THE MANIFOLD OF FINITE RANK PROJECTIONS IN THE SPACE $\mathcal{L}(H)$.

José M. Isidro †

Universidad de Santiago de Compostela

December, 1999

ABSTRACT. Given a complex Hilbert space H and the von Neumann algebra $\mathcal{L}(H)$ of all bounded linear operators in H, we study the Grassmann manifold M of all projections in $\mathcal{L}(H)$ that have a fixed finite rank r. To do it we take the Jordan-Banach triple (or JB*-triple) approach which allows us to define a natural Levi-Civita connection on M by using algebraic tools. We identify the geodesics and the Riemann distance and establish some properties of M.

0 Introduction

In this paper we are concerned with the differential geometry of the infinite-dimensional Grassmann manifold M of all projections in $Z := \mathcal{L}(H)$, the space of bounded linear operators $z: H \to H$ in a complex Hilbert space H. Grassmann manifolds are a classical object in Differential Geometry and in recent years several authors have considered them in the Banach space setting. Besides the Grassmann structure, a Riemann and a Kähler structure has sometimes been defined even in the infinite-dimensional setting. Let us recall some aspects of the history of the topic that are relevant for our purpose.

The study of the manifold of minimal projections in a finite-dimensional simple formally real Jordan algebra was made by U. Hirzebruch in [4], who proved that such a manifold is a compact symmetric Riemann space of rank 1, and that every such a space arises in this way. Later on, Nomura in [13, 14] established similar results for the manifold of fixed finite rank projections in a topologically simple real Jordan-Hilbert algebra. On the other hand, the Grassmann manifold M of all projections in the space $Z := \mathcal{L}(H)$ of bounded linear operators has been discussed by Kaup in [7] and [10]. It is therefore reasonable to ask whether a Riemann structure can always be defined in M and how does it behave when it exists. It is known that M has several connected components $M_r \subset M$ each of which consists of the projections in $\mathcal{L}(H)$ that have a fixed rank $r, 1 \leq r \leq \infty$. We prove that M_r admits a Riemann structure if and only if $r < \infty$ establishing a distinction between the finite and the infinite dimensional cases. We then assume $r < \infty$ and proceed to discuss the behaviour of the Riemann manifold M_r , which looks very much like in the finite-dimensional case. One of the novelties is that we take JB*-triple approach instead of the Jordan-algebra approach of [4] and [13]. As noted in [1] and [5], within this context the algebraic structure of JB*-triple acts as a substitute for the Jordan algebra structure and provides a local scalar product known as the Levi form [10]. Although $\mathcal{L}(H)$ is not a Hilbert space, the JB*-triple approach and the use of the Levi form allows us to define a torsion-free affine connection ∇ on

¹⁹⁹¹ Mathematics Subject Classification. 48 G 20, 72 H 51.

Key words and phrases. Grassmann manifolds, Riemann manifolds, JB*-triples.

[†]Supported by Comisión Hispano-Húngara de Cooperación Científica y Tecnológica

 M_r that is invariant under the group $\operatorname{Aut}^{\circ}(Z)$ of all surjective linear isometries of $\mathcal{L}(H)$. We integrate the equation of the geodesics and define an $\operatorname{Aut}^{\circ}(Z)$ -invariant Riemann metric on M_r with respect to which ∇ is a Levi-Civita connection. We prove that any two distinct points in M_r can be joined by a geodesic which (except for the case of a pair of antipodal points) is uniquely determined and is a minimizing curve for the Riemann distance, that is also computed. We prove that M_r is a symmetric manifold on which $\operatorname{Aut}^{\circ}(Z)$ acts transitively as a group of isometries.

1 JB*-TRIPLES AND TRIPOTENTS.

For a complex Banach space Z, denote by $\mathcal{L}(Z)$ the Banach algebra of all bounded linear operators on Z. A complex Banach space Z with a continuous mapping $(a, b, c) \mapsto \{abc\}$ from $Z \times Z \times Z$ to Z is called a JB^* -triple if the following conditions are satisfied for all $a, b, c, d \in Z$, where the operator $a \Box b \in \mathcal{L}(Z)$ is defined by $z \mapsto \{abz\}$ and [,] is the commutator product:

- 1 $\{abc\}$ is symmetric complex linear in a, c and conjugate linear in b.
- $2 \ [a\Box b, \ c\Box d] = \{abc\}\Box d c\Box\{dab\}.$
- 3 $a \Box a$ is hermitian and has spectrum ≥ 0 .
- $4 ||\{aaa\}|| = ||a||^3.$

If a complex vector space Z admits a JB*-triple structure, then the norm and the triple product determine each other. A *derivation* of a JB*-triple Z is an element $\delta \in \mathcal{L}(Z)$ such that $\delta\{zzz\} = \{(\delta z)zz\} + \{z(\delta z)z\} + \{zz(\delta z)\}$ and an *automorphism* is a bijection $\phi \in \mathcal{L}(Z)$ such that $\phi\{zzz\} = \{(\phi z)(\phi z)(\phi z)\}$ for $z \in Z$. The latter occurs if and only if ϕ is a surjective linear isometry of Z. The group Aut(Z) of automorphisms of Z is a real Banach-Lie group whose Banach-Lie algebra is the set of derivations of Z. The connected component of the identity in Aut(Z) is denoted by Aut°(Z). Two elements $x, y \in Z$ are orthogonal if $x \Box y = 0$. An element $e \in Z$ is called a *tripotent* if $\{eee\} = e$. The set $\operatorname{Tri}(Z)$ of tripotents is endowed with the induced topology of Z. If $e \in \operatorname{Tri}(Z)$, then $e \Box e \in \mathcal{L}(Z)$ has the eigenvalues $0, \frac{1}{2}, 1$ and we have the topological direct sum decomposition

