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Abstract

The idea of graph compositions generalizes both ordinary compo-
sitions of positive integers and partitions of finite sets. In this paper
we develop formulas, generating functions, and recurrence relations
for composition counting functions for several families of graphs.

1 Introduction

Let G be a labelled graph, with edge set E(G) and vertex set V (G). A
composition of G is a partition of V (G) into vertex sets of connected induced
subgraphs of G. Thus a partition provides a set of connected subgraphs
of G, {G1, G2, · · · , Gm}, with the properties that

⋃m
i=1 V (Gi) = V (G) and

for i 6= j, V (Gi) ∩ V (Gj) = ∅. (Note, however, that since different edge
subsets of a graph can span the same vertex set, it is possible for a different
set of connected subgraphs of G to yield the same composition.) We will
call the vertex sets V (Gi), or the subgraphs Gi themselves if there is no

∗The second author thanks the Centre for Applicable Analysis and Number Theory at
The University of the Witwatersrand for sponsoring his visit during May and June 1998.
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danger of confusion, components of a given composition. This paper is most
concerned with straightforward enumerative questions: counting how many
compositions a given graph has. Topics such as restricted compositions or
asymptotic results will be considered later. We will denote by C(G) the
number of distinct compositions that exist for a given graph G.

For example, the complete bipartite graph K2,3 has exactly 34 composi-
tions, which are illustrated below. The significance of the edges shown is to
indicate the connected components: it is possible that other choices of edges
could yield the same connected components, and hence the same composi-
tion. In fact, since there are 64 subsets of the set of six edges of K2,3, this
overlap must occur.
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Theorem 1 below is a well known result that motivates this choice of ter-
minology, and Theorem 2 relates the idea to another familiar combinatorial
setting.

Let G = Pn, the path with n vertices. Then any subgraph of G is also
a path, and the components of a composition consist of paths of cardinality
|Gi| = ai so that

∑m
i=1 ai = n. Thus the path lengths provide a composition

of the positive integer n (a representation of n as an ordered sum of positive
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integers), and any composition of n determines “cut points” to provide a
composition of the graph Pn. The well known counting function for integer
compositions applies to give the first result.

Theorem 1 C(Pn) = 2n−1.

We will define C(P0) to be 1 in order to make a formula in Theorem 8
below more palatable.

Now we consider another case, a family of graphs with many edges. Let
G = Kn, the complete graph on n vertices. Then any subset of V (G) can
serve as the vertex set of a subgraph of G, and the number of compositions
of G is the number of partitions of a set with n elements into nonempty
subsets. The number of partitions of a set of n elements is given by the Bell
number B(n). The sequence of Bell numbers begins 1, 2, 5, 15, 52, · · ·, and
has generating function ee

x−1. This well known sequence has an extensive
bibliography compiled by Gould [3].

Theorem 2 C(Kn) = B(n).

These two results are extreme cases: no connected graphG with n vertices
can have fewer than C(Pn) compositions, nor more than C(Kn). Thus for
{Fn}n≥1 a family of connected graphs such that |V (Fn)| = n, the values
C(Fn) satisfy 2n−1 ≤ C(Fn) ≤ B(n). We allow graphs to be disconnected,
and the extreme case would be the graph with no edges, and n isolated
vertices. By our definition this graph has exactly one composition.

2 General observations

In general, one might expect that for graphs with a given number of vertices,
the more edges, the more compositions. This is not always true, and certainly
more information is needed than |V (G)| and |E(G)| to determine C(G). The
example below shows two graphs G1 and G2 with 4 vertices and 4 edges, but
C(G1) = 10 6= 12 = C(G2).

r r
r

r✡✡ ❏❏
G1 r r

r rG2
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Theorem 3 If G = G1 ∪ G2 and there are no edges from vertices in G1 to
vertices in G2 (i.e. G is disconnected), then C(G) = C(G1) · C(G2). The
same result holds if G1 and G2 have exactly one vertex in common.

Proof. This is a consequence of the Fundamental Principle of Counting. We
obtain compositions of G by pairing compositions of G1 with compositions
of G2 in all possible ways. ✷

We can also give a general result for graphs that are “almost discon-
nected”.

Theorem 4 If G = G1∪G2 and there is an edge from one of the vertices of
G1 to one of the vertices of G2 whose removal disconnects G, then C(G) =
2 · C(G1) · C(G2).

Proof. Call the distinguished edge e, between vertices vi and vj. For any
composition of G1 and any composition of G2 we can build a composition of
G in exactly two ways: either e can be included to combine the component
of vi in G1 and the component of vj in G2, or not. Thus the count provided
by Theorem 3 is doubled. ✷

The analysis when G consists of two subgraphs connected by a bridge of
n > 1 vertices is more complicated. More information is required about the
nature of the components containing the connecting vertices in compositions
of the subgraphs. Several special cases are considered in later sections.

