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1. Introduction

The moduli space M of marked cubic surfaces can be identified with the Baily-
Borel compactification of B4/Γ, where B4 denotes the complex 4-ball and Γ is
a certain arithmetic reflection group. (See [ACT2] and also [ACT1].) In this
paper we use the methods of R. Borcherds to construct automorphic forms
on B4. We will obtain an embedding of M into the 9-dimensional projective
space P 9(C), whose image is the intersection of 270 explicitly known cubic
8-folds. This map is compatible with the actions of the Weyl group W (E6) on
M and P 9. The former action arises because W (E6) permutes the markings
of cubic surfaces, and the latter action arises from the unique irreducible 10-
dimensional representation of W (E6). Furthermore, the cubic 8-folds are all
equivalent under W (E6).

The 10-dimensional linear system associated to this map into P 9(C) con-
tains 270 automorphic forms with known zeros, which play a central role in our
investigation. In particular, there is a direct connection between them and the
classical invariants of cubic surfaces introduced by Cayley. He considered the
27 lines on a smooth cubic surface and a certain configuration of 45 planes that
they determine. By considering 4-tuples of these planes that meet along one of
the 27 lines, Cayley constructed 270 cross-ratios, and showed that these allow
one to recover the original surface. We show that Cayley’s cross-ratios coincide
not with our Borcherds products but rather with the quotients of certain pairs
of them. This relies on work of Naruki [Na] and is the main part of our proof
that our map of M into P 9 is an embedding.

We are grateful to R. Borcherds, B. van Geemen, and R. Vakil for helpful
discussions.

2. The complex reflection group
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2 Cubic surfaces and Borcherds products

Let

E = Z[ω], ω = [
3
√
1] = −1

2
+

√
−3

2
,

be the ring of Eisenstein integers. We consider the lattice

Λ = E1,4,

which is the E-module E5 equipped with the hermitian form of signature (1, 4)
given by

〈a, b〉 = ā0b0 − ā1b1 − · · · − ā4b4. (2.1)

Let Aut(Λ) be the unitary group of this lattice, i.e. the group of E-module
automorphisms which preserve the hermitian form. Complex conjugation acts
as the identity on the residue field

F3 = E/
√
−3 E ,

which has order 3, so the hermitian form induces a F3-valued quadratic form on
the 5-dimensional F3-vector space V = Λ/

√
−3Λ. We denote the orthogonal

group of V by O(5, 3) and define Γ to be the kernel of the action of Aut(Λ) on
V . We have the exact sequence

1 −→ Γ −→ Aut(Λ) −→ O(5, 3) −→ 1.

For future reference we mention that V contains 242 nonzero elements, of which
80 have norm 0, 90 have norm 1 and 72 have norm −1. Nonzero vectors in V are
equivalent under O(5, 3) if and only if they have the same norm. The subgroup
of O(5, 3) generated by the reflections in the norm −1 vectors is isomorphic to
the Weyl group W (E6), and O(5, 3) ∼= W (E6) × {±1}. Furthermore, W (E6)
contains a simple subgroup of index 2 and order 25 920.

A lattice vector a ∈ Λ is called primitive if it cannot be divided in Λ by a
non-unit of E . Also, a is called

isotropic if 〈a, a〉 = 0,
a short root if 〈a, a〉 = −1, or
a long root if 〈a, a〉 = −2.

The roots are important because Aut(Λ) contains reflections in them. If a is a
short root and ζ is a unit of E (a sixth root of unity) then the map

v 7−→ v − (1− ζ)
〈a, v〉
〈a, a〉a

is an automorphism of Λ. (In the special case ζ = ±1 this is also true if a is
a long root.) This automorphism fixes the orthogonal complement of a and
maps a to ζa. We call this automorphism a reflection if ζ 6= 1. The order of a
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§2. The complex reflection group 3

reflection is two, three or six, and we sometimes call reflections of these orders
biflections, triflections and hexflections. The third roots of unity are congruent
to 1 mod

√
−3, and therefore the triflections belong to the congruence group

Γ. We remark that these triflections actually generate Γ [ACT2], although we
will not need this fact.

We need some information about the orbit structure of Λ with respect to
Γ. If a, b ∈ Λ are in the same Γ-orbit, then their images in V coincide. In some
special cases the converse is true:

2.1 Proposition. Let a and b be two primitive isotropic vectors, or two
short roots, or two long roots. Then a and b are equivalent under Γ if and
only if their images in V coincide. The number of Γ-orbits of lines Ca, where
a is a primitive isotropic vector, a short root or a long root, is 40, 36 or 45,
respectively.

Proof. The “only if” part is trivial. To prove the converse, we use the fact that
Aut(Λ) acts transitively on primitive isotropic vectors, on short roots, and on
long roots (see Theorems 7.22 and 9.15 of [ACT2]). It is a general fact that if a
group G acts transitively on a set X , N is a normal subgroup, and x ∈ X has
stabilizer Gx in G, then the orbits of N onX are in 1-1 correspondence with the
cosets in G/N of the image of Gx. We apply this with G = Aut(Λ), N = Γ,
and x a primitive isotropic vector, short root or long root of Λ. Then the
number of Γ-orbits into which the Aut(Λ)-orbit of x splits is equal to the index
in O(5, 3) of the reduction modulo

√
−3 of Aut(Λ)x. We will now compute

these reductions.

We first take x to be a primitive null vector. According to paragraph 7.8
of [ACT2], its stabilizer in Aut(Λ) contains as a normal subgroup a Heisen-
berg group with center Im(E) and central quotient E3, and the stabilizer
modulo this Heisenberg group is the isometry group (Z/6)3 :S3 of the lat-
tice E3. By considering the matrices for these transformations, it is easy to
see that the center of the Heisenberg group acts trivially on V , that E3 acts as
E3/(

√
−3 E3) ∼= (Z/3)3, that (Z/6)3 acts as (Z/2)3, and that S3 acts faithfully.

The image of the stabilizer in O(5, 3) is a group 33 : 23 :S3, which has index 80
in O(5, 3). Next we take x to be a short root of Λ, say (0, 0, 0, 0, 1), and x̄ to be
its image in V . Then the stabilizer of x̄ is the orthogonal group of x̄⊥, which
is generated by the reflections in the nonisotropic elements of x̄⊥. One can
enumerate these vectors and check that each is the image of a root of x⊥. The
biflections in these roots reduce to reflections of V , proving that the stabilizer
of x in Aut(Λ) surjects to the stabilizer of x̄, which has index 72 in O(5, 3).
Exactly the same argument applies if x is a long root, say (0, 0, 0, 1, 1), yielding
an index of 90.

We have shown that there are 80 (resp. 72, 90) orbits of primitive isotropic
vectors (resp. short roots, long roots) in Λ, which is the same as the number
of nonzero elements of V of norm 0 (resp. −1, 1). Since the map from Γ-orbits
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4 Cubic surfaces and Borcherds products

of such lattice vectors to the corresponding set of vectors in V is onto, it is
bijective. This proves the first claim of the theorem, and the second follows
immediately. ⊔⊓

3. The ball quotient

The group Γ acts on a complex 4-ball in the projective space of C1,4 = Λ⊗E C.
We will describe this in some generality, for convenience in later sections. Let o
be an order in an imaginary quadratic number field. An o-lattice L is a finitely
generated projective o-module equipped with a Hermitian pairing 〈 , 〉 on L that
takes value in the field of fractions of o. We take such pairings to be antilinear
in the first and linear in the second variable. We say that L is Lorentzian when
its signature is (1, n) with n ≥ 1. A point of the projective space P (L ⊗o C)
is called positive if it is represented by a vector of positive norm. When L is
Lorentzian, the positive points form an open n-ball B(L) in projective space,
which is also called the complex hyperbolic space of L. Aut(L) acts properly
discontinuously on B(L), and there is a natural compactification of the quotient,
due to Baily and Borel [BB]. A cusp is an element of P (L ⊗o C) that can be
represented by an isotropic lattice vector. The cusps are the rational boundary
points of B(L), and there are only finitely many orbits under Aut(L). We
denote by B∗(L) the union of B(L) with the set of all cusps. The group Aut(L)
acts on this extension, and the quotient of B∗(L) by any finite-index subgroup
of Aut(L) carries the structure of a projective algebraic variety.

In our setting we have o = E and L = Λ. The hermitian form on C
1,4 =

Λ⊗E C is given by Eq. (2.1), and the identification of B(Λ) with the complex 4-
ball is easy. Namely, any element of B(Λ) has a unique representative z ∈ C

1,4

whose z0-component is 1. Considering the remaining coordinates identifies
B(Λ) with the set of all (z1, . . . , z4) ∈ C

4 satisfying

|z1|2 + · · ·+ |z4|2 < 1. (3.1)

We will write B4 for B(Λ). We are interested in the quotient X of B∗
4 by

Γ ⊂ Aut(Λ). By Prop. 2.1, there are forty Γ-orbits of cusps in B∗
4 , so the

boundary of the Baily-Borel compactification of B4/Γ consists of 40 points.