$$Z = Z_1(e) \oplus Z_{1/2}(e) \oplus Z_0(e)$$

called the *Peirce decomposition* of Z. Here $Z_k(e)$ is the k- eigenspace and the *Peirce projections* are

$$P_1(e) = Q^2(e),$$
 $P_{1/2}(e) = 2(e \Box e - Q^2(e)),$ $P_0(e) = \mathrm{Id} - 2e \Box e + Q^2(e),$

where $Q(e)z = \{eze\}$ for $z \in Z$. We will use the Peirce rules $\{Z_i(e) Z_j(e) Z_k(e)\} \subset Z_{i-j+k}(e)$ where $Z_l(e) = \{0\}$ for $l \neq 0, 1/2, 1$. We note that $Z_1(e)$ is a complex unital JB*-algebra in the product $a \circ b := \{aeb\}$ and involution $a^{\#} := \{eae\}$. Let

$$A(e) := \{ z \in Z_1(e) : z^{\#} = z \}.$$

Then we have $Z_1(e) = A(e) \oplus iA(e)$. The Peirce spaces of Z with respect to a an orthogonal family of tripotents $\mathcal{E} = (e_i)_{i \in I}$ are defined by

$$Z_{ii} := Z_1(e_i)$$

$$Z_{ij} := Z_{1/2}(e_i) \cap Z_{1/2}(e_j), \quad i \neq j$$

$$Z_{i0} := Z_{0i} := Z_{1/2}(e_i) \bigcap_{j \neq i} Z_0(e_j)$$

$$Z_{00} := \bigcap_{i \in I} Z_0(e_i)$$

The Peirce sum $P(\mathcal{E}) := \bigoplus_{i,j \in I} Z_{ij}$ relative to the family \mathcal{E} is direct and we have $Z = P(\mathcal{E})$ whenever \mathcal{E} is a finite set. Every \mathcal{E} -Peirce space is a JB*-subtriple of Z and the Peirce rules

$$\{Z_{ij}Z_{jk}Z_{kl}\} \subset Z_{il}$$

hold for all $i, j, k, l \in I$.

A tripotent e in a JB*-triple Z is said to be minimal if $P_1(e)Z = \mathbb{C}e$, and we let Min(Z)be the set of them. Clearly e = 0 lies in Min(Z) and is an isolated point there. If $e \in Min(Z)$ and $e \neq 0$ then ||e|| = 1 and by the Peirce multiplication rules we have $\{euv\} \in Z_1(e) = \mathbb{C}e$ for all $u, v \in Z_{1/2}(e)$. Therefore we can define a sesquilinear form, called the Levi form, $\langle \cdot, \cdot \rangle_e: Z_{1/2}(e) \times Z_{1/2}(e) \to \mathbb{C}$ by

$$\{euv\} = \langle v, u \rangle_e e, \qquad u, v \in Z_{1/2}(e).$$

It is known [10] that $\langle \cdot, \cdot \rangle_e$ is positive definite hence it defines a scalar product in $Z_{1/2}(e)$ whose norm, called the *Levi norm* and denoted by $|\cdot|_e$, satisfies

$$|u|_e^2 \le ||u||^2, \qquad u \in Z_{1/2}(e)$$

that is, we have the continuous inclusion $(Z_{1/2}(e), \|\cdot\|) \hookrightarrow (Z_{1/2}(e), |\cdot|_e)$. To simplify the notation, we shall omit the subindex e in both the Levi form and the Levi norm if no confusion is likely to occur.

JB*-triples include C*-algebras and JB*-algebras. A C*-algebra is a JB*-triple with respect to the triple product $2\{abc\}: = (ab^*c + cb^*a)$. Every JB*-algebra with Jordan product $(a, b) \mapsto a \circ b$ and involution $a \mapsto a^*$ is a JB*-triple with triple product $\{abc\} = (a \circ b^*) \circ c - (c \circ a) \circ b^* + (b^* \circ c) \circ a$.

We refer to [8,9,10,12] for the background of JB*-triples theory.

2 The manifold M of minimal projections

Let $Z := \mathcal{L}(H)$, where H is a complex Hilbert space, and let $M \subset \operatorname{Tri}(Z)$ denote the set of all projections in Z endowed with its topology as subspace of Z. Fix any non zero projection $e_0 \in M$ and denote by M the connected component of e_0 in M. Then all elements in M have the same rank as e_0 and $\operatorname{Aut}^{\circ}(Z)$ acts transitively on M which is an $\operatorname{Aut}^{\circ}(Z)$ - invariant real analytic manifold whose tangent space at a point $e \in M$ is

$$T_e M = Z_{1/2}(e)_s,$$

the selfadjoint part of the $\frac{1}{2}$ -eigenspace of e. If we set $k_u := 2(u \Box e - e \Box u)$, then by [1, th. 3.3] a local chart of M in a suitable neighbourhood U of 0 in $Z_{1/2}(e)_s$ is given by

$$u \mapsto f(u) := \exp k_u(e).$$

Let $\mathfrak{D}(M)$ be the Lie algebra of all real analytic vector fields on M, and as in [1], define an affine connection ∇ on M by

$$(\nabla_X Y)_e := P_{1/2}(e)Y'_e X_e, \qquad e \in M, \qquad X, Y \in \mathfrak{D}(M)$$
(1).