Theorem 5 Let Tn be any tree with n vertices. Then C(Tn) = 2n−1.

Proof. The proof is by induction. When n = 1 the tree is a single vertex,
with 1 = 20 compositions. If the result is true for n ≤ k, we consider Tk+1 and
remove an edge. This disconnects Tk+1, into two subtrees with l and k+1− l
vertices for some l ≥ 1. The induction hypothesis applies to each subtree,
giving 2l−1 and 2k−l compositions. Theorem 4 then gives 2 · 2l−1 · 2k−l = 2k

compositions for Tk+1. ✷
The star graph Sn consists of a distinguished center vertex connected to

each of n− 1 edge vertices. Sn is an example of a tree, and so C(Sn) = 2n−1.
Deleting one edge from a complete graph has a predictable effect.

Theorem 6 Let K−
n denote the complete graph on n vertices with one edge

removed. Then C(K−
n ) = B(n)− B(n− 2).

5



Proof. The only time that the deleted edge e between vi and vj affects a
composition counted by C(Kn) is when the component containing vi and vj
consists of exactly those two vertices. Otherwise there is a path between vi
and vj in Kn bypassing the deleted edge. Hence from the B(n) compositions
counted by C(Kn) must be deleted exactly those compositions for which one
component is {vi, vj}. This restriction rules out exactly C(Kn−2) = B(n−2)
compositions of Kn. ✷

On the other hand, deleting more than one edge affects the number of
compositions depending on whether the edges deleted are adjacent or not.
For example the graph resulting when two adjacent edges are deleted from
K5 has 40 compositions, whereas if two nonadjacent edges are deleted the
resulting graph has 43 compositions.

Another basic family of graphs to consider are the cycle graphs Cn. Cn

is the graph with n vertices and n edges, with vertex i connected to vertices
i± 1 (mod n).

Theorem 7 C(Cn) = 2n − n

Proof. Pick any edge of the cycle and delete it. The resulting graph is Pn,
with C(Pn) = 2n−1 by Theorem 1. Any composition of Pn may be regarded as
a composition of Cn as well. The deleted edge may be reinserted, providing a
new composition of Cn not previously counted, unless the composition of Pn

had been obtained by deleting no edge, or exactly one edge, from Pn. In these
cases, reinserting the original deleted edge results in the same composition
of Cn: the composition consisting of the single component consisting of all n
vertices. Hence the total count of distinct compositions of Cn is 2 ·2n−1−n =
2n − n. ✷

It is sometimes useful to group the compositions of Cn so that different
compositions obtained by rotation may be analysed together. This idea has
its origins in the general area of combinatorics on words, where periodicity
and cyclic permutations are studied via what are called Lyndon words [2],
[?]. Analogously, we define a Lyndon composition of the positive integer
n to be an aperiodic composition that is lexicographically least among its
cyclic permutations. For example, 1+ 2+1+2 is not a Lyndon composition
of 6 because it is periodic, and 1 + 1 + 2 + 2 is a Lyndon composition of 6
because it is aperiodic, and in addition by the lexicographic ordering we order
the cyclic permutations of the summands as “1+1+2+2” < “1+2+2+1” <

6



“2+1+1+2” < “2+2+1+1”. The number of Lyndon compositions L(n) of
the integer n is given by the formula

L(n) =
1

n

∑

d|n

µ(
n

d
)2d. (1)

By (1) we should define L(1) = 2. Then

C(Cn) =
∑

d|n

dL(d)− n,

which, together with the inverted version of (1), recovers the formula in
Theorem 7. We will have use for the sequence of values of L(n):

2, 1, 2, 3, 6, 9, 18, 30, 56, . . .

The wheel graph Wn consists of the star graph Sn with extra edges ap-
pended so that there is a cycle through the n− 1 outer vertices. Alternately,
Wn is Cn−1 with one extra “central” vertex appended which is adjacent to
each “outer” vertex in the cycle. We will take W1 to be an isolated single
vertex, W2 to be P2, and W3 to be C3. Then the sequence {C(Wn)} begins

1, 2, 5, 15, 43, 118, 316, 836, 2199, 5769, 15117, 39592, . . . .

We account for these values in the theorem below.

Theorem 8

C(Wn) = 2n−1 − n + 2 +
∑

1<d|n−1

d
′

∑

a1+...+ak=d

k
∏

i=1

C(Pai−1)
(n−1)/d,

where Σ′ indicates a sum over Lyndon compositions of d.

