Fuglede's conjecture for a union of two intervals

I. Laba Department of Mathematics Princeton University Princeton, NJ 08544 U.S.A. *laba@math.princeton.edu*

October 25, 2018

Abstract

We prove that a union of two intervals in \mathbf{R} is a spectral set if and only if it tiles \mathbf{R} by translations. Mathematics Subject Classification: 42A99.

1 The results

A Borel set $\Omega \subset \mathbf{R}^n$ of positive measure is said to *tile* \mathbf{R}^n by translations if there is a discrete set $T \subset \mathbf{R}^n$ such that, up to sets of measure 0, the sets $\Omega + t$, $t \in T$, are disjoint and $\bigcup_{t \in T} (\Omega + t) = \mathbf{R}^n$. We may rescale Ω so that $|\Omega| = 1$. We say that $\Lambda = \{\lambda_k : k \in \mathbf{Z}\} \subset \mathbf{R}^n$ is a spectrum for Ω if:

$$\{e^{2\pi i\lambda_k \cdot x}\}_{k \in \mathbb{Z}}$$
 is an orthonormal basis for $L^2(\Omega)$. (1.1)

A spectral set is a domain $\Omega \in \mathbf{R}^n$ such that (1.1) holds for some Λ .

Fuglede [2] conjectured that a domain $\Omega \subset \mathbf{R}^n$ is a spectral set if and only if it tiles \mathbf{R}^n by translations, and proved this conjecture under the assumption that either Λ or T is a lattice. The conjecture is related to the question of the existence of commuting self-adjoint extensions of the operators $-i\frac{\partial}{\partial x_j}$, $j = 1, \ldots, n$ [2], [7], [16]; other relations between the tiling and spectral properties of subsets of \mathbf{R}^n have been conjectured and in some cases proved, see [6], [8], [9], [11], [12], [14].

Recently there has been significant progress on the special case of the conjecture when Ω is assumed to be convex [10], [3], [4], and in particular the 2-dimensional convex case appears to be nearly resolved [5]. The non-convex case is considerably more complicated and is not understood even in dimension 1. The strongest results yet in that direction seem to be those of Lagarias and Wang [13], [14], who proved that all tilings of **R** by a bounded region must be periodic and that the corresponding translation sets are rational up to affine transformations, which in turn leads to a structure theorem for bounded tiles. It was also observed in [14] that the "tiling implies spectrum" part of Fuglede's conjecture for compact sets in **R** would follow from a conjecture of Tijdeman [18] concerning factorization of finite cyclic groups; however, Tijdeman's conjecture is now known to fail without additional assumptions [1]. See also [15], [1] for partial results on the related problem of characterizing all tilings of \mathbf{Z} by a finite set, and [14], [17] for a classification of domains in \mathbf{R}^n which have $L + \mathbf{Z}^n$ as a spectrum for some finite set L.

The purpose of the present article is to address the following special case of Fuglede's conjecture in one dimension. Let $\Omega = I_1 \cup I_2$, where I_1, I_2 are disjoint intervals of non-zero length. By scaling, translation, and symmetric reflection, we may assume that:

$$\Omega = (0, r) \cup (a, a + 1 - r), \ 0 < r \le \frac{1}{2}, \ a \ge r.$$
(1.2)

Our first theorem characterizes all Ω 's of the form (1.2) which are spectral sets.

Theorem 1.1 Suppose that Λ is a spectrum for Ω , $0 \in \Lambda$. Then at least one of the following holds:

(i)
$$a - r \in \mathbf{Z}$$
 and $\Lambda = \mathbf{Z}$;

(ii) $r = \frac{1}{2}$, $a = \frac{n}{2}$ for some $n \in \mathbb{Z}$, and $\Lambda = 2\mathbb{Z} \bigcup (\frac{p}{n} + 2\mathbb{Z})$ for some odd integer p. Conversely, if Ω , Λ satisfy (1.2) and if either (i) or (ii) holds, then Λ is a spectrum for Ω .

As a corollary, we prove that Fuglede's conjecture is true for a union of two intervals.