Then ∇ is a torsion-free Aut[°](Z)-invariant affine connection on M. For each $e \in M$ and $u \in Z_{1/2}(e)_s$ we let $\gamma_{e,u}: \mathbb{R} \to M$ denote the curve $\gamma_{e,u}(t):= \exp tk_u(e)$. Clearly we have $\gamma_{e,u}(0) = e$ and $\dot{\gamma}_{e,u}(0) = u \in T_e M$. By [1, th. 2.7], $\gamma_{e,u}$ is a ∇ -geodesic of M. Let us introduce a binary product in Z by $x \circ y:= \{xey\}$. Then (Z, \circ) is a complex Jordan algebra where, as usual, $x^{(n)}$

denotes the *n*-th power of x in (Z, \circ) for $n \in \mathbb{N}$. For $u \in Z_{1/2}(e)$, the real Jordan subalgebra of (Z, \circ) generated by the pair (e, u) is denoted by J[e, u] and we have $\gamma_{e,u}(\mathbb{R}) \subset J[e, u]$.

To make a more detailed study of the manifold M, we shall assume that e_0 is *minimal*. In such a case J[e, u] coincides with the closed real linear span of the set $\{e, u, u^{(2)}\}$, in particular dim $J[e, u] \leq 3$ and

$$\gamma_{e,u}(t) = (\cos^2 t\theta) e + (\frac{1}{2\theta} \sin 2t\theta) u + (\frac{1}{\theta^2} \sin^2 t\theta) u^{(2)}, \qquad t \in \mathbb{R}$$
(2)

for some angle $0 \leq \theta < \frac{\pi}{2}$. If a, b are two distinct minimal projections and they are not orthogonal (that is, if the Peirce projection $P_1(a)b$ is invertible in the JB*-algebra $Z_1(a)$) then there is an unique geodesic $\gamma_{a,u}(t)$ joining a with b in M. Moreover, due to the minimality of e the tangent space $Z_{1/2}(e) \approx \{e\}^{\perp}$ appears naturally endowed with the Levi form $\langle \cdot, \rangle_e$ and it turns out that the Levi norm $|\cdot|_e$ and the operator norm $||\cdot||$ are equivalent in $Z_{1/2}(e)$ (see [6, th.5.1]). Thus $(Z_{1/2}(e), |\cdot|_e)$ is a Hilbert space and an Aut°-invariant Riemann structure can be defined in M by

$$g_e(X,Y) := \langle X_e, Y_e \rangle_e, \qquad X, Y \in \mathfrak{D}(M)$$
(3)

where $V_e \in Z_{1/2}(e)$ denotes the value taken by the vector field V at the point $e \in M$. By [1] g satisfies

$$Xg(Y,Z) = g(\nabla_X Y, Z) + g(Y, \nabla_X Z), \qquad X, Y, Z \in \mathfrak{D}(M)$$
(4)

Therefore ∇ is the only Levi-Civita affine connection on M, and the geodesics are minimizing curves for the Riemann distance in M, which is given by the formula

$$d(a,b) = \cos^{-1} \left(\|P_1(a)b\|^{\frac{1}{2}} \right) = \theta$$

M is symmetric Riemann manifold on which $\operatorname{Aut}^{\circ}(Z)$ acts transitively as a group of isometries and there is a real analytic diffeomorphism of M onto the projective space $\mathbb{P}(H)$ over H, endowed with the Fubini-Study metric. We refer to [1,5,6,13] for proofs and background about these facts.

3 The manifold of finite rank projections in $\mathcal{L}(H)$.

In what follows we let M and M_r be the set of all projections in Z and the set of all projections that have a fixed finite rank r, respectively. If $a \in M_r$ then a *frame* for a is any family (a_1, \dots, a_r) of pairwise orthogonal minimal projections in Z such that $a = \Sigma a_k$. Note that then the a_k have the form $a_k = (\cdot, \alpha_k)\alpha_k$ where (α_k) is an orthonormal family of vectors in the range a(H).

3.1 Proposition. For every projection $a \in M$ the following conditions are equivalent:

- (1) The rank of a is finite.
- (2) The Banach space $Z_{1/2}(a)$ is linearly homeomorphic to a Hilbert space.

Proof. Let us choose an orthonormal basis $(\alpha_i)_{i \in I}$ in the range $a(H) \subset H$ of a. Then $a_i := (\cdot, \alpha_i)\alpha_i, i \in I$, is a family of pairwise orthogonal minimal projections that satisfy

$$a = \sum_{i \in I} a_i$$
 strong operator convergence in Z (5)

The space $Z_{1/2}(a)_s$ consists of the operators $u \in Z$ such that $2\{aau\} = u$ and using (5) it is easy to check that u can be represented in the form

 $u = \sum_{i \in I} (\cdot, \xi_i) \alpha_i + (\cdot, \alpha_i) \xi_i$ strong operator convergence in Z

where $\xi_i := u(\alpha_i)$ are vectors in H that satisfy $\xi_i \in a(H)^{\perp}$. By (4) each $u \in Z_{1/2}(a)_s$ is determined by the family $(\xi_i)_{i \in I}$. To simplify the notation, set $K := a(H)^{\perp}$ and $L := \ell_{\infty}(I, K)$ for the Banach space of the families $(\xi_i)_{i \in I} \subset K$ with the norm of the supremun $||(\xi_i)|| := \sup_{i \in I} ||\xi_i||$. Then the mapping

$$L \to Z_{1/2}(a)_s, \qquad (\xi_i) \mapsto u_{\xi} := \sum_{i \in I} \left[(\cdot, \alpha_i) \xi_i + (\cdot, \xi_i) \alpha_i \right]$$

is a continuous *real linear* vector space isomorphism, hence a homeomorphism. Thus if the operator norm in $Z_{1/2}(a)_s$ is equivalent to a Hilbert space norm the same must occur with $\ell_{\infty}(I, K)$, hence I must be a finite set which means that $a = \Sigma a_i$ has finite rank. The converse is easy. \Box

3.2 Lemma. Let $a, b \in M_r$ with $a = \sum a_k$ where the (a_k) is a frame for a, and let $Q(a_k)b = \lambda_k a_k$, $(k = 1, \dots, r)$. If $P_1(a)b$ is invertible in the JB^* -algebra $Z_1(a)$, then $\lambda_k \neq 0$ for all k. The set of all elements $b \in M_r$ for which $P_1(a)b$ is invertible in $Z_1(a)$ is dense in M_r .