Proof. There are two cases to consider. Suppose first that in a compo-
sition of Wn the central vertex is connected to no outer vertex. Then the
outer vertices may be grouped into C(Cn−1) = 2n−1 − (n− 1) distinct com-
positions. Now suppose that the central vertex is connected to one or more
outer vertices. Then the remaining outer vertices are disconnected into a
set of paths. The possible patterns of paths correspond to Lyndon composi-
tions of n − 1 if they are not periodic, or to adjoined Lyndon compositions

7



of d|n − 1 if they are periodic. The correspondence is determined by using
the number of gaps between adjacent spokes of the wheel to be summands
of the composition. The number of compositions in this case is the product
of the number of compositions of the constituent paths. This is the product
term in the summation formula. The exponent of (n − 1)/d allows for all
possible combinations of paths in the case where there are adjoined Lyndon
compositions of proper divisors d|n− 1. ✷

We thank superseeker@research.att.com for the observation that the
sequence of values of C(W (n)) corresponds to the third difference of the
bisection of the Lucas sequence. It also satisfies the recurrence relation
C(W1) = C(W2) = 2, C(Wn) = 3C(Wn−1) − C(Wn−2) + n − 2. There must
be a combinatorial interpretation of this recurrence.

3 Ladders Ln

We build the ladder Ln as a product of a path of length 2 and a path of
length n. Thus Ln has 2n vertices and 3n − 2 edges. The four “corner”
vertices have degree 2, and the other vertices have degree 3. We will take
L1 = P2, so C(L1) = 2. L2 = C4, so C(L2) = 12 by Theorem 7. The most
direct way to account for other values of C(Ln) is with a recurrence.

Theorem 9 C(L1) = 2, C(L2) = 12, and for n > 2, C(Ln) = 6 · C(Ln−1) +
C(Ln−2).

Proof. Label the vertices of Ln as a1,1, a1,2, a2,1, a2,2, . . . , an,1, an,2. Denote
by Ak the number of compositions of Lk in which the vertices an,1 and an,2
are in different components, and by Bk the number of compositions of Lk in
which the vertices an,1 and an,2 are in the same component.

In order to generate a composition of Ln from Ln−1 there are eight con-
figurations to consider:

8



Ln−1

a1,n−1

a2,n−1
1)

rr rr
✛
✚

✘
✙ 5)

rr rr
✛
✚

✘
✙

2)
rr rr

✛
✚

✘
✙ 6)

rr rr
✛
✚

✘
✙

3)
rr rr

✛
✚

✘
✙ 7)

rr rr
✛
✚

✘
✙

4)
rr rr

✛
✚

✘
✙ 8)

rr rr
✛
✚

✘
✙

If we start with a composition counted by An−1, cases 1), 3), 4), and 7)
yield distinct compositions counted by An. If we start with one counted by
Bn−1, only 1), 3), and 4) yield distinct compositions counted by An. Hence
An = 4 ·An−1+3 ·Bn−1. Similarly, cases 2), 5), and 6) go from a composition
counted by An−1 to one counted by Bn. Starting with Bn−1, only two distinct
compositions arise: the one given by case 2), or the single new composition
represented by cases 5), 6), 7) or 8). Hence Bn = 3 · An−1 + 2 · Bn−1. Since
C(Ln) = An +Bn, we have

C(Ln) = 7 · An−1 + 5 ·Bn−1.

On the other hand,

An−1 −Bn−1 = An−2 +Bn−2 = C(Ln−2).

Hence

C(Ln) = 6(An−1 +Bn−1) + (An−1 − Bn−1) = 6 · C(Ln−1) + C(Ln−2).✷

As a bit of moonshine, we note that this recurrence guarantees the se-
quence of values of Ln/2 matches the denominators in the continued fraction
expansion of

√
10. A proof, but not an explanation, is provided by observing

recurrences and starting values are the same for the two sequences.

4 Bipartite graphs Km,n

An example showing that C(K2,3) = 34 by exhibiting all 34 compositions is
in the first section. The graphs Km,n, with m+n vertices and mn edges, are
the most complicated we will analyse in this paper.
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Theorem 10 Define an array A = (ai,j) via the recurrences am,0 = 0 for
any nonnegative integer m, a0,1 = 1, a0,n = 0 for any n > 1, and otherwise

am,n =
m−1
∑

i=0

(

m−1
i

)

am−1−i,n−1 −
m−1
∑

i=1

(

m−1
i

)

am−1−i,n. (2)

Then

C(Km,n) =
m+1
∑

i=1

am,i i
n. (3)

Proof. We observe C(Km,0) = C(K0,n) = 1, vacuously. C(Km,1) = 2m be-
cause Km,1 = Sm+1, and similarly for K1,n. This observation is the first step
in an induction on the arithmetic nature of C(Km,n). Now consider C(Km,n)
for m ≥ 1. Write the two parts of the bipartition as A = {a1, a2, . . . , am}
and B = {b1, b2, . . . , bn}. a1 must be in some component. Consider cases.