Theorem 1.2 Let $\Omega \subset \mathbf{R}$ be a union of two disjoint intervals, $|\Omega| = 1$. Then Ω has a spectrum if and only if it tiles \mathbf{R} by translations.

Theorem 1.2 follows easily from Theorem 1.1. We may assume that Ω is as in (1.2). Suppose that Λ is a spectrum for Ω ; without loss of generality we may assume that $0 \in \Lambda$. Then by Theorem 1.1 one of the conclusions (*i*), (*ii*) must hold, and in each of these cases Ω tiles **R** by translations. Conversely, if Ω tiles **R** by translations, by Proposition 2.1 Ω must satisfy Theorem 1.1(*i*) or (*ii*); the second part of Theorem 1.1 implies then that Ω has a spectrum.

Theorem 1.1 will be proved as follows. Suppose that $\Lambda = \{\lambda_k : k \in \mathbb{Z}\}$ is a spectrum for Ω ; we may assume that $\lambda_0 = 0$. Let $\lambda_{kk'} = \lambda_k - \lambda_{k'}$, $\Lambda - \Lambda = \{\lambda_{kk'} : k, k' \in \mathbb{Z}\}$, and:

$$Z_{\Omega} = \{0\} \cup \{\lambda \in \mathbf{R} : \hat{\chi}_{\Omega}(\lambda) = 0\}.$$
(1.3)

Then the functions $e^{2\pi i \lambda_k x}$ are mutually orthogonal in $L^2(\Omega)$, hence $\Lambda \subset \Lambda - \Lambda \subset Z_{\Omega}$. This will lead to a number of restrictions on the possible values of λ_k . Next, let:

$$\phi_{\lambda}(x) = \chi_{(0,r)} e^{2\pi i \lambda x}, \qquad (1.4)$$

where $\chi_{(0,r)}$ denotes the characteristic function of (0,r). By Parseval's formula, the Fourier coefficients $c_k = \int_0^r e^{2\pi i (\lambda - \lambda_k) x} dx$ of ϕ_{λ} satisfy:

$$\sum_{k \in \mathbf{Z}} c_k^2 = \|\chi_{(0,r)} e^{2\pi i \lambda x}\|_{L^2(\Omega)}^2 = r.$$
(1.5)

Given that the λ_k 's are subject to the orthogonality restrictions mentioned above, we will find that there are not enough λ_k 's for (1.5) to hold unless the conditions of Theorem 1.1 are satisfied.

The author is grateful to Alex Iosevich for helpful conversations about spectral sets and Fuglede's conjecture.

2 Tiling implies spectrum

Proposition 2.1 If Ω as in (1.2) tiles **R** by translations, it must satisfy (i) or (ii) of Theorem 1.1.

Proof. Suppose that **R** may be tiled by translates of Ω . Assume first that $r = \frac{1}{2}$. Any copy of Ω used in the tiling has a "gap" of length $a - r = a - \frac{1}{2}$, which must be covered by non-overlapping intervals of length $\frac{1}{2}$; hence $a \in \frac{1}{2}\mathbf{Z}$ as in Theorem 1.1*(ii)*.

Assume now that $0 < r < \frac{1}{2}$. Let $I_1 = (0, r)$, $I_2 = (a, a+1-r)$. We will prove that translates of I_1 and I_2 must alternate in any tiling \mathcal{T} of \mathbf{R} by translates of Ω ; this implies immediately that $a - r \in \mathbf{Z}$ as in Theorem 1.1(*i*).