Proof. Suppose that $a_k = (\cdot, \alpha_k)\alpha_k$ and $b_j = (\cdot, \beta_j)\beta_j$ are frames for a and b respectively. Then for each fixed k we have

$$Q(a_k)b = \{a_k b a_k\} = \left(\Sigma_j | (\alpha_k, \beta_j)|^2\right) a_k = \lambda_k a_k$$

where $\lambda_k \geq 0$. Moreover $\lambda_k = 0$ if and only if $\alpha_k \in \{\beta_1, \dots, \beta_r\}^{\perp}$ which is equivalent to $a_k \perp b$. But in such a case range $(a_k) \subset \ker\{a_k b a_k\} = \ker P_1(a)b$ which contradicts the invertibility of $P_1(a)b$. To simplify the notation set $K := a(H) \subset H$ and note that dim $K = \operatorname{rank} a = r < \infty$ The operators in $Z_1(a) = aZa$ can be viewed as operators in $\mathcal{L}(K)$, therefore the *determinant* function is defined in $Z_1(a)$ and an element $z \in Z_1(a)$ is invertible if and only if det $(z) \neq 0$. Thus the set of the operators $b \in Z$ for which $P_1(a)b$ is invertible in $Z_1(a)$ is an open dense subset of M_r . \Box

3.3 Lemma. If a, p and q are projections in M_r and $P_{1/2}(a)p = P_{1/2}(a)q$, then p = q.

Proof. Take frames for a, p, q, compute $P_{1/2}(a)p = 2(D(a\Box a) - Q(a)^2)p$ and proceed similarly with q. An elementary exercise of linear algebra yields range (p)=range (q), hence p = q. \Box

Let $a \in M_r$ and choose any frame (a_1, a_2, \dots, a_r) for a. As above $Z_{1/2}(a)_s$ consists of the operators $u = \Sigma(\cdot, \xi_k)\alpha_k + (\cdot, \alpha_k)\xi_k$ where $\xi_k := u(\alpha_k)$ are vectors in H that satisfy $\xi_k \in a(H)^{\perp}$. Write $u_k := (\cdot, \xi_k)\alpha_k + (\cdot, \alpha_k)\xi_k$. Then we have $u = \Sigma u_k$ where the u_k are selfadjoint operators in $Z = \mathcal{L}(H)$ (in fact $u_k \in Z_{1/2}(a_k)_s$) that satisfy

$$u_j \Box a_k = a_k \Box u_j = 0, \qquad j \neq k, \qquad (j, k = 1, 2, \cdots, r)$$

$$(6).$$

The above properties of the a_k , u_k hold whatever is the frame (a_1, a_2, \dots, a_r) . There are many families in those conditions and we are going to prove that, by making an appropriate choice of the a_k (a choice in which the tangent vector $u \in Z_{1/2}(a)$ is also involved) we can additionally have

$$u_k \Box u_j = u_j \Box u_k = 0, \qquad j \neq k, \qquad (j, k = 1, 2, \cdots, r)$$

$$\tag{7}$$

This will simplify considerably the calculations in the sequel. We need some material.

3.4 Lemma. With the above notation the set of minimal tripotents in $Z_{1/2}(a)$ is

$$\{ (\cdot, \alpha)\xi + (\cdot, \xi)\alpha : \alpha \in a(H), \ \xi \in a(H)^{\perp}, \ \|\alpha\| = 1 = \|\xi\| \}$$

Proof. Let $x \in Z$ be of the form $x = (\cdot, \alpha)\xi + (\cdot, \xi)\alpha$ where $\alpha, \xi \in H$ satisfy the above conditions. It is a matter of routine calculation to see that then $2\{aax\} = x$ hence $x \in Z_{1/2}(a)_s$. Moreover $\{xxx\} = x$ so that x is a tripotent and we can easily see that $\{xZ_{1/2}(a)x\} \subset \mathbb{C}x$ which proves the minimality of x in $Z_{1/2}(a)$. The converse is similar. \Box

The following result should be compared to [14, prop. 3.4]

3.5 Lemma. Two minimal tripotents $x = (\cdot, \alpha)\xi + (\cdot, \xi)\alpha$ and $y = (\cdot, \beta)\eta + (\cdot, \eta)\beta$ in $Z_{1/2}(a)_s$ are orthogonal if and only if $\alpha \perp \beta$ and $\xi \perp \eta$. In particular $Z_{1/2}(a)$ has rank r for all $a \in M$

Proof. By [2, p. 18] x and y are orthogonal if and only if the conditions $xy^* = 0 = y^*x$ hold. Now it is elementary to complete the proof of the first statement. For the second part, let $(u_i)_{i \in I}$ be a family of pairwise minimal orthogonal tripotents in $Z_{1/2}(a)$. Then $u_i = (\cdot, \alpha_i)\xi_i + (\cdot, \xi_i)\alpha_i$ where $(\alpha_i) \subset a(H)$ and $\xi_i \subset a(H)^{\perp}$ are orthonormal families of vectors in H. In particular $a_i := (\cdot, \alpha_i)\alpha_i$ is a family of pairwise orthogonal projections with $\Sigma a_i \leq a$. Since rank(a)=r, we have cardinal $(I) \leq r$. The converse is easy. \Box