Let a ∈ Λ be a vector of negative norm. The orthogonal complement a⊥

of a in P (C1,4) meets B4 nontrivially because a has negative norm. We can
consider its intersection with B∗

4 and the image of this in X . It is known that
this is an algebraic subvariety of codimension one, and we are interested in this
construction for a a root of Λ. In this case we call a⊥ ∩B∗

4 a mirror of B∗
4 . The

terminology derives from the fact that the mirror is the fixed-point set of the
reflection(s) in a, and we call the mirror short or long according to whether
a is short or long. The image in X of a short (long) mirror is called a short

4



§3. The ball quotient 5

(long) mirror of X . For convenience we sometimes call a vector in V short
(resp. long) if it has norm −1 (resp. 1). The short (long) vectors in V are
exactly the images of the short (long) roots of Λ. The short (long) mirrors in
X correspond to the 36 (45) pairs {±a} of short (long) vectors of V . We will
need some results about the intersection behavior of mirrors. Orthogonality
of mirrors in B∗

4 is defined in the obvious way, and we call two mirrors in X
orthogonal if the corresponding elements of V are orthogonal. If two mirrors
in B∗

4 are orthogonal then so are their images in X .

3.1 Lemma. Two short mirrors in B4 are either orthogonal or disjoint.

Proof. We take x and y to be short roots whose mirrors are the given mir-
rors. If the mirrors meet in B4 then a point of the intersection represents a
positive-definite one-dimensional subspace of C1,4. Its orthogonal complement
is negative definite and contains x and y. Hence the Gram matrix of x, y must
be positive, so 〈x, x〉〈y, y〉 − |〈x, y〉|2 > 0, so |〈x, y〉|2 < 1. Since 〈x, y〉 ∈ E we
must have 〈x, y〉 = 0. ⊔⊓

We now introduce the notion of a cross. This is fundamental for the pa-
per because the automorphic forms we will construct vanish exactly along the
points of a cross in B∗

4 . The word “cross” is meant to suggest several mutually
orthogonal objects.

3.2 Definition. A cross in V is a set of 5 pairwise orthogonal pairs ±ai,
one pair consisting of long vectors and the others consisting of short vectors.
The associated cross in X is the union of the mirrors of the ±ai; it follows
that a cross in X is a set of 5 pairwise orthogonal mirrors, one long and 4
short. The associated cross in B∗

4 is the preimage of the cross in X. A point
of B∗

4 lies in this cross just if it is orthogonal to a root whose projection to V
is one of the ±ai.

Since the three types of cross are in natural bijection, we will pass between
them without comment.

3.3 Lemma. There are 135 crosses, three containing each of the 45 long mir-
rors of X, and all 135 crosses are all equivalent under O(5, 3). More precisely,
if ℓ is a long mirror in X then the 12 short mirrors orthogonal to ℓ decompose
in a unique way into three sets of 4 mirrors which are pairwise orthogonal, and
the stabilizer of ℓ in O(5, 3) permutes these sets transitively.

Proof. The transitivity of O(5, 3) on crosses in V is obvious, and the rest is just a
calculation. Namely, the orthogonal complement of a long vector a contains 12
pairs {±v} of short vectors, orthogonality is (surprisingly) a transitive relation,
generating an equivalence relation with three classes of size 4. By symmetry
it suffices to check this for a single long vector a, say (1, 0, 0, 0, 0). Then the

5



6 Cubic surfaces and Borcherds products

three classes are

{±(0, 1, 0, 0, 0), ±(0, 0, 1, 0, 0), ±(0, 0, 0, 1, 0), ±(0, 0, 0, 0, 1)},
{±(0,−1, 1, 1, 1), ±(0, 1,−1, 1, 1), ±(0, 1, 1,−1, 1), ±(0, 1, 1, 1,−1)},
{±(0, 1, 1, 1, 1), ±(0, 1, 1,−1,−1), ±(0, 1,−1, 1,−1), ±(0, 1,−1,−1, 1)}.

⊔⊓
The purpose of the following theorem is to allow us to prove in section 4

that the automorphic forms we construct there have no common zeros.

3.4 Theorem. No point of X lies on all 135 crosses. Furthermore, if p is
the point of B4 represented by (1, 0, 0, 0, 0) ∈ Λ, then the image of p in X is
the only point of X that lies on all the crosses containing it. Finally, for each
boundary point b of X, b is the only point of X that lies on all the crosses
containing it.

In order to prove the theorem we will need to understand the Γ-orbits of
points of B4 that, like p, lie on four short mirrors. If q is such a point, then q⊥

is a copy of the unimodular lattice E0,4, and it follows that q is represented by
a lattice vector of norm 1, and indeed by six such vectors. The images in V of
these vectors and of the short roots of q⊥ form a cross, which we call the cross
associated to q.

3.5 Lemma. The map just defined, which associates a cross to each point of
B4 that lies on 4 short mirrors, defines a bijection between the set of Γ-orbits
of such points and the set of crosses. If each of p, q ∈ B4 lies on four short
mirrors, and the images in V of the short roots of p⊥ coincide with the images
of the short roots of q⊥, then p and q are Γ-equivalent.

Proof. For the first claim one uses the argument of 2.1. The essential facts are
that Aut(Λ) acts transitively on such points of B4 and that the stabilizer in
Aut(Λ) of such a point of B4 is (Z/6)×(Z/6)4 :S4, which reduces modulo

√
−3

to (Z/2)5 :S4, of index 135 in O(5, 3). (The transitivity statement follows from
the fact that such points in B4 correspond bijectively to the decompositions
of Λ as a direct sum E1,0 ⊕ E0,4.) The second claim is a consequence of the
first: the short vectors of a cross determine the cross uniquely, so the crosses
associated to p and q coincide. ⊔⊓
Proof of Theorem 3.4. Most of the proof consists of computer calculations
concerning combinatorics in V ; we will describe the ideas in sufficient detail for
them to be reproduced easily.

One can enumerate the roots orthogonal to p, and their images in V . A
cross contains p just if it contains one of these images. One can compute the
set C of crosses satisfying this condition, and one finds |C| = 69 < 135. In
particular, p does not lie on all 135 crosses. Now we will show that p is the
only point of B4 (up to Γ-equivalence) that lies on all the crosses containing p.

6



§3. The ball quotient 7

Suppose q ∈ B4 lies on every cross of C; we will show that q is Γ-equivalent to p.
First we will show that q lies on 4 short mirrors. For otherwise the short roots
orthogonal to q project into some triple T of mutually orthogonal antipodal
pairs of short vectors of V . If q lies on every cross in C then there is a way to
choose a root in q⊥ for each C ∈ C, such that the image in V of the root is one
of the vectors of C. In particular, there is a way to choose an element v ∈ C
for each C ∈ C, such that (1) if v is short then v ∈ T , and (2) the span of all
the v’s has dimension at most 4. For each of the 540 possibilities for T one can
count the number of ways to choose vectors v satisfying (1) and (2). It turns
out that there are no ways to make such a choice, and it follows that q cannot
lie on only 3 (or fewer) short mirrors.

We have shown that the short roots of q⊥ project onto some quadruple of
mutually orthogonal antipodal pairs of short vectors of V , which we will denote
by T . As in the previous paragraph, there is a way to choose an element v ∈ C
for each C ∈ C, such that (1) and (2) are satisfied. For each of the 135
possibilities for T , one can count the number of ways to make such a set of
choices. It turns out that for only one quadruple is there a way to do this,
and this quadruple consists of ±(0, 1, 0, 0, 0), . . . ,±(0, 0, 0, 0, 1). Therefore the
images in V of the short roots of q⊥ are these 8 vectors. Since these are also
the images of the short roots of p⊥, the Γ-equivalence of p and q follows from
Lemma 3.5.

Now we turn to the boundary points of X . If b is a boundary point of B∗
4

then we may represent it by a primitive isotropic lattice vector w, and a cross
contains b just if it contains the image in V of a root orthogonal to w. One can
check that every nonisotropic element of V that is orthogonal to the image w̄
of w is the image of a root in w⊥. (This is easy to check for any given w, and
the result follows for general w because of the transitivity of AutΛ.) It follows
that the set of crosses Cb containing b consists of the crosses which contain a
vector of V orthogonal to w̄. It is easy to compute the sets Cb for each of the 40
orbits of boundary points, and to check that no Cb is a subset of C. This proves
the second part of the theorem. The first part then follows, because no point
of X except for the image of p lies on every cross in C, and this point lies on
only 69 of the 135 crosses.