- If \mathcal{T} contained two consecutive translates $(\tau, \tau + r)$ and $(\tau + r, \tau + 2r)$ of I_1 , it would also contain the matching translates $(\tau + a, \tau + a + 1 r)$ and $(\tau + a + r, \tau + a + 1)$ of I_2 , which is impossible since the latter two intervals overlap.
- Suppose now that \mathcal{T} contains two consecutive translates $(\tau + a, \tau + a + 1 r)$ and $(\tau + a + 1 r, \tau + a + 2 2r)$ of I_2 ; then \mathcal{T} must also contain the matching translates $I'_1 = (\tau, \tau + r)$ and $I''_1 = (\tau + 1 r, \tau + 2 2r)$ of I_1 . The gap between I'_1 and I''_1 has length 1 2r, which is strictly less than $1 r = |I_2|$, so that I'_1 must be followed by another translate of I_1 . But this has just been shown to be impossible. \Box

Next, we prove the second part of Theorem 1.1. This easy result appears to have been known to several authors, see e.g., the examples in [2], [8], [14]. Since we will rely on it later on in the proof of the "hard" part of the theorem, we include the short proof.

Proposition 2.2 If Λ and Ω are as in Theorem 1.1(i) or (ii), then Λ is a spectrum for Ω .

Proof. If (i) holds, then Ω is a fundamental domain for \mathbf{Z} and consequently $\Lambda = \mathbf{Z}$ is a spectrum [2]. Suppose now that (ii) holds. For any function f on Ω , we define functions f_+, f_- :

$$f_{+}(x) = \frac{1}{2}(f(x) + f(x')), \ f_{-}(x) = \frac{1}{2}(f(x) - f(x')), \ x \in \Omega,$$

where x' = x + a if $x \in (0, \frac{1}{2})$, and x' = x - a if $x \in (a, a + \frac{1}{2})$. Then:

$$f(x) = f_{+}(x) + f_{-}(x), \ f_{+}(x) = f_{+}(x'), \ f_{-}(x) = -f_{-}(x').$$

It therefore suffices to prove that:

$$g(x) = \sum_{k \in \mathbf{Z}} c_k e^{4k\pi ix} \text{ for any } g(x) \text{ such that } g(x) = g(x'),$$
(2.1)

$$h(x) = \sum_{k \in \mathbf{Z}} c'_k e^{(4k + \frac{2p}{n})\pi ix} \text{ for any } h(x) \text{ such that } h(x) = -h(x').$$
(2.2)

Since $e^{4k\pi ix}$, $k \in \mathbb{Z}$, is a spectrum for $(0, \frac{1}{2})$, we have:

$$g(x) = \sum_{k \in \mathbf{Z}} c_k e^{4k\pi i x}, \ h(x) = e^{\frac{2p}{n}\pi i x} \sum_{k \in \mathbf{Z}} c'_k e^{4k\pi i x}, \ x \in (0, \frac{1}{2}).$$

(2.1) follows immediately by periodicity. From the second equation above we find that (2.2) holds for all $x \in (0, \frac{1}{2})$, and that for such x:

$$e^{\frac{2p}{n}\pi i(x+a)} \sum_{k\in\mathbf{Z}} c'_k e^{4k\pi i(x+a)} = -e^{\frac{2p}{n}\pi ix} \sum_{k\in\mathbf{Z}} c'_k e^{4k\pi ix} = -h(x) = h(x+a),$$

where we used that $\frac{2p}{n}a = p$ is odd. Hence (2.2) holds also for $x \in (a, a + \frac{1}{2})$. This ends the proof of Proposition 2.2. \Box

3 Orthogonality

We now begin the proof of the first part of Theorem 1.1. Throughout the rest of the paper, Ω is assumed to satisfy (1.2), $\Lambda = \{\lambda_k : k \in \mathbf{Z}\}$ is a spectrum for Ω , $\lambda_0 = 0$, $\lambda_{kk'} = \lambda_k - \lambda_{k'}$, $\Lambda - \Lambda = \{\lambda_{kk'} : k, k' \in \mathbf{Z}\}$, and Z_{Ω} is defined by (1.3).