Let $a \in M$ be a fixed projection and take any tangent vector $u \in Z_{1/2}(a)_s$ to M at a. By lemma 3.2 $Z_{1/2}(a)$ has finite rank, hence [9, cor 4.5] u has a spectral decomposition in the JB*-triple $Z_{1/2}(a)$ of the form

 $u = \rho_1 u_1 + \dots + \rho_s u_s, \qquad 0 \le \rho_1 \le \dots \le \rho_s = \|u\|, \qquad 1 \le s \le r$ (8)

where the u_k are pairwise orthogonal minimal tripotents in $Z_{1/2}(a)$. Therefore

$$u_k = (\cdot, \alpha_k)\xi_k + (\cdot, \xi_k)\alpha_k, \quad \alpha_k \in a(H), \quad \xi_k \in a(H)^{\perp}$$
$$\|\alpha_k\| = 1 = \|\xi_k\|, \quad \alpha_j \perp \alpha_k, \quad \xi_j \perp \xi_k, \quad j \neq k$$

Then $a_k := (\cdot, \alpha_k)\alpha_k$ are pairwise orthogonal minimal projections in Z and $\Sigma a_k \leq a$. In case s < r, which occurs if some of the $\rho_k = 0$, we pick additional minimal orthogonal projections a_{s+1}, \dots, a_r so as to have $a = \Sigma a_k$. For the family (a_1, \dots, a_r) so constructed, called a *frame* associated to the pair (a, u), both properties (6) and (7) hold. Remark that this frame needs not be unique, it depends on a and on u as well, and it is invariant under the group $\operatorname{Aut}^{\circ}(Z)$. In fact some more properties are valid now.

In accordance with section §1, each pair (a_k, u_k) gives rise to a real Jordan algebra $J_k := J[a_k, u_k]$ with the product $x \circ_k y := \{xa_ky\}$. We have $\dim(J_k) = 3$ and $\{a_k, u_k, u_k^{(2)}\}$ is a basis of J_k . Moreover, J_k is invariant under the operator $g_k := 2(a_k \Box u_k - u_k \Box a_k)$ where triple products are computed in $Z = \mathcal{L}(H)$. In case $s < \operatorname{rank}(a)$ we set $J_n := \mathbb{R}a_n$ as real Jordan algebras.

3.6 Lemma. The Jordan algebras J_k and J_l with $k \neq l$, $(k, l = 1, \dots, r)$ are orthogonal in the JB^* -triple sense in Z, that is $\{J_k J_l Z\} = 0$.

Proof. For $n \in \{k, l\} \subset \{1, \dots, s\}$ with $k \neq l$, let z_n be any element in the basis $\{a_n, u_n, u_n^{(2)}\}$ of J_n . Clearly it suffices to show that $z_k z_l = 0 = z_l z_k$. As an example, we shall prove that $u_k^{(2)} u_l^{(2)} = 0$. It is a routine to check that $u_k u_l = 0$. Then

$$u_k^{(2)}u_l^{(2)} = \{u_k a_k u_k\} \{u_l a_l u_l\} = (u_k a_k u_k) (u_l a_l u_l) = u_k a_k (u_k u_l) a_l u_l = 0$$

as we wanted to see. \Box

Consider now the vector space direct sum $J := \bigoplus_{i=1}^{r} J_k$, and define a product $z \circ w := \{zaw\}$ in J by

$$z \circ w := \{zaw\} = \frac{1}{2}(zaw + waz) = \frac{1}{2}\Sigma_1^r(z_k a_k w_k + w_k a_k z_k) = \Sigma_1^r z_k \circ_k w_k$$

where z_k , w_k are respectively the J_k -component of z and w. It is now clear that J is a real Jordan algebra, that the product in J induces in each J_k its own product $z \circ_k w = \{za_kw\}$ and that the J_k are orthogonal as Jordan subalgebras of J. It is also clear that J coincides with the closed real linear span of the set $\bigcup_{1}^{r} \{a_k, u_k, u_k^{(2)}\}$, in particular dim $J \leq 3r < \infty$. Finally $J[a, u] \subseteq J$ and we conjecture that the equality holds (see [14, prop. 3.5 & th. 3.6].

4 Geodesics and the exponential mapping.

Consider M_r endowed with the affine connection ∇ given by (1). To discuss its geodesics, let us define an operator $g \in Z = \mathcal{L}(H)$ by

$$g := g_{a,u} := 2(u \Box a - a \Box u) = 2\Sigma \rho_k (u_k \Box a_k - a_k \Box u_k) = \Sigma \rho_k g_{a_k, u_k}$$

where $u = \sum \rho_k u_k$ is the spectral decomposition of $u \in Z_{1/2}(a)$, the a_k is any frame associated to the pair (a, u) and $g_k := g_{a_k, u_k}$ is defined in a obvious manner. If the spectral decomposition of u (see (8)) has s < r non zero summands then we define $g_n := 0$ for $n = s + 1, \dots, r$. Then g_k is a commutative family of operators in Z, more precisely we have $g_k(J_l) = \{0\}, g_k g_l = g_l g_k = 0$ for all $k \neq l$, $(k, l = 1, \dots, r)$ and g leaves invariant all the spaces J and J_k . Thus

$$\gamma_{a,u}(t) := \exp tg(a) = \Sigma \exp tg_k(a_k), \qquad t \in \mathbb{R}$$