Now we show that no point of B/Γ lies on all the crosses in Cb, for any
boundary point b. The proof is almost identical to the one used above. By
symmetry it suffices to treat just one Cb. If q ∈ B4, then the short roots of
q⊥ project into some quadrouple T of mutually orthogonal short vectors of V .
If q lies on every cross in Cb then there is a way to choose an element v ∈ C
for each C ∈ Cb, such that (1) and (2) are satisfied. An enumeration shows
that there is no way to make such a choice, and the claim follows. Finally, it is
easy to compare the Cb’s with each other as b varies over the boundary points,
and check that none of the Cb’s contains any other. It follows that for each
boundary point b of X , b is the only point of X that lies on all the crosses
containing b. This completes the proof.

7



8 Cubic surfaces and Borcherds products

We verified the enumerations with a computer program written in C++,
which ran to completion in less than a minute. Repeatedly checking condition
(2) required more than 4× 108 row-reduction operations, and we did this effi-
ciently by enumerating the 35 elements of V and preparing a lookup table of
all 35·2 possible row-reductions. ⊔⊓

4. Automorphic forms on the ball

Borcherds has given two constructions for automorphic forms on O(2, n), which
we will use to build automorphic forms on the 4-ball. Here we will use his
additive lift [Bo1,§14], which generalizes correspondences of Shimura, Doi-
Naganuma, Maass, Gritsenko, and others. In the next section we will discuss
his other construction, which uses infinite products.

We begin in the setting of section 3, with o an order in an imaginary
quadratic number field, L an o-lattice of signature (1, n), B(L) the associ-
ated ball in projective space, and B∗(L) the union of the ball with the cusps.
We assume that L is integral (all inner products lie in o) and that n > 1,
so that L has dimension at least 3. We define B̃(L) and B̃∗(L) to be the
preimages of B(L) and B∗(L) in L ⊗o C. If G is a subgroup of Aut(L) and
v : G → S1 ⊂ C

• = C − {0} is a character of G then an automorphic form of
weight k ∈ Z with respect to G and v is a holomorphic function f : B̃(L) → C

satisfying

a) f(tz) = t−kf(z) for t ∈ C
•, and

b) f(γz) = v(γ)f(z) for γ ∈ G.

(If n were 1, so that B(L) were one-dimensional, then we would impose an
additional condition of regularity at the cusps.) We denote the space of all
such forms by [G, k, v], or by [G, k] if v is trivial.

One can extend an automorphic form f : B̃(L) → C to B̃∗(L) in a natural
way, providing boundary values for f . If a is an isotropic element of B̃∗(L), so
that it represents a cusp, then by the non-degeneracy of 〈·, ·〉 we may choose
b ∈ L⊗o C satisfying 〈a, b〉 6= 0. For all τ ∈ C with sufficiently large imaginary
part, τa+ 2i〈a, b〉b has positive norm. The limit

f(a) := lim
Im τ→∞

f(τa+ 2i〈b, a〉b)

exists and is independent of the choice of b. This follows from the Fourier
Jacobi expansion of f at a cusp; we refer to [Sh] for more details.

An automorphic form f ∈ [G, k, v] is of course not a function on B(L) unless
k = 0. But it is clear that the zero-locus of f is preserved by G and scalar
multiplication, so the set of zeros of f in B∗(L)/G is well-defined. It is a closed
algebraic subvariety of pure codimension one.

8



§4. Automorphic forms on the ball 9

Borcherds’ additive lift

We consider the Z-lattice M underlying L, which is the underlying Z-module
equipped with the even integral bilinear form

(a, b) := 〈a, b〉+ 〈b, a〉,

which has signature (2, 2n). The dual lattice with respect to (·, ·) is denoted
M ′, and M ′/M is a finite group. We remark that if α, β ∈ M ′/M then (α, α)
and (β, β) are well-defined modulo 2, while (α, β) is well-defined modulo 1.
The group SL(2, Z) acts on the group ring C[M ′/M ] by means of the Weil
representation ̺M , which is defined in terms of the standard generators

T =

(

1 1
0 1

)

, S =

(

0 −1
1 0

)

by
̺M (T )eα = exp(πi(α, α))eα,

̺M (S)eα =
in−1

√

|M ′/M |
∑

β∈M ′/M

exp(−2πi(α, β))eβ.

(We denote the standard generators of the group ring C[M ′/M ] by eα, with α
varying over M ′/M .) The Weil representation factors through SL(2, Z/NZ),
where N is the smallest natural number such that N

2
(a, a) is integral for all

a ∈M ′.

The inputs of Borcherds’ additive lift are vector valued modular forms f :
H → C[M ′/M ] on the usual upper half plane H with respect to the Weil
representation. More precisely, we require that f = (fα)α∈M ′/M satisfy

fα(τ + 1) = eπi(α,α)fα(τ),1.

fα

(

−1

τ

)

= τk+1−n in−1

√

|M ′/M |
∑

β∈M ′/M

e−2πi(α,β)fβ(τ), and2.

f is holomorphic at the cusp infinity.3.

Borcherds’ additive lift allows also inputs which have poles at the cusps, but
we do not need this extension. But even in the case of modular forms which
are regular at the cusps, Borcherds extended previous constructions because
he imposes no restriction on the weight of f , and does not require that f be a
cusp form.

The additive lift is a linear map Ψ from the space of such f into a certain
space of automorphic forms on B(L). We give its important properties in
the following theorem, which is a specialization of Theorem 14.3 in [Bo1] to
U(1, n) ⊆ O(2, 2n).

9



10 Cubic surfaces and Borcherds products

4.1 Theorem. Let G be the subgroup of Aut(L) that acts trivially on M ′/M .
There exists a linear map Ψ (the additive lift) from the space of elliptic modular
forms with the properties 1–3 above into the space [G, k] of automorphic forms
of weight k with respect to G and the trivial character. This lifting is equivariant
with respect to the action of Aut(L). (Aut(L) acts on [G, k] because G is normal
in Aut(L), and on the space of elliptic modular forms via its action onM ′/M .)

Furthermore, Borcherds shows how to compute the values of Ψ(f) at the cusps
of B̃∗(L) from the Fourier coefficients of f .

We now turn to the case of interest, with o = E and L = Λ. The Z-lattice
underlying the 1-dimensional lattice E is the A2 root lattice (the hexagonal
lattice in the plane with minimal norm 2), which has index 3 in its dual. From
the definition of Λ as a direct sum, we see thatM ′/M has order 35. Indeed more
is true: M ′ coincides with (

√
−3)−1Λ, so that M ′/M is canonically isomorphic

to the F3-vector space V = Λ/
√
−3Λ introduced in section 2. In particular, G

is the congruence subgroup Γ. One can check that if α, β ∈M ′/M then (α, β)
is 0, 2/3 or −2/3 (modulo 1) according to whether the corresponding elements
of V have inner product 0, 1 or −1 (in F3). Similarly, if α ∈ M ′/M then
(α, α) is 0, 2/3 or −2/3 (modulo 2) according to whether the corresponding
element of V has norm 0, 1 or −1. It follows from this that the level of the Weil
representation is N = 3, so that the representation factors through SL(2, F3).
We will usually write V in place of M ′/M to lighten the notation.

We apply 4.1 in the simplest case, where f is a modular form of weight 0,
hence a constant, which is to say an element of C[V ]SL(2,F3). The weight being
0 means that the exponent 1− k + n of τ in the second transformation rule is
0, so that k = n− 1 = 3. Therefore Borcherds’ additive lift gives a linear map

C[V ]SL(2,F3) −→ [Γ, 3].

We remark that since Γ contains the cube roots of unity acting as scalars, every
automorphic form on B̃4 for Γ, with trivial character has weight divisible by 3.
Our first task is to find some elements of C[V ]SL(2,F3).

4.2 Lemma. Let a0, . . . , a4 be an orthogonal basis for V consisting of one
long vector and four short vectors, and let C = (Cα)α∈V ∈ C[V ] be defined by
the condition that Cα is the complex number 1, 0 or −1 according to whether
∏

i(α, ai) is the element 1, 0 or −1 of F3. Then C is invariant under the Weil
representation. Furthermore, C changes sign under reflection in any of the ai,
and is characterized up to a scalar by this property.

To avoid the impression that the C’s were discovered by clever guesswork, we
should mention that we found this construction quite late, following extensive
computer work.