1) a1 is a singleton. Then all the other components determine a composition
of Km−1,n. This can be done in C(Km−1,n) ways.

2) a1 is in a component with no other elements of A, but with elements of B.
Say a j-set of B. The remaining elements of A and the remaining elements
of B can be paired in C(Km−1,n−j) ways. There are

(

n
j

)

j-sets of B, so the
total number of compositions here is

n
∑

j=1

(

n
j

)

C(Km−1,n−j).

Cases 1) and 2) can be combined in a single sum:

n
∑

j=0

(

n
j

)

C(Km−1,n−j).

3) a1 occurs with an i-set A0 of A − {a1}, for some i ≥ 1. Then there must
also be a nonempty subset B0 of B included, say a j-set of B with j ≥ 1.
After A0 and B0 are chosen, the remaining elements can be associated in
C(Km−1−i,n−j) ways. The total in this case is

m−1
∑

i=1

(

m−1
i

)

n
∑

j=1

(

n
j

)

C(Km−1−i,n−j).

10



Putting the cases together, we have

C(Km,n) =
n
∑

j=0

(

n
j

)

C(Km−1,n−j) +
m−1
∑

i=1

n
∑

j=1

(

m−1
i

)(

n
j

)

C(Km−1−i,n−j). (4)

Rewrite this as

C(Km,n) =
m−1
∑

i=0

n
∑

j=0

(

m−1
i

)(

n
j

)

C(Km−1−i,n−j)−
m−1
∑

i=0

(

m−1
i

)

C(Km−1−i,n). (5)

Now we can establish that sums of powers of successive integers arise by
induction. First note

n
∑

j=0

(

n
j

)

C(Km−1−i,n−j) =
n
∑

j=0

(

n
j

)

m−i
∑

k=1

am−1−i,kk
n−j =

m−i
∑

k=1

am−1−i,k(k + 1)n,

(6)
which repeatedly uses the identity

n
∑

j=0

(

n
j

)

xn = (x+ 1)n.

The proof is completed by equating coefficients of kn in (5). Padding the
table of coefficients with an initial column of 0s makes the recurrence work
unaltered for am,1. ✷

Here is a brief table of the coefficients ai,j that the binomial coefficient
summations produce.
n\i 1 2 3 4 5 6 7 8 9
0 | 1
1 | 0 1
2 | −1 1 1
3 | −1 −2 3 1
4 | 2 −9 1 6 1
5 | 9 −9 −25 15 10 1
6 | 9 50 −104 −20 50 15 1
7 | −50 267 −98 −364 105 119 21 1
8 | −267 413 1163 −1610 −539 574 238 28 1
Several properties of this array follow from the series expansion:

1. The main diagonal entry is always 1.
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2. The second diagonal consists of triangular numbers.

3. Further diagonals are values of polynomials in n as well. The next three
diagonals are represented by polynomials of degrees 4, 6, and 8.

4. The row sum of each row is 1.

5. The alternating row sum of each row, taking the main diagonal entry as
positive, is 1.

6. The first two columns have values that match, up to a shift and change of
sign. The first column consists of coefficients of the series expansion of e1−ex .

This last property is perhaps more than moonshine, given the generating
function of B(n) and the inclusion of all edges (subject to one constraint) in
Km,n.

A few values of C(Km,n) calculated from (2) and (3) are given below.

m\n 1 2 3 4 5 6 7 8
1 | 2 4 8 16 32 64 128 256
2 | 4 12 34 96 274 792 2314 6816
3 | 8 34 128 466 1688 6154 22688 84706
4 | 16 96 466 2100 9226 40356 177466 788100
5 | 32 274 1688 9226 48032 245554 1251128 6402586
6 | 64 792 6154 40356 245554 1444212 8380114 48510036
7 | 128 2314 22688 177466 1251128 8380114 54763088 354298186

5 Prospectus

There are several directions that we expect further work on graph compositions
to take. First, there are many other families of graphs that have been studied in
the literature, and at least some of them seem to be appropriate to analyse in the
manner of this paper.

The algorithms we have developed to count (and represent in diagrams) graph
compositions are sufficiently efficient to handle graphs with up to 20 edges, so
that, for instance, we can calculate that the Petersen graph has exactly 8581
compositions. This is important for this paper, if for no other reason because
every paper in graph theory should mention the Petersen graph at least once.
Extended numerical data awaits the development of more efficient algorithms.

Another project is to develop a calculus of graph compositions, so that, for
example, we can predict how the number of compositions is affected when two dis-
joint graphs are joined by k edges, or when one or more (adjacent or nonadjacent)
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edges are deleted from a given graph. Theorems 3, 4, and 6 are small steps in this
direction. We would like to say something about how operations such as union,
product, or join of graphs combine the number of compositions. [4] develops some
more tools and uses them to analyze another class of graphs.
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