By section §1 this curve is a geodesic in M_r and $\gamma_{a,u}(\mathbb{R}) \subset J[a, u] \subset J$. We can collect now the above discussion in the following statement (see [14, prop. 5.1 & 5.4]

4.1 Theorem. Suppose that we are given a point $a \in M_r$ and a tangent vector $u \in Z_{1/2}(a)_s$ to M_r at a. Then the geodesic of M_r that passes through a with velocity u is the curve

$$\gamma_{a,u}(t) = \Sigma \gamma_{a_k,u_k}(t), \qquad t \in \mathbb{R},$$

where $\gamma_k := \gamma_{a_k, u_k}$ is given by

$$\gamma_k(t) := \gamma_{a_k, u_k}(t) = (\cos^2 \theta_k t) a_k + (\frac{1}{2\theta_k} \sin 2\theta_k t) u_k + (\frac{1}{\theta_k^2} \sin^2 \theta_k t) u_k^{(2)} \tag{G}$$

Here $u = \sum \rho_k u_k$ is the spectral decomposition of u in $Z_{1/2}(a)$, the a_k form a frame associated to the pair (a, u) and the numbers θ_k are given by $\cos^2 \theta_k := \rho_k$ with $0 \le \theta_k < \frac{\pi}{2}$.

Now we are in a position to define the exponential mapping. Suppose the tangent vector u lies in the unit ball $B_1(a) \subset Z_{1/2}(a)$, i.e. ||u|| < 1. For t = 1 the expression (G) yields

$$\gamma(1) = \Sigma(\cos^2 \theta_k) \ a_k + \Sigma(\frac{1}{2\theta_k} \sin 2\theta_k) \ u_k + \Sigma(\frac{1}{\theta_k^2} \sin^2 \theta_k) \ u_k^{(2)} \tag{E}$$

and a real analytic mapping form the unit ball $B_1(0) \subset Z_{1/2}(a)$ to the manifold M can be defined by

$$\operatorname{Exp}_{a}(u) := \gamma_{a,u}(1)$$

An inspection of (E) yields that the Peirce decomposition of $\gamma_{a,u}(1)$ relative to a is

$$P_{1}(a)\gamma_{a,u}(1) = \Sigma(\cos^{2}\theta_{k})a_{k}, \qquad P_{1/2}(a)\gamma_{a,u}(1) = \Sigma(\frac{1}{2\theta_{k}}\sin^{2}\theta_{k}) u_{k}$$
$$P_{0}(a)\gamma_{a,u}(1) = \Sigma(\frac{1}{\theta_{k}^{2}}\sin^{2}\theta_{k}) u_{k}^{(2)}$$

Remark that $0 < \cos^2 \theta_k \leq 1$, hence in particular $P_1(a)\gamma_{a,u}(1)$ lies in the set of all \mathcal{N}_a of all invertible elements in the JB*-algebra $Z_1(a)$. Clearly \mathcal{N}_a is an open neighbourhood of a in $Z_1(a)$. Remark also that $0 \leq \frac{1}{2\theta_k} \sin^2 \theta_k = \rho_k \leq ||u|| < 1$, hence $\Sigma(\frac{1}{2\theta_k} \sin^2 \theta_k) u_k$ is the spectral decomposition of $P_{1/2}(a)\gamma_{a,u}(1)$ in $Z_{1/2}(a)$. Thus $\operatorname{Exp}_a B_1(a) \subset \mathcal{N}_a \subset M$. We refer to Exp_a as the exponential mapping.

5 Geodesics connecting two given points. The logaritm mapping.

Now we discuss the possibility of joining two given projections a and b such that $P_1(a)b$ is invertible in the Jordan algebra $Z_1(a)$, by means of a geodesic in M. The remarks in the precedent section show how to proceed. First we compute the spectral decomposition of $u := P_{1/2}(a)b$ in the JB*-triple $Z_{1/2}(a)$. Assume it to be

$$u = P_{1/2}(a)b = \Sigma \rho_k u_k, \qquad 0 \le \rho_1 \le \dots \le \rho_r = ||u|| < 1, \qquad 1 \le k \le r$$

where the u_k are pairwise orthogonal minimal tripotents in $Z_{1/2}(a)$. Hence By lemma 3.4 the u_k have the form $u_k = (\cdot, \alpha_k)\xi_k + (\cdot, \xi_k)\alpha_k$ for some orthonormal families of vectors $(\alpha_k) \subset a(H)$ and $(\xi_k) \subset a(H)^{\perp}$. By lemma 3.2 $Q(a_k)b = \{a_kba_k\} = \lambda_k$ where $\lambda_k \neq 0$ since $P_1(a)b$ is invertible in $Z_1(a)$. Also $|\lambda_k| = ||\{a_kba_k\}|| \leq 1$. Thus $0 < \lambda_k \leq 1$ and a unique angle $0 \leq \theta_k < \frac{\pi}{2}$ is determined by $\cos^2 \theta_k = \lambda_k$. In this way we have got all the elements appearing in (E). Let us define $\tilde{\gamma}(t) := \Sigma \tilde{\gamma}_k(t)$ for $t \in \mathbb{R}$ where

$$\tilde{\gamma}_k(t) := (\cos^2 t\theta_k) \ a_k + (\frac{1}{2\theta_k} \sin 2t\theta_k) \ u_k + (\frac{1}{\theta_k^2} \sin^2 t\theta_k) \ u_k^{(2)}$$