Proof. The behavior of C under the reflections is obvious, and the invariance
under SL(2, F3) may be checked by a computer calculation. To see the last

10



§4. Automorphic forms on the ball 11

claim, suppose D = (Dα) ∈ C[V ] has the stated property. If α is orthogonal
to one of the ai then we have Dα = −Dα by the transformation rule, so that
Dα = 0. The remaining α fall into a single orbit of size 32 under the group
(Z/2)5 generated by the reflections in the ai, so all the remaining Dα are
determined by any one of them. ⊔⊓

It is easy to work this out explicitly in an example: if a0, . . . , a4 are
(1, 0, . . . , 0), . . . , (0, . . . , 0, 1) then C is supported on those α of the form
(±1, . . . ,±1), with Cα = +1 or −1 according to whether there are an even
or odd number of minus signs. Note that C is supported on the isotropic vec-
tors in V , which is not immediately obvious from the construction. It follows
from the lemma and Theorem 4.1 that to each cross there is associated an
automorphic form on B4, well-defined up to sign. We will see below that the
zero-locus of this form is exactly the associated cross in B4. To resolve the
sign ambiguity it is convenient to introduce the notion of a signed cross. This
is just a basis {a0, . . . , a4} as in the lemma, modulo the equivalence relation
that {a0, . . . , a4} ∼ {a′0, . . . , a′4} if the a′i differ from the ai by a permutation
and evenly many sign changes. It is clear that there are two signed crosses for
every cross, and that the lemma assigns an element of C[V ] to each of the 270
signed crosses.

4.3 Lemma. The space

C[M ′/M ]SL(2,Z) = C[V ]SL(2,F3)

has dimension 10 and is spanned by the elements of C[V ] associated to the
signed crosses. The group O(5, 3) acts irreducibly on this space, with W (E6)
acting by its unique 10-dimensional irreducible representation and the central
involution acting by −1. The multiplicity of this representation in C[V ] is one.

Proof. It is easy to make a computer construct the elements C of C[V ] as-
sociated to the signed crosses and check that their complex span Z is 10-
dimensional. Consulting the character table shows that any 10-dimensional
representation of W (E6) is either trivial, or the irreducible representation in
10 dimensions, or else the sum of the (unique) irreducible 6-dimensional repre-
sentation and a 4-dimensional trivial one. These may be distinguished by the
trace of almost any group element, say a short reflection R, which has ATLAS
[C] conjugacy class 2C. The fixed space of R in Z is spanned by the vectors
C+R(C) where C is as above. It is easy to check that this space has dimension
5, so that R has trace 0, so thatW (E6) acts irreducibly on Z. It is obvious that
each C changes sign under the central involution of O(5, 3). If the multiplicity
of this O(5, 3)-representation in C[V ] were more than one, then the subspace
of C[V ] that changed sign under the reflections of each vector in a cross would
have dimension > 1, contrary to Lemma 4.2.

To see that Z is all of C[V ]SL(2,F3), suppose C = (Ca)a∈V is an element of
C[V ]SL(2,F3). Invariance under T means that C is supported on the 81 isotropic

11



12 Cubic surfaces and Borcherds products

elements. Invariance under S2 = −E means C−a = −Ca. Invariance under S
can be read as a linear equation in 40 indeterminates, and it is easy to make
a computer check that the space of solutions has only 10 dimensions. If one
is prepared to do more work with group characters, one can of course find the
complete decomposition of C[V ] under SL(2, F3)×O(5, 3); this is done in [Fr].

⊔⊓
We will write W for the image of Borcherds’ additive lift C[V ]SL(2,F3) →

[Γ, 3]. Our next theorem asserts that the automorphic forms we have con-
structed are nontrivial:

4.4 Proposition. Borcherds’ additive lift

C[V ]SL(2,F3) →W ⊂ [Γ, 3]

is an O(5, 3)-equivariant embedding.

Proof. The O(5, 3)-equivariance is part of Theorem 4.1. To prove injectivity, we
construct an inverse by using the boundary values of the automorphic forms.
Namely, if f ∈ [Γ, 3] then we define C = (Cα)α∈V by taking Cα = 0 if α
is zero or nonisotropic, and Cα = f(α̃) otherwise, where α̃ is any primitive
isotropic vector in Λ representing α. This definition is independent of the
choice of α̃ because f is Γ-invariant and all the primitive isotropic preimages
of α are Γ-equivalent (Lemma 2.1). The irreducibility of C[V ]SL(2,F3) as an
O(5, 3)-module and the fact that its multiplicity in C[V ] is one imply that the
composition

C[V ]SL(2,F3) additive lift−−−−−−−−−→ W ⊂ [Γ, 3]
boundary values−−−−−−−−−−−−→ C[V ]

is a scalar. The problem is to show that this scalar is nonzero. This is a straight-
forward but tedious calculation using Borcherds’ formulae for the Fourier ex-
pansions of additive lifts ([Bo1], 14.3) and the explicit embedding of B4 into
the hermitian symmetric space of O(2, 8). The latter space consists of two-
dimensional positive definite real subspaces ofM ⊗Z R. Every positive definite
complex line in Λ⊗E C (i.e. a point in B4) defines such a subspace. One has to
express this embedding in the coordinates which Borcherds uses in his theorem
14.3. Details of this calculation can be found in section 6 of [Fr]. ⊔⊓

Lemma 4.3 shows that our 270 automorphic forms satisfy many linear equa-
tions. Some of these are easy to see, and those treated in the following lemma
will receive an elegant geometric interpretation in section 7. To formulate the
lemma we note that there is an O(5, 3)-invariant inner product on W , which is
unique up to scale, by the irreducibility of the representation.

4.5 Lemma. Let v be a long vector of V . Then the automorphic forms
associated to the six signed crosses involving v lie in a 2-dimensional subspace
of W , and form a scaled copy of the A2 root system, i.e., the vertices of a
regular hexagon centered at 0.

12



§4. Automorphic forms on the ball 13

Proof. One can check this by computing the inner products of the 6 elements
of C[V ], using the restriction of the inner product

(

(Cα), (Dα)
)

=
∑

α∈V

CαDα,

which is obviously O(5, 3)-invariant and therefore the natural inner product.
But here is a better argument. The reflection R in v is not in the simple sub-
group of W (E6), but −R is, and has conjugacy class 2A in ATLAS notation.
Consulting the character table shows that −R has trace −6, so that the sub-
space Z ofW that R negates has dimension 2. Lemma 4.2 associates to each of
the three crosses a one-dimensional subspace of Z, with two generators coming
from the associated signed crosses. The reflection of V in any short root of one
of these crosses preserves that cross, acts as −1 on the the associated subspace,
and exchanges the other two crosses and hence the corresponding subspaces.
Therefore the three subspaces meet each other at angles of π/3, the subgroup
of O(5, 3) generated by the reflections in the short vectors orthogonal to v acts
on Z by the A2 Weyl group, and the 6 elements of Z coming from the crosses
form a copy of the A2 root system. ⊔⊓

We recall the notion of the divisor of an automorphic form. Let Y ⊂ X be
an irreducible subvariety of codimension one. We denote by eY the ramification
degree with respect to the natural projection π : B4 → X (counted as 1 if π is
unramified along Y ). If Y is a short mirror this ramification degree is three,
because the triflections are contained in Γ. For any other Y , such as a long
mirror, it is one. If F is a nonzero automorphic form for Γ and the trivial
character, then the vanishing order of F along π−1(Y ) is divisible by eY . We
call the quotient of this vanishing order by eY the order of F along Y and
denote it by nY (F ). The divisor of F in X is the finite sum

(F ) :=
∑

Y⊂X

nY (F )Y.

We consider a cross inX as a divisor with multiplicity one at all 5 of its mirrors.
A fundamental result for this paper is

4.6 Theorem. Let F 6= 0 lie in the one dimensional space of automorphic
forms associated to a cross. Then the divisor of F in X is exactly this cross.
The 270 automorphic forms associated to the signed crosses have no common
zeros in B∗

4 .

To prove this we will need a result whose proof we postpone to the next section.
We remark that the form χ4 given here was first discovered by Borcherds [Bo3].

4.7 Theorem. There are automorphic forms χ4 ∈ [Aut(Λ), 4, v] and χ75 ∈
[Aut(Λ), 75, v′], for some characters v and v′ of Λ, such that the divisors of χ4

and χ75 in B4 are the sum of the short mirrors and the sum of the long mirrors,
respectively, with multiplicity one.