Lemma 3.1 $Z_{\Omega} = Z_1 \cup Z_2 \cup Z_3$, where:

$$Z_1 = \{ \lambda \in \mathbf{R} : \lambda a \in \mathbf{Z} + \frac{1}{2}, \lambda (2r - 1) \in \mathbf{Z} \},$$

$$Z_2 = \{ \lambda \in \mathbf{Z} : \lambda r \in \mathbf{Z} \},$$

$$Z_3 = \{ \lambda \in \mathbf{Z} : \lambda (a - r) \in \mathbf{Z} \}.$$

Proof. Suppose that $\lambda \neq 0, \lambda \in Z_{\Omega}$. Then:

$$\int_{\Omega} e^{2\pi i\lambda x} dx = e^{2\pi i\lambda r} - 1 + e^{2\pi i\lambda(a+1-r)} - e^{2\pi i\lambda a} = 0.$$

All solutions to $z_1 + z_2 + z_3 + 1 = 0$, $|z_i| = 1$, must be of the form $\{z_1, z_2, z_3\} = \{-1, z_*, -z_*\}$. Hence $\lambda \in Z_{\Omega}$ if and only if one of the following holds.

- $e^{2\pi i\lambda a} = -1$ and $e^{2\pi i\lambda r} + e^{2\pi i\lambda(a+1-r)} = 0$, hence $\lambda \in \mathbb{Z}_1$;
- $e^{2\pi i\lambda r} = 1$ and $e^{2\pi i\lambda(1-r)} = 1$, hence $\lambda \in \mathbb{Z}_2$;
- $e^{2\pi i\lambda(a+1-r)} = 1$ and $e^{2\pi i\lambda a} = e^{2\pi i\lambda r}$, hence $\lambda \in \mathbb{Z}_3$. \Box

Observe that Z_2 , Z_3 are additive subgroups of **Z**.

Lemma 3.2 At least one of the following holds:

$$\Lambda \subset Z_1 \cup Z_2,\tag{3.1}$$

$$\Lambda \subset Z_1 \cup Z_3. \tag{3.2}$$

Proof. By Lemma 3.1, $\Lambda \subset \Lambda - \Lambda \subset Z_{\Omega} \subset Z_1 \cup Z_2 \cup Z_3$. If $Z_2 \subset Z_3$, (3.2) holds; suppose therefore that there is a $\lambda_i \in Z_2 \setminus Z_3$. It suffices to prove that for any $\lambda_j \in Z_3$ we must have $\lambda_j \in Z_1$ or $\lambda_j \in Z_2$.

Let $\lambda_j \in Z_3$, then $\lambda_{ij} = \lambda_i - \lambda_j \in Z_\Omega$ by orthogonality. By Lemma 3.1, $\lambda_{ij} \in Z_1 \cup Z_2 \cup Z_3$. If $\lambda_{ij} \in Z_2$, then $\lambda_j \in Z_2$ and we are done, and if $\lambda_{ij} \in Z_3$, then $\lambda_i \in Z_3$, which contradicts our assumption. Assume therefore that $\lambda_{ij} \in Z_1$. Then:

$$\lambda_{ij} \in \mathbf{Z}, \ \lambda_{ij}a \in \mathbf{Z} + \frac{1}{2}, \ \lambda_{ij}(2r-1) \in \mathbf{Z},$$

hence:

$$2\lambda_j r = 2\lambda_i r - \lambda_{ij}(2r-1) - \lambda_{ij} \in \mathbf{Z}.$$

If $\lambda_j r \in \mathbf{Z}$, then $\lambda_j \in Z_2$; if $\lambda_j r \in \mathbf{Z} + \frac{1}{2}$, then $\lambda_j a \in \mathbf{Z} + \frac{1}{2}$ by the definition of Z_3 and $\lambda_j(2r-1) \in \mathbf{Z}$, so that $\lambda_j \in Z_1$. \Box

Lemma 3.3 (i) $\Lambda \subset Z_2$ is not possible; (ii) $\Lambda \subset Z_3$ is possible only if $a - r \in \mathbb{Z}$ and $\Lambda = Z_3 = \mathbb{Z}$.