By section §1, each $\tilde{\gamma}_k(t)$ is a geodesic in the manifold M_1 of all rank 1 projections. By the previous discussion $\tilde{\gamma}_j(t)$ and $\tilde{\gamma}_k(t)$ are orthogonal whenever $j \neq k, t \in \mathbb{R}$, hence $\tilde{\gamma}(t) := \Sigma \tilde{\gamma}_k(t), t \in \mathbb{R}$, is a curve in the manifold M of projections of rank r. Clearly $\tilde{\gamma}(0) = \Sigma \tilde{\gamma}_k(0) = \Sigma a_k = a$ and we shall now show that $\tilde{b} := \gamma(1)$ coincides with b. As above $P_{1/2}(a) = \tilde{b} = \Sigma(\frac{1}{2}\sin 2\theta_k) u_k = \Sigma \rho_k u_k$ is the spectral decomposition of $P_{1/2}(a)\tilde{b}$ in $Z_{1/2}(a)$, which by construction is the spectral decomposition of $P_{1/2}(a)\tilde{b}$ in $Z_{1/2}(a)$, which by construction is the spectral decomposition of $P_{1/2}(a)b$. Hence by lemma 3.3, $\tilde{b} = \tilde{\gamma}(1) = b$. This gives a geodesic $\gamma(t)$ that connects a with b in the manifold M_r and passes through the point a with the velocity $u := P_{1/2}(a)b$. It is uniquely determined by the data a, b and the property $\gamma_{a,u}(1) = b$.

Now we are in a position to define the logaritm mapping. Fix a point $a \in M$ and let $\mathcal{N}_a \subset M$ be the set of all projections $b \in M$ such that $P_1(a)b$ is invertible in the JB*-algebra $Z_1(a)$. Define a mapping Log_a from $\mathcal{N}_a \subset M$ to the unit ball $B_1(a) \subset Z_{1/2}(a)$ by declaring $\text{Log}_a(b)$ to be the velocity at t = 0 of the unique geodesic $\gamma_{a,u}(t)$ that joins a with b in M and $\gamma_{a,u}(1) = b$, in other words $\text{Log}_a(b) := P_{1/2}(a)b$. We refer to Log_a as the *logaritm* mapping. Clearly Log_a and Exp_a are real analytic inverse mappings. In particular, the family $\{(\mathcal{N}_a, \text{Log}_a) : a \in M\}$ is an atlas of M. We remark the fact that $\gamma_{a,u}[0, 1] \subset \mathcal{N}_a$ for all $u \in B_1(a)$ which shall be needed later on to apply the Gauss lemma [11, 1.9] and summarize the above discussion in the statement (see [14, th. 5.7 & prop. 5.8])

5.1 Theorem. Let a and b be two given projections in M_r and assume that $P_1(a)b$ is invertible in the Jordan algebra $Z_1(a)$. Then there is exactly one geodesic $\gamma_{a,u}(t)$ that joins a with b in M and $\gamma_{a,u}(1) = b$.

6 The Riemann structure on M.

Let $a \in M_r$ and choose any frame (a_k) for a. By section §1 we have vector space direct sum decomposition

$$Z_{1/2}(a) = \bigoplus_{1}^{r} Z_{1/2}(a_k) \tag{9}$$

which suggests to define a scalar product in $Z_{1/2}(a)$ by

$$\langle u, v \rangle := \frac{1}{\sqrt{r}} \Sigma \langle u_k, v_k \rangle_{a_k} \tag{10}$$

where $\langle \cdot, \cdot \rangle_{a_k}$ stands for the Levi form on $Z_{1/2}(a_k)$. First we prove

6.1 Lemma. With the above notation, (9) defines an Aut^o-invariant scalar product on $Z_{1/2}(a)$ that does not depend of the frame $a = \Sigma_k$ and converts $Z_{1/2}(a)$ into a Hilbert space.

Proof. Let Σa_k and $\Sigma a'_k$ denote two frames for a where $a_k = (\cdot, \alpha_k)\alpha_k$ and $a'_k = (\cdot, \alpha'_k)\alpha'_k$ for some orthonormal families $(\alpha_k), (\alpha'_k) \subset a(H)$. Extend them to two orthonormal basis of H and let $u \in \mathcal{L}(H)$ be the unitary operator that exchanges these bases. Then u induces an isometry $U \in \operatorname{Aut}^{\circ}(Z)$ by $Uz = uzu^{-1}$ that satisfies $Ua'_k = a_k$. The invariance of the Levi form together with (10) yields part of the result. The remainder is trivial. \Box

A Riemann structure can now be defined in M_r in the following way. Let $X, Y \in \mathfrak{D}(M)$ vector fields on M_r , and for $a \in M_r$ take any frame $a = \Sigma a_k$. Then (9) gives representation $X = \Sigma X_k, Y = \Sigma Y_k$ with $X_k, Y_k \in \mathbb{Z}_{1/2}(a_k)$ and we set

$$g_a(X, Y) := \langle X, Y \rangle = \frac{1}{\sqrt{r}} \Sigma \langle X_k, Y_k \rangle_{a_k} = \frac{1}{\sqrt{r}} \Sigma g_{a_k}(X_k, Y_k)$$

This is a well defined Aut^o-invariant Riemann structure on M_r . By section §1 each g_{a_k} has property (4) and a routine argument gives the same property for g. Thus g is the only Levi-Civita connection in M_r and we can apply the Gauss lemma [11, 1.9] to conclude that the ∇ -geodesics are minimizing curves for the Riemann distance.

Recall that for a tripotent $a \in Z$, the mapping $\sigma_a: x_1 + x_{1/2} + x_0 \mapsto x_1 - x_{1/2} + x_0$, where $x \in Z$ and $x_1 + x_{1/2} + x_0$ is the Peirce decomposition of x with respect to a, called the Peirce symmetry of Z with center a, is an involutory automorphism of Z that induces an isometric symmetry of M_r (see [6, th. 5.1]). We let $\text{Isom}M_r$ and \mathfrak{S} denote the group of all isometries of the Riemann manifold M_r and the subgroup generated by the set $S: = \{\sigma_a: a \in M_r\}$, respectively.