13



14 Cubic surfaces and Borcherds products

Proof of Theorem 4.6. Suppose the cross is {±a0, . . . ,±a4} ⊂ V . If ã is a root
of Λ representing any of the ±ai, and R is the biflection in ã, then the relation
F ◦R = −F (which follows from the construction of F ) implies that F vanishes
along the mirrors of ã. Furthermore, if ã is a short root then F is invariant
under the triflection in ã, so that the multiplicity in B4 is at divisible by 3.
It follows that the divisor of F in B4 contains the short mirrors of the cross
with multiplicity 3, plus the long mirrors of the cross. To prove the theorem it
suffices to show that this is the full divisor of F . To see this we construct the
product P of all 270 automorphic forms, and divide P by χ90

4 χ
6
75, where χ4 and

χ74 are as in Theorem 4.7. The quotient is holomorphic because P vanishes to
order at least 6 along each long mirror in B4 and least 270 · 3 · 4/36 = 90 along
each short mirror. The quotient has weight 270 · 3 − 90 · 4 − 75 · 6 = 0, so is
constant. It is nonzero because each F is nonzero. Therefore the divisor of P
is the same as that of χ90

4 χ
6
75; since this is also the sum of the “known” divisors

of the various F , the first statement of the theorem follows. The second follows
immediately from this and Theorem 3.4. ⊔⊓

5. Borcherds products (and proof of theorem 4.7)

We recall some facts about automorphic forms on O(2, n), where O(2, n) is the
orthogonal group of a real vector space V with a symmetric bilinear form (·, ·)
of signature (2, n). Let Hn denote the hermitian symmetric space associated to
O(2, n). It can be realized as an open subset of the quadric defined by (z, z) = 0
in the projective space P (V (C)), where we extend (·, ·) to a C-bilinear form on
V (C). Namely, it is one of the two connected components of the open subset
defined by (z, z̄) > 0. A subgroup O′(V ) of index two of the orthogonal group
O(V ) acts biholomorphically on Hn. Let H̃n denote the inverse image of Hn

in V (C). We restrict henceforth to the case n > 2 for convenience. If M is an
even integral Z-lattice in V , then a meromorphic automorphic form of weight
k ∈ Z with respect to a subgroup G of finite index in

O′(M) = O(M) ∩O′(V )

and a character v of G is a meromorphic function f on H̃n with the properties

a) f(γz) = v(γ)f(z) for all γ ∈ G.
b) f(tz) = t−kf(z) for all t ∈ C

•.

We next recall the notion of a Heegner divisor: let m be a negative rational
number and let α be an element of M ′/M , where M ′ denotes the dual lattice.
The Heegner divisor H(α,m) ⊂ Hn is the union of the orthogonal complements
v⊥ ∩ Hn where v runs through all elements of M ′ satisfying

v ≡ α mod M and (v, v) = 2m.

14



§5. Borcherds products (and proof of theorem 4.7) 15

We consider H(α,m) as a divisor on Hn by attaching multiplicity 1 to all
components. It is obvious that H(α,m) = H(−α,m), so that the divisor
depends only on m and the image of α in (M ′/M)/± 1.

Borcherds introduced in [Bo1] a method for constructing automorphic forms
on Hn whose divisors are sums of Heegner divisors. Then, in [Bo2], he con-
structed a ‘space of obstructions’ to the use of this technique for constructing
automorphic forms with divisor equal to some given sum of Heegner divisors.
This space consists of all elliptic modular forms of weight

k := (2 + n)/2

with respect to the dual ̺∗ := ̺∗M of the Weil representation. We restrict to
the case of even n since the Weil representation simplifies and this is the only
case we need. Such a form (fα)α∈M ′/M is required to be holomorphic at the
cusp at infinity and satisfy the transformation laws

fα(τ + 1) = e−πi(α,α)fα(τ)1.

fα

(

−1

τ

)

= −
√

τ

i

2+n
1

√

|M ′/M |
∑

β∈M ′/M

e2πi(α,β)fβ(τ).2.

As in section 4, we note that (α, α) is well-defined modulo 2 and (α, β) is
well-defined modulo 1, so that these formulas make sense.

Elements of the space of obstructions can be constructed by means of Eisen-
stein series, as follows. We write R for the group ring C[M ′/M ] and R0 for
the subspace on which (−1)k̺∗(−E) acts trivially. Since (−1)k̺∗(−E) acts by
exchanging eα and e−α, where the eα form the standard basis of R as α varies
over M ′/M , a basis for R0 is given by the elements

eα + e−α, α ∈ (M ′/M)/± 1.

If ξ ∈ R0 satisfies

̺∗
(

1 1
0 1

)

ξ = ξ

then (cτ + d)−k̺∗(Q)−1ξ remains unchanged if one replaces Q by PQ, where

P = ±
(

1
0

n
1

)

lies in the stabilizer SL(2,Z)∞ of ∞ and Q =
(

a
c

b
d

)

∈ SL(2, Z).

This lets us define the Eisenstein series

Eξ(τ) =
∑

Q=( a

c

b

d )∈SL(2,Z)∞\ SL(2,Z)

(cτ + d)−k̺∗(Q)−1ξ ,

which is a modular form of weight k with respect to ̺∗, so it lies in the space
of obstructions. Furthermore,

lim
Im τ→∞

Eξ(τ) = ξ.

In particular, if ξ 6= 0 then Eξ is not a cusp form.

15



16 Cubic surfaces and Borcherds products

5.1 Remark. Under our assumption n > 2 we have k > 2, and in this case
the space of Eisenstein series of weight k and with respect to ̺∗ is isomorphic
the space of all ξ ∈ V0 with

̺∗
(

1 1
0 1

)

ξ = ξ
(

and ̺∗(−E)ξ = (−1)kξ
)

.

Using Remark 5.1 one can reformulate a fundamental result of Borcherds [Bo1],
[Bo2] as follows.

5.2 Theorem. Suppose D is a finite Z-linear combination

∑

α∈(M ′/M)/±1, m<0

C(α,m)H(α,m)

of Heegner divisors and G is the subgroup of O′(M) that acts trivially onM ′/M .
Then D is the divisor of a meromorphic automorphic form on Hn with respect
to some character of G if for every cusp form f in the space of obstructions,
say

fα(τ) =
∑

m∈Q

aα(m) exp(2πimτ), (5.1)

the relation
∑

m<0, α∈M ′/M

aα(−m)C(α,m) = 0 (5.2)

holds. The weight of such an automorphic form is

∑

m∈Q, α∈M ′/M

bα(m)C(α,−m),

where bα(m) denotes the Fourier coefficients of the (unique) Eisenstein series
with constant term

bα(0) =
{−1/2 if α = 0,
0 otherwise.

We want to apply this theorem to our lattice Λ = E1,4, or rather to its
underlying Z-lattice M . The obstructions have weight k = (2 + 8)/2 = 5,
and if the space of obstructions vanished then the existence of the forms of
Theorem 4.7 would follow easily from Theorem 5.2 by restriction from H8 to
B4. There are obstructions, and even cuspidal obstructions, but we will show
that there are no O′(M)-invariant cusp forms in the space of obstructions, and
this turns out to be enough to establish Theorem 4.7. Here, O′(M) acts via its
action on M ′/M .

16



§5. Borcherds products (and proof of theorem 4.7) 17

5.3 Theorem. For M equal to the Z-lattice underlying Λ = E1,4, the space of
O′(M)-invariant obstructions has dimension two and is spanned by Eisenstein
series. The space of invariant cuspidal obstructions vanishes.

Proof. The O′(M)-invariant part of C[M ′/M ] has dimension 4, because O′(M)
acts with 4 orbits (or ‘types’) on M ′/M . The type of an element α ∈M ′/M is
defined as 00 if α is the zero element and as t ∈ {0, 1, 2} if α is different from
zero and (α, α) ≡ 2t/3 mod 2. There are 1, 80, 90 and 72 elements of M ′/M
of types 00, 0, 1 and 2, respectively. We will express an invariant obstruction
h as (h00, h0, h1, h2), where each ht is the sum of the hα as α varies over the
elements of M ′/M of type t. A calculation allows one to determine the action
of SL(2, Z) with respect to this basis. It turns out that the standard generators
T =

(

1
0

1
1

)

and S =
(

0
1

−1
0

)

act by

̺∗(T ) =







1
1

ω2

ω






and ̺∗(S) =

i

35/2







1 1 1 1
80 −1 8 −10
90 9 −9 0
72 −9 0 9






.

Borcherds [Bo2] gives a formula for the dimension of the space of elliptic modu-
lar forms of given weight that tranform according to some given representation
of SL(2, Z), in terms of the eigenvalues of certain elements of SL(2, Z). Apply-
ing this formula to the 4-dimensional representation above shows that the space
of obstructions has dimension 2. On the other hand, the space of Eisenstein
series is also 2-dimensional, because another calculation shows that the sub-
space of C[M ′/M ]O

′(M) whose elements satisfy the conditions of Remark 5.1
is 2-dimensional. Since a cuspidal Eisenstein series vanishes identically, the
theorem follows. ⊔⊓

5.4 Corollary. WithM as in Theorem 5.3, every divisor D as in Theorem 5.2
that is O′(M)-invariant is the divisor of a form on H8 that is automorphic with
respect to some character of O′(M).

