi; i =
1, . . . , r} be an ideal in OC . One has a natural linear map jv : J(v) → C

r,
which sends g ∈ J(v) to (a1, . . . , ar), where ai is the coefficient in the power
series expansion g ◦ϕi(ti) = ait

vi
i + . . . (the number ai may be equal to zero).

Let C(v) ⊂ C
r be the image of the map jv, let c(v) = dim C(v). It is not

difficult to see that C(v) ∼= J(v)/J(v + 1), where 1 = (1, . . . , 1), and that
Fv = C(v)∩ (C∗)r (under the natural identification of {v}× (C∗)r and (C∗)r).
Therefore the fibre Fv (v ∈ SC) is the complement to an arrangement of linear
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hyperplanes in the vector space C(v). The extended semigroup ŜC contains
some analytic information about the plane curve singularity C, however the
dimensions c(v) depend only on the topological type of C (see [CDG1]).

Let L = Z[[t1, . . . , tr, t
−1

1 , . . . , t−1

r ]] be the set of formal Laurent series
in t1, . . . , tr. Elements of L are expressions of the form

∑

v∈Zr

k(v) · tv with

k(v) ∈ Z, generally speaking, infinite in all directions. L is not a ring, but
a Z[t1, . . . , tr]– (or even Z[t1, . . . , tr, t

−1

1 , . . . , t−1

r ]–) module. The polynomial
ring Z[t1, . . . , tr] can be in a natural way considered as being embedded into
L.

Let LC(t1, . . . , tr) =
∑

v∈Zr

c(v) · tv ∈ L, P ′
C(t1, . . . , tr) = (t1 − 1) · . . . ·

(tr − 1) · LC(t1, . . . , tr). One can easily see that P ′
C(t1, . . . , tr) is in fact a

polynomial, i.e., P ′
C(t1, . . . , tr) ∈ Z[t1, . . . , tr]. This follows from the fact that,

if v′i and v′′i are negative, then c(v1, . . . , v
′
i, . . . , vr) = c(v1, . . . , v

′′
i , . . . , vr). Let

PC(t1, . . . , tr) = P ′
C(t1, . . . , tr)/(t1 · . . . · tr − 1) ∈ Z[[t1, . . . , tr]].

Proposition. For r > 1, the polynomial P ′
C(t1, . . . , tr) is divisible by (t1 ·

. . . · tr − 1), i.e., PC(t1, . . . , tr) ∈ Z[t1, . . . , tr].

For r = 1, PC(t) = LC(t).

Theorem 1 PC(t1, . . . , tr) = ∆C(t1, . . . , tr).

The fibre Fv of the extended semigroup is invariant with respect to mul-
tiplication by non-zero complex numbers. Let P(Fv) be the projectivization
of the fibre Fv, i.e., P(Fv) = Fv/C

∗. The projectivization P(Fv) of the fibre
Fv is the complement to an arrangement of projective hyperplanes in a pro-
jective space. If v ≥ δ, where δ is the conductor of the semigroup SC of the
curve C, then the fibre Fv coincides with (C∗)r and the Euler characteristic
χ(P(Fv)) of its projectivization is equal to 1 for r = 1 and to 0 for r > 1. Let

χ(PŜC) :=
∑

v∈Z
r

≥0

χ(P(Fv)) · t
v.

Theorem 2

∆C(t1, . . . , tr) = χ(PŜC). (∗)

Let ζC(t) (= ∆C(t, t, . . . , t)) be the zeta–function of the monodromy of
the germ f (the equation of the curve C). Let |v| := v1 + . . .+ vr.

Corollary. ζC(t) =
∞
∑

i=0

χ

(

⋃

v:|v|=i

P(Fv)

)

· tv.

4



Remark. For an irreducible plane curve singularity all coefficients of the
zeta–function of the monodromy are equal to 0 or 1. In terms of the equation
(∗), 0 = χ(∅), 1 = χ(point).

The proof consists of calculation of the polynomial χ(PŜC) in terms of
a suitable (not minimal one)embedded resolution of the curve C ⊂ (C2, 0)
and comparing it with the formula for the Alexander polynomial from [EN].
These calculations involve a detailed knowledge about the structure of the
semigroup and its relation with the resolution of a singularity. In fact
the polynomials PC(t1, . . . , tr) and χ(PŜC) coincide for any (not necesser-
aly plane) curve. The proof will be published elsewhere.

A global version of the result from [CDG2] for a plane algebraic curve
with one place at infinity was obtained in [CDG3].
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