6.2 Proposition. With the above notation, M_r is a symmetric Riemann manifold in which the group \mathfrak{S} acts transitively.

Proof. Let $a, b \in M_r$ be such that $b \in \mathcal{N}_a$. Then a and b can be joined in M_r by a unique geodesic with $\gamma(0) = a, \gamma(1) = b$. If $c := \gamma(\frac{1}{2})$, then σ_c is a symmetry of M_r such that $\sigma_c(a) = b$. Thus the set S is transitive in \mathcal{N}_a and S is locally transitive in M_r . Consider now the case $b \notin \mathcal{N}_a$. Since M_r is pathwise connected, we can join a with b by a curve Γ in M_r and by a standard compactness argument there exists a finite set $\{b_0, \dots, b_s\} \subset \Gamma[0, 1]$ such that $b_0 = a, b_s = b$ and $b_{k+1} \in \mathcal{N}_{b_k}$ for $k = 1, \dots, s$. An application of the above argument to each pair of consecutive points gives the result. \Box

We now compute the Riemann distance in M_r . Consider first the case of two points $a, b \in M_r$ with $b \in \mathcal{N}_a$. Let $\gamma_{a,u}(t)$ be the unique geodesic that joins a with b in M_r and satisfies $b = \gamma_{a,u}(1)$. Since $\operatorname{Aut}^{\circ}(Z)$ is transitive in \mathcal{N}_a and the Levi norm is $\operatorname{Aut}^{\circ}(Z)$ -invariant, we have

$$|\dot{\gamma}_{au}(t)|_{\gamma_{au}(t)} = |\dot{\gamma}_{au}(0)|_{\gamma_{au}(0)} = |u|_a$$

On the other hands, since the Levi norm in $Z_{1/2}(a)$ is the direct hilbertian sum of the Levi norms in the $Z_{1/2}(a_k)$, we have by section §1

$$|u|_{a}^{2} = \frac{1}{r} \Sigma |u_{k}|_{a_{k}}^{2} = \frac{1}{r} \Sigma \theta_{k}^{2}$$
(D)

where $u = \sum \rho_k u_k$ is the spectral decomposition of u in $Z_{1/2}(a)$, (a_k) is the frame associated to the pair (a, u) and $\cos^2 \theta_k = \rho_k$. Therefore

$$d(a,b) = \int_0^1 |\dot{\gamma}_{au}(t)|_{\gamma_{au}(t)} dt = \int_0^1 |u|_a dt = |u|_a = \frac{1}{\sqrt{r}} \left(\Sigma \theta_k^2 \right)^{1/2}$$

Consider now the case $b \notin \mathcal{N}_a$. By lemma 3.2 we can take a sequence $(b_n)_{n \in \mathbb{N}}$ in \mathcal{N}_a such that $b = \lim_{n \to \infty} b_n$. since (D) holds for all b_n and the Riemann distance is continuous, we get the validity (D) for all $a, b \in M_r$. \Box

Note that expression (D) is a generalization of the classical formula for the Fubini-Study metric in the projective space $\mathbb{P}(H)$.

References

- 1. Chu, C.H., & Isidro, J. M., Manifods of tripotents in JB*-triples., Math. Z. (to appear).
- Harris, L. A., Proceedings on Infinite Dimensional Holomorphy., Springer-Verlag, Lecture Notes in Maths. Vol. 364., 1973, p. 13-40.
- 3. Helgason, S., Differential Geometry and Symmetric Sapces., Academic Press., 1962.
- 4. Hirzebruch, U., Über Jordan-Algebren und kompakte Riemannsche symmetrische Räume von Rang 1., Math.
 Z. 90 (1965), 339-354..
- 5. Isidro, J. M., The manifold of minimal partial isometries in the space $\mathcal{L}(H, K)$ of bounded linear operators., Acta Sci. Math. (Szeged) (to appear).
- 6. Isidro, J. M., The manifold of minimal tripotents in classical Cartan factors. (to appear).
- Kaup, W., Über die Automorphismen Grassmanncher Mannigfaltigkeiten unendlicher Dimension., Math. Z. 144 (1975), 75-96.
- Kaup, W., A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces., Math. Z. 183 (1983), 503-529.
- Kaup, W., Uber die Klassifikation der symmetrischen Hermitesches Mannigfaltigkeiten unendlicher Dimension, I, II., Math. Ann. 257, 262 (1981 and 1983), 463-483 and 503-529.
- 10. Kaup, W., On Grassmannians associated with JB^{*}-triples. (to appear).
- 11. Klingenberg W., Riemannian Geometry., Walter der Gruyter 1982.
- 12. Loos, O., Bounded symmetric domains and Jordan pairs, Mathematical Lectures, University of California at Irvine 1977.
- Nomura, T., Manifold of primitive idempotents in a Jordan-Hilbert algebra., J. Math. Soc. Japan 45 (1993), 37-58.
- Nomura, T., Grassmann manifold of a JH-algebra., Annals of Global Analysis and Geometry 12 (1994), 237-260.
- 15. Sauter, J., Randstrukturen beschänter symmetrischer Gebiete., Ph. D. Dissertation, Universitát Tübingen 1995.

FACULTAD DE MATEMÁTICAS, UNIVERSIDAD DE SANTIAGO, 15706 SANTIAGO DE COMPOSTELA, SPAIN E-mail address: jmisidro@zmat.usc.es

10