Proof. Since D is O′(M)-invariant it satisfies condition (5.2) for all f as in
(5.1) if and only if it satisfies the condition for all such f that are also O′(M)-
invariant. Therefore the theorem assures us of the existence of an automorphic
form for G ⊆ O′(M) with divisor D, and since D is O′(M)-invariant the form
must be automorphic with respect to some character of O′(M) itself. ⊔⊓

In order to find the weights of the forms constructed in this way, we need the
Eisenstein series with constant term bα(0) = −1/2 for α = 0 and bα(0) = 0 for
other α. To compute this series we construct a basis for the space of Eisenstein
series and then take a suitable linear combination. The Weil representation
factors through SL(2, Z/3Z), so our Eisenstein series are linear combinations
of the classical elliptic Eisenstein series of level 3, namely

Gk(τ ; c, d, N) :=
∑′

m≡c

n≡d
modN

1

(mτ + n)k
,

17



18 Cubic surfaces and Borcherds products

where the level N is 3 and the weight k is 5. We write E1, E2, E3 and E4 for
the four classical Eisenstein series corresponding to the values (c, d) = (0, 1),
(1, 0), (1, 1) and (1, 2). We will continue to use the notation introduced in the
proof of Theorem 5.3.

5.5 Proposition. With M as in Theorem 5.3, a basis for the space of
O′(M)-invariant obstructions consists of the Eisenstein series f and g given
by

f00 =
i
√
3

18
E1 −

1

18
(E2 +E3 +E4)

f0 = −5i
√
3

9
E1 +

5

9
(E2 + E3 + E4)

f1 = 0

f2 = E2 + ω2E3 + ωE4

g00 =
i
√
3

18
E1 +

1

18
(E2 +E3 +E4)

g0 =
4i
√
3

9
E1 +

4

9
(E2 +E3 +E4)

g1 = E2 + ωE3 + ω2E4

g2 = 0 .

Proof. If h = (h00, h0, h1, h2) is an O′(M)-invariant Eisenstein series then
each component of h is a C-linear combination of E1, . . . , E4. The manner in
which the Ei’s transform into each other under SL(2, Z) is known, and the
transformation laws of h with respect to ̺∗ reduce to a set of linear conditions
on the coefficients of the Ei’s. One simply solves the system of linear equations.
(Of course, once one has the answer one can simply check it.) ⊔⊓

The Fourier coefficients of the Eisenstein series can be found in many text
books, for example [He, no. 24, section 1] or [Fr]. This lets one find the Fourier
expansions for f and g; once these are known then one can find the unique
obstruction h whose Fourier coefficients bα(m) have constant term as in Theo-
rem 5.2. The answer turns out to be given by

h00 = −1/2 + 12 q + 225 q2 + 1092 q3 + 2892 q4 + · · ·
h0 = 1080 q + 16200 q2 + 87480 q3 + 260280 q4 + 673920 q5 + · · ·
h1 = 225 q2/3 + 9360 q5/3 + 57825 q8/3 + 219600 q11/3 + 540450 q14/3 + · · ·
h2 = 12 q1/3 + 2892 q4/3 + 28824 q7/3 + 112320 q10/3 + 342744 q13/3 + · · ·

5.6 Proposition. With M as in Theorem 5.3, there exists an automorphic
form on H8 for O′(M), of weight 12 (resp. 225), whose zeros are the orthogonal
complements of the vectors v ∈ M ′ satisfying (v, v) = −2/3 (resp. (v, v) =
−1/3). The vanishing order is one.

Proof. This follows from Theorems 5.2and 5.3. For the form of weight 12
(resp. 225) we take D to be the sum of the H(α,m) where m = −1/3 (resp.
m = −2/3) and α varies over the type 2 (resp. type 1) elements of (M ′/M)/±1.

⊔⊓
We note that the form of weight 12 was found by Borcherds in [Bo3].
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§6. A model for the moduli space of marked cubic surfaces 19

Proof of Theorem 4.7. We use the natural embedding U(1, 4) →֒ O′(2, 8) and
a compatible holomorphic embedding B4 →֒ H8. The short (resp. long) mirrors
in B4 are the intersections of the divisors described in Prop. 5.6. The orthogonal
complements in Prop. 5.6 occur in triples having the same intersection with B4,
since if r is a root of Λ then r, ωr and ω2r are roots with the same orthogonal
complement in B4 but different orthogonal complements in H8. Therefore the
vanishing order of the restriction to B4 along each short (resp. long) mirror is
three. Taking a cube root yields a form of weight 12/3 = 4 (resp. 225/3 = 45).

⊔⊓

6. A model for the moduli space of marked cubic surfaces

Recall the ten dimensional spaceW of automorphic forms for Γ, the congruence
subgroup of level

√
−3 in Aut(Λ). We know from Theorem 4.6 that these forms

have no common zero. Therefore, by choosing a basis for W we obtain an
everywhere holomorphic map

β : X = B∗
4/Γ −→ P 9(C).

This map is algebraic by Chow’s theorem. By a result of Hilbert it is a finite
map. Hence the image is a projective algebraic variety V ⊂ P 9 of dimension 4.
In fact more is true:

6.1 Theorem. The map β : X → V is birational.

After proving this theorem we will introduce a family of cubic 8-folds, each
of which contains V. Then we will sketch a proof that these cubic equations
actually define V. Our proof of 6.1 uses only our automorphic forms. In
section 7 we will prove that β is actually an embedding, but this relies heavily
on the very extensive calculations and involved arguments of [Na].

Theorem 6.1 follows immediately from the lemma:

6.2 Lemma. Let p be the point of B4 represented by (1, 0, 0, 0, 0) ∈ Λ, and
let p̄ denote its image in X. Then p̄ is the only point of X mapping to β(p̄),
and β : X → V is a local diffeomorphism at p̄.

Proof. The first claim is a consequence of the second part of Theorem 3.4.
In order to prove the second claim we will find four elements of W , the sum
of whose divisors in X is a normal crossing divisor at p̄. For this we will
need coordinates around p̄. Coordinates around p ∈ B4 may be taken to be
z1, . . . , z4 ∈ C

4, with
∑

i |zi|2 < 1 as in formula (3.1). The stabilizer Γp of p,
which is generated (modulo scalars) by the triflections in the short roots

(0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0) and (0, 0, 0, 0, 1),
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20 Cubic surfaces and Borcherds products

acts by multiplying the zi by cube roots of unity. It follows that local coordi-
nates for X near p̄ are given by the functions wi = z3i . The four short mirrors
of X passing through p̄ are given by the equations wi = 0. The long mirrors in
B4 that pass through p are the mirrors of the 216 roots (0, a1, . . . , a4), where
two of the ai are zero and the others are sixth roots of unity. To work out their
images in X it suffices to treat the case where the nonzero ai lie in {±1}, since
the orbit of these under Γp is the entire set of 216. It is easy to check that the
mirror zi = ±zj in B4 projects to the mirror wi = ±wj in X . It follows that
in our local coordinates in X , the 12 long mirrors through p̄ are given by the
equations wi = ±wj for the various pairs i 6= j.

We claim that for each long mirror m of X passing through p̄, there is a
cross C containing it whose short mirrors do not pass through p̄. To see this,
consider the three crosses containing m. Because only two of the short mirrors
passing through p̄ are orthogonal tom, one of the three crosses contains neither
of these mirrors. Since it cannot contain either of the other short mirrors, it has
the desired property and we take it to be C. Now, it is easy to find four long
mirrors m1, . . . , m4 whose sum is a normal crossing divisor at p̄, for example
those given by w1 = ±w2 and w3 = ±w4. We let Ci be crosses associated
to the mi as above, and fi be automorphic forms associated to the Ci. Then
the fi are necessarily linearly independent, and we extend them to a basis
f1, . . . , f10 of W . Of course, one of the fi, say f10, does not vanish at p̄, and
then f1/f10, . . . , f9/f10 are affine coordinates near β(p̄) ∈ P 9. It follows from
the implicit function theorem and the fact that fi (i = 1, . . . , 4) has only a
simple zero along mi that β is a local diffeomorphism as p̄. ⊔⊓

Next we will find some cubic relations satisfied by our automorphic forms;
these define cubic 8-folds in P 9(C) which contain V. It is easy to explain the
origin of these relations: it can happen that there are three crosses C1, C2 and
C3, and another three crosses C′

1, C
′
2 and C′

3, such that as divisors in X they
satisfy

C1 + C2 + C3 = C′
1 + C′

2 + C′
3. (6.1)

If Fi and F
′
i are nonzero automorphic forms in the one-dimensional subspaces

of W associated to the Ci and C′
i, then the divisors of F1F2F3 and F ′

1F
′
2F

′
3

are equal and therefore the two products coincide up to a scalar. This relation
would be trivial if the C′

i were obtained by permuting the Ci, but nontrivial
relations do arise and can be found by studying the geometry of V . Here are
some nontrivial cubic relations, which turn out to be the only ones. (Only
trivial relations can be found if one plays the same game with pairs rather
than triples of crosses.)