Proof. Suppose that $\Lambda \subset Z_i$ for i = 2 or 3. Since Z_i is an additive subgroup of \mathbf{Z} , we must have $Z_i = p\mathbf{Z}$ for some integer p > 0. Furthermore, if there was a $\lambda \in p\mathbf{Z} \setminus \Lambda$, we would have $\lambda_k - \lambda \in p\mathbf{Z}$ and hence $e^{2\pi i\lambda x}$ would be orthogonal to $e^{2\pi i\lambda_k x}$ for all $\lambda_k \in \Lambda$, which would contradict (1.1). Hence $\Lambda = Z_i = p\mathbf{Z}$. We also observe that if p was ≥ 2 , any function of the form $f(x) = \sum_{k \in \mathbf{Z}} c_k e^{2\pi i\lambda_k x}$ would be periodic with period $\frac{1}{p} \leq \frac{1}{2}$, which again would contradict (1.1). Thus $\Lambda = Z_i = \mathbf{Z}$.

If i = 2, this is not possible, since nr cannot be integer for all $n \in \mathbb{Z}$ if $r \leq \frac{1}{2}$. If i = 3, we obtain that $n(a-r) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$; letting n = 1, we find that $a - r \in \mathbb{Z}$. \Box

If Ω , Λ are as in Lemma 3.3(*ii*), then Theorem 1.1(*i*) is satisfied and we are done. Thus we may assume throughout the sequel that:

$$\Lambda \not\subset Z_2, \ \Lambda \not\subset Z_3. \tag{3.3}$$

Lemma 3.4 If (3.3) holds, then $\Lambda \subset Z_1 \cup (Z_2 \cap Z_3)$.

Proof. By Lemma 3.2), it suffices to prove that:

if
$$\Lambda \cap (Z_1 \setminus Z_2) \neq \emptyset$$
, then $\Lambda \cap Z_2 \subset \Lambda \cap Z_3$; (3.4)

if
$$\Lambda \cap (Z_1 \setminus Z_3) \neq \emptyset$$
, then $\Lambda \cap Z_3 \subset \Lambda \cap Z_2$; (3.5)

We will prove (3.4); the proof of (3.5) is almost identical. Suppose that $\lambda_i \in Z_1 \setminus Z_2$, and let $\lambda_j \in Z_2$. By Lemma 3.1, λ_{ij} belongs to at least one of Z_1, Z_2, Z_3 ; moreover, $\lambda_{ij} \in Z_2$ would imply $\lambda_i \in Z_2$ and contradict the above supposition. Thus we only need consider the following two cases.

• Let $\lambda_{ij} \in Z_1$. Then $\lambda_i a, \lambda_{ij} a \in \mathbf{Z} + \frac{1}{2}$, hence $\lambda_j a \in \mathbf{Z}$ and $\lambda_j \in Z_2 \cap Z_3$.

• Assume now that $\lambda_{ij} \in Z_3$. Then $\lambda_i \in \mathbf{Z}$, hence $2\lambda_i r \in \mathbf{Z}$. We cannot have $\lambda_i r \in \mathbf{Z}$, since then λ_i would be in Z_2 ; therefore $\lambda_i r \in \mathbf{Z} + \frac{1}{2}$. Hence $\lambda_i(a-r) \in \mathbf{Z}$; since also $\lambda_{ij}(a-r) \in \mathbf{Z}$, we obtain that $\lambda_j(a-r) \in \mathbf{Z}$ and $\lambda_j \in Z_2 \cap Z_3$. \Box .

Lemma 3.5 Assume (3.3). Then:

- (i) $\Lambda \Lambda \subset Z_1 \cup (Z_2 \cap Z_3);$
- (ii) $\Lambda \cap Z_1 \subset \lambda_* + r^{-1}\mathbf{Z}$ for some $\lambda_* \in \mathbf{R}$.

Proof. For $k \in \mathbb{Z}$, let $\Lambda_k = \Lambda - \lambda_k = \{\lambda_{jk} : j \in \mathbb{Z}\}$. Then Λ_k is also a spectrum for Ω and $0 \in \Lambda_k$, hence all of the results obtained so far apply with Λ replaced by Λ_k . Thus (i) follows from Lemmas 3.3 and 3.4.