6.3 Lemma. Let (a1, a2, a3, b1, b2) be an ordered orthonormal basis of V , Si

be the signed cross given by the basis {ai, ai+1 ± b1, ai−1 ± b2}, and S′
i be the

signed cross given by {ai, ai+1±b2, ai−1±b1}, where the subscript of ai±1 should
be read modulo 3. Writing Fi and F

′
i for the automorphic forms associated to

Si and S
′
i, we have F1F2F3 = F ′

1F
′
2F

′
3.
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Proof. We write Ci and C′
i for the crosses underlying Si and S′

i. It is easy
to check that (6.1) holds, and it follows that F1F2F3 is a constant multiple of
F ′
1F

′
2F

′
3. To determine the constant, let α be the isotropic vector a1+a2+a3 ∈ V

and let α̃ be any primitive isotropic element of Λ representing α. Using the
product formula of Lemma 4.2, it is easy to see that the element of C[V ]SL(2,F3)

associated to each Si and S
′
i has component 1 at α. By the relationship between

the values of elements of W at cusps of B̃∗
4 and at the corresponding elements

of V (see the proof of Prop. 4.4), all the Fi and F
′
i take the same value at α̃.

Therefore F1F2F3(α̃) = F ′
1F

′
2F

′
3(α̃), and so F1F2F3 = F ′

1F
′
2F

′
3. ⊔⊓

Remarks: We will discuss coincidences among these relations, and the fact
that they account for all the relations arising from crosses Ci, C

′
i satisfying

(6.1). If (â1, â2, â3, b̂1, b̂2) is another ordered orthonormal basis for V , then the
relations given by the two bases are essentially the same if

{±a1,±a2,±a3} = {±â1,±â2,±â3} and {±b1,±b2} = {±b̂1,±b̂2}. (6.2)

By “essentially the same” we mean that each relation implies the other. There
are |O(5, 3)|/25 3! 2! = 270 equivalence classes of ordered orthonormal bases
under the relation (6.2), yielding 270 cubic relations. It is easy to make a
computer enumerate all nontrivial pairs of triples of crosses Ci and C

′
i satisfying

(6.1) and check that every one is a case of our construction. Therefore we have
found all the relations arising from equalities of sums of triples of crosses. For
convenience in enumerating the 270 relations, we remark that they are in 1-1
correspondence with the unordered triples of mutually orthogonal long mirrors
inX . To find the relation associated to such a triple of mirrors, let a1, a2 and a3
be long vectors of V associated to the mirrors, extend them to an orthonormal
basis of V , and apply the lemma.

6.4 Theorem. The variety V is the intersection of the cubic eightfolds defined
by the relations of Lemma 6.3.

Proof sketch. Using one of the computer algebra systems MACAULEY or SIN-
GULAR, it is easy to see that the dimension of the intersection V ′ of the 270
cubics has dimension 4. With either system it is possible to compute a pro-
jective resolution of R/J , where R = Q[Y0, . . . , Y9], Y0, . . . , Y9 are a basis for
W , and J the ideal generated by the 270 cubic relations. The projective di-
mension of R/J turns out to be 5, by a calculation that takes a few minutes
in SINGULAR but several hours in MACAULAY. As a consequence, V ′ contains
no component of dimension < 4.

It is more involved to prove that V ′ is irreducible. In principle one can
simply ask the machine, but this seems to be too much for the computer.
Instead, we consider the intersection of V ′ with a hyperplane corresponding to
a cross. If V ′ is irreducible then the intersection should consist of 5 irreducible
components. It is not hard to prove that in our situation the converse is also
true. The hyperplane section is defined by a certain ideal a ⊂ C[Y0, . . . , Y9].
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22 Cubic surfaces and Borcherds products

In principle one can ask the computer for the components of the ideal (e.g. by
using “decompose” in MACAULEY), but again this does not work. Instead, one
finds directly five ideals a0, . . . , a4 containing a that come from the five mirrors
of the cross and are constructed in an obvious way. After the ideals ai have
been constructed, one can verify a = a0 ∩ . . . ∩ a4 by means of MACAULEY

or SINGULAR. The problem now is to prove that the varieties of the ai are
irreducible. This means that we face a similar problem in a lower dimension,
which can be treated in a similar manner. During this procedure several very
interesting ball quotients of smaller dimension occur. This will be treated in a
separate paper, where more details about the ideal J ⊂ C[Y0, . . . , Y9] and the
hyperplane sections will be given.

We also intend to include proofs of the facts that J is prime and that R/J
is normal. This has the important consequence that W generates the ring of
all automorphic forms on Γ with trivial multipliers. The normality can be used
to give an alternate proof of Theorem 7.3 (that β is an embedding). We will
also give the Hilbert function of R/J . ⊔⊓

7. Cross Ratios

In this section we will relate our automorphic forms to the original invariants
of a cubic surface, the cross-ratios of Cayley. These are rational functions on
the moduli space of marked cubic surfaces that encode the manner in which
the 27 lines on a cubic surface lie in P 3. We will show below that Cayley’s
cross-ratios are ratios of certain pairs of our 270 automorphic forms. Then we
will use this to prove that the map β : M → P 9 of section 6 is an embedding.

Suppose that A and B are two crosses with the same long mirror m. By
Lemma 4.5, the subspace of W that changes sign under reflection in m is 2-
dimensional, and the automorphic forms coming from the six signed crosses of
m form a regular hexagon in this plane, centered at 0. Now, A and B define
two diameters of this hexagon, and we choose an endpoint F (resp. G) of the
diameter associated to A (resp. B), such that F and G are adjacent vertices of
the hexagon. There is a unique way to do this, up to simultaneously negating
F and G, so the rational function F/G does not depend on the choice made.
We call this the cross ratio A/B. The reason for the name is Theorem 7.2
below, which identifies these rational functions with Cayley’s cross-ratios. It is
a genuine accident of terminology that our cross-ratios may also be regarded as
ratios of crosses. There are 270 cross-ratios, six for each of the 45 long mirrors.
To identify our cross-ratios with Cayley’s we will need to describe the divisor
of A/B:

7.1 Lemma. If m is a long mirror in X and A, B and C are its three crosses,
then the divisor of the cross-ratio A/B consists of the four short mirrors of A
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§7. Cross Ratios 23

with multiplicity 1 (simple zeros) and the four short mirrors of B with mul-
tiplicity −1 (simple poles). Furthermore, A/B takes the constant value 1 at
generic points of the short mirrors of C.

Proof. If F and G are automorphic forms chosen as in the discussion above,
then their divisors in X are the crosses A and B, respectively. Since the long
mirrors of A and B coincide and the short mirrors are distinct, the identification
of the divisor of A/B is complete. Finally, H = F − G is an endpoint of the
third diameter of the hexagon, so that it lies in the 1-dimensional subspace of
W associated to C, and in particular it vanishes on the short mirrors of C.
That is, F = G on the mirrors of C and so A/B = 1 at generic points of the
short mirrors of C. ⊔⊓

Now we discuss Cayley’s cross-ratios; our basic reference is Naruki’s exten-
sive study of them and a compactification C of the moduli space M of marked
smooth cubic surfaces that they define [Na]. The biregular action of W (E6)
on M extends to a biregular action on C, and the complement of M in C has
76 components, which fall into orbits of size 40 and 36 under W (E6). The
components in the orbit of size 40 are all disjoint and can be blown down to
points. The variety Č obtained by this blowing-down is the standard Geometric
Invariant Theory (GIT) compactification ofM , with its natural W (E6)-action.
Now,M is alsoW (E6)-equivariantly isomorphic to the complement in X of the
short mirrors, and the inclusion of this space into X is also the standard GIT
compactification. It follows that X is W (E6)-equivariantly isomorphic to Č,
with the 36 short mirrors corresponding to the images in Č of the remaining
36 components of C −M .

Naruki describes M in terms of a maximal torus T of the simple Lie group
D4 of adjoint type. He writes ∆ for the union of the subtori which are the
fixed-point sets of the 12 reflections ofW (D4), and realizesM as the blowup of
T at the identity element, minus the proper transforms of the 12 components
of ∆. He introduces multiplicative characters λ, µ, ν and ρ of T , which provide
a coordinate system for T , and describes the action of W (E6) on M by giving
explicit rational self-maps of T in terms of these coordinates. This groupW (E6)
contains the obvious group W (D4) and also the larger group W (F4) obtained
by adjoining the automorphisms of T arising from the automorphisms of the
Dynkin diagram D4.

Naruki introduces 45 divisors in M which W (E6) permutes transitively.
One of these, δ0, is the exceptional divisor lying over the identity of T , and
the rest are given by explicit equations in λ, µ, ν and ρ. We claim that these
45 divisors correspond to our long mirrors. To see this, observe that δ0 is the
fixed-point set of the lift (say η) to M of the negation map on T . (All of
the 2-torsion points of T lie in ∆.) The conjugacy class of η has size at most
45, since η centralizes W (F4), of index 45 in W (E6), and at least 45, since δ0
has 45 translates under W (E6). Since W (E6) has a unique conjugacy class of
involutions of size 45, and the elements of this class are our long reflections, η
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24 Cubic surfaces and Borcherds products

corresponds to a long reflection η̂. Furthermore, δ0 corresponds to the fixed-
point set of η̂, which must therefore be irreducible and (since it contains a long
mirrors) consist entirely of the long mirror. Another way to prove our claim is
to use the fact that each of [Na] and [ACT] proves that its set of 45 divisors
represent the marked cubic surfaces that have an Eckardt point.

The passage from T to Č involves compactifying T and then performing a
sequence of blowings-up and blowings-down. All that matters to us is that the
identity of T is blown up, and that the 12 components of ∆ (or rather their
transforms in Č) are among the the 36 components of Č −M . Naruki calls
these 12 divisors the A1-hypersurfaces.

Finally, Naruki’s table 2 gives 45 of Cayley’s cross-ratios explicitly as ra-
tional functions of λ, µ, ν and ρ. The full set of Cayley’s 270 cross-ratios is
obtained by following these functions by the 6 projective linear transformations
of P 1 = C ∪ {∞} that preserve {0, 1,∞}. Of course, Cayley had much more
explicit geometric concepts in mind when defining his cross-ratios; for details
see Naruki’s paper.

7.2 Theorem. Cayley’s cross-ratios coincide with ours.

Proof: The idea is to check that the divisors coincide and that Cayley’s
cross-ratios satisfy the normalization condition of lemma 7.1. By Cayley’s ge-
ometric considerations ([Na], §3), his cross-ratios do not take any of the values
0, 1 and ∞ in M , so their divisors consist of short mirrors with some multi-
plicities. For the short mirror S given by ρ = 1 in Naruki’s coordinates, simple
substitution reveals the behavior along S of the 45 cross-ratios given in Naruki’s
table. Namely, exactly 7 vanish along it, exactly 7 have poles along it, and just
one takes the constant value 1. Since the full set of Cayley’s cross-ratios is
obtained by following these by the 6 linear fractional transformations preserv-
ing {0, 1,∞}, we see that exactly 2 · (7 + 7 + 1) = 30 of Cayley’s cross-ratios
vanish along S, another 30 take the constant value 1, and a further 30 have
poles along S. (Working with the full set of 270 restores the symmetry between
0, 1 and ∞ that Naruki’s choice of 45 conceals.) Now, by the transitivity of
W (E6) on Cayley’s cross-ratios, each vanishes along the same number, say k,
of short mirrors. By transitivity on the short mirrors, each short mirror lies in
the zero-locus of exactly 30 of Cayley’s cross-ratios. These transitivities also
show that 270 · k = 36 · 30, so that k = 4 and each of Cayley’s cross-ratios
vanishes along exactly 4 short mirrors. The same argument also shows that
each has poles along exactly 4 short mirrors.

Now we consider Cayley’s cross-ratio r(w), given in Naruki’s coordinates by

r(w) =
(λρ− 1)(µρ− 1)(νρ− 1)(λµνρ− 1)

(µνρ− 1)(λνρ− 1)(λµρ− 1)(ρ− 1)
.

We will write simply r for r(w). The sets χ = 1, where χ is one of the characters
λρ, µρ, νρ and λµνρ (resp. µνρ, λνρ, λµρ and ρ) appearing in the numerator
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(resp. denominator) are among Naruki’s A1-hypersurfaces, so r has a simple
zero (resp. simple pole) along these four short mirrors. By the argument
above, these constitute the entire divisor of r. Furthermore, the short mirrors
along which r vanishes (resp. has a pole) are orthogonal, in the sense that
the reflections across them commute. To see this we do not even need to
perform a calculation, because Naruki (p. 20) has already organized his twelve
A1-hypersurfaces into three sets each consisting of four mutually orthogonal
divisors. Finally, all 8 of these short mirrors are orthogonal to the long mirror
δ0, because their reflections obviously commute with the negation map of T . It
follows that δ0 together with the four short mirrors coming from the numerator
(resp. denominator) of r form a cross Cn (resp. Cd). Therefore r has the same
divisor as our cross-ratio Cn/Cd. To show that r = Cn/Cd it now suffices to
show that r = 1 along the short mirrors of the third cross associated to δ0.
Consulting again the table on Naruki’s p. 20, we see that these mirrors are
given by χ = 1, where χ varies over the characters λ, µ, ν and λµνρ2. Simple
calculation verifies the condition, so r = Cn/Cd. Since one of Cayley’s cross-
ratios coincides with one of ours, and W (E6) acts transitively on both sets of
cross-ratios, the theorem follows. ⊔⊓

Remark: B. van Geemen has also obtained this theorem, as a byproduct of
a larger investigation. His idea is to construct and study the linear system on
Naruki’s model of the moduli space that comes from our space W of automor-
phic forms. After one understands this linear system (van Geemen identifies it
with one introduced by Coble long ago), the result above follows immediately.
His approach also has the advantage of allowing one to relate the moduli space
M to the variety V over fields other than C. (Note that V is defined over Z.)

7.3 Corollary. The map β : X → P 9 of section 6 is an embedding.

Proof: We write ∂X for B4/Γ − B4/Γ, the set of 40 cusp points. One of
Naruki’s main results is that the 270 cross-ratios, a priori defined as maps
M → (P 1 − {0, 1,∞}), extend to regular maps (X − ∂X) → P 1 that embed
X−∂X in (P 1)270. Since the cross-ratios are quotients of the elements ofW , β
must embed X − ∂X in P 9. Unfortunately, this argument cannot be extended
to show that β embeds all of X into P 9; the problem is that one must blow up
the points of ∂X in order for the rational map from X to (P 1)270 to become
regular. In order to prove the theorem we will first show that β is injective as
a map of sets, and then that β is a local embedding at each point of ∂X .

The injectivity has essentially already been proven: Theorem 3.4 shows that
for each x ∈ ∂X , x is the only point of X that lies on all the crosses containing
x. It follows that no point of ∂X is identified under β with any other point of
X . Since β is already known to be injective on X − ∂X , β is injective.

Now we prove that β is a local embedding at each point of ∂X ; we will
use Naruki’s explicit description (see [Na], section 12) of these singularities.
Namely, his T -equivariant compactification T̃ of T adjoins 48 divisors, 24 of
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which he then blows down to obtain 24 of the points of ∂X . Focusing on one of
these divisors, which he denotes by ρ = 0 and we will denote by D, he gives 8
characters of T which extend to regular functions z1, . . . , z8 on a neighborhood
U of D in T̃ , and which vanish along D. According to his theorem 12.1,
the induced map U → C

8 gives the blowing-down of D and thus embeds a
neighborhood of the resulting singular point x ∈ ∂X into C

8. Furthermore, he
explicitly describes the singularity as the cone on the Veronese embedding of
P 1 × P 1 × P 1 in P 7. This makes it a simple matter to see that the divisor of
each zi near x has exactly three components, and these components meet each
other away from x as well as at x. Since each zi is the extension of a character
of T , its divisor can consists only of the components of X −M , which is to
say, short mirrors. Since short mirrors that meet each other in X − ∂X must
be orthogonal, we have shown that the divisor of each zi near X consists of
three mutually orthogonal short mirrors. For each i = 1, . . . , 8, we will find an
automorphic form ψi ∈ W whose divisor near x coincides with that of zi. We
may also choose ψ′ ∈ W whose divisor misses x entirely. Then the evaluation
of ψ1/ψ

′, . . . , ψ8/ψ
′ provides essentially the same map (of some neighborhood

of x) into C
8 as Naruki’s. It follows that β must embed a neighborhood of x

into P 9.

All that remains is to show that if x ∈ ∂X andm1, m2 and m3 are any three
mutually orthogonal short mirrors that all meet x, then there exists ψ ∈ W
whose divisor near X is just the sum of the mi. We choose a primitive null
vector v ∈ Λ representing x, and short roots ri ∈ v⊥ whose mirrors represent
the mi. Denoting the images of these vectors in V by x̄ and r̄i, we may choose
coordinates in V so that the inner product is given by

(a, b) = a0b0 − a1b1 − · · · − a4b4 ,

and r̄1 = (0, 0, 1, 0, 0), r̄2 = (0, 0, 0, 1, 0), r̄3 = (0, 0, 0, 0, 1) and v̄ = (1, 1, 0, 0, 0).
The standard cross, given by the pairs (±1, 0, 0, 0, 0), . . . , (0, 0, 0, 0,±1), is the
divisor of one of our Borcherds products, which we take to be ψ. It is obvious
that the divisor of ψ contains the mi. To show that the other components
of the divisor miss x, we observe that these components correspond to the
orthogonal complements of the roots of Λ whose images in V are (±1, 0, 0, 0, 0)
or (0,±1, 0, 0, 0). Any such root has inner product 6≡ 0 (mod 3) with v, so its
mirror cannot contain v. ⊔⊓
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