To prove *(ii)*, it suffices to verify that $\lambda_{ij}r \in \mathbf{Z}$ whenever $\lambda_i, \lambda_j \in Z_1$. Indeed, if $\lambda_i, \lambda_j \in Z_1$, then $\lambda_{ij}a \in \mathbf{Z}$, hence $\lambda_{ij} \notin Z_1$ and therefore, by *(i)*, $\lambda_{ij} \in Z_2 \cap Z_3$. But this implies that $\lambda_{ij}r \in \mathbf{Z}$. \Box

4 Completeness

Fix $j, n \in \mathbb{Z}$, and consider the function ϕ_{λ} defined by (1.4) with $\lambda = \lambda_j - nr^{-1}$. The Fourier coefficients of ϕ_{λ} are:

$$c_{k} = \int_{0}^{r} e^{2\pi i (\lambda - \lambda_{k})x} dx = \int_{0}^{r} e^{2\pi i (\lambda_{jk} - nr^{-1})x} dx,$$

hence $c_k = r$ if $\lambda_{jk} = nr^{-1}$, and:

$$c_k = \frac{1}{2\pi i (\lambda_{jk} - nr^{-1})} \Big(e^{2\pi i (\lambda_{jk}r - n)} - 1 \Big), \ \lambda_{jk} \neq nr^{-1}.$$
(4.1)

Define $\alpha_{jk} = \lambda_{jk}r$. Plugging (4.1) into (1.5), we obtain that for all $j \in \mathbb{Z}$:

$$\frac{1}{r} = 1 + \sum_{k:\alpha_{jk} \notin \mathbf{Z}} \frac{1}{4\pi^2 \alpha_{jk}^2} \left| e^{2\pi i \alpha_{jk}} - 1 \right|^2, \tag{4.2}$$

and for all $n, j \in \mathbf{Z}$:

$$\frac{1}{r} = \delta_{n,j} + \sum_{k:\alpha_{jk} \notin \mathbf{Z}} \frac{1}{4\pi^2 (\alpha_{jk} - n)^2} \Big| e^{2\pi i (\alpha_{jk} - n)} - 1 \Big|^2,$$
(4.3)

where $\delta_{n,j} = 1$ if there is a $k \in \mathbb{Z}$ such that $\alpha_{jk} = n$, and $\delta_{n,j} = 0$ otherwise.

We define the equivalence relation between the indices k, k':

$$k \sim k' \Leftrightarrow \alpha_{kk'} \in \mathbf{Z},$$

and denote by $A_1, A_2, \ldots, A_m, \ldots \subset \mathbf{Z}$ the (non-empty and disjoint) equivalence classes with respect to this relation. Hence k, k' belong to the same A_m if and only if $\alpha_{kk'} \in \mathbf{Z}$; in particular, $A_m \subset \beta_m + \mathbf{Z}$ for some $\beta_m \in [0, 1)$. **Lemma 4.1** Let M denote the number of distinct and non-empty A_m 's. Then:

$$M \ge r^{-1}.\tag{4.4}$$

Moreover, if one of the A_m 's skips a number (i.e., $A_m \neq \beta_m + \mathbf{Z}$), then $M \ge r^{-1} + 1$.

Proof. For each m, m', let $\beta_{mm'} = \beta_m - \beta_{m'}$; note that $\beta_{mm'} \neq 0$ if $m \neq m'$. Fix m' and $j \in A_{m'}$, then (4.2) may be rewritten as:

$$\frac{1}{r} = 1 + \sum_{m \neq m'} S_{mm'}, \tag{4.5}$$

where:

$$S_{mm'} = \sum_{k \in A_m} \frac{1}{4\pi^2 \alpha_{jk}^2} \left| e^{2\pi i \beta_{mm'}} - 1 \right|^2.$$

Clearly:

$$S_{mm'} \le S(\beta_{mm'}),\tag{4.6}$$

where:

$$\tilde{S}(\beta) = \sum_{k \in \mathbf{Z}} \frac{1}{4\pi^2 (\beta + k)^2} \left| e^{2\pi i \beta} - 1 \right|^2.$$
(4.7)

Hence (4.4) follows from (4.5) and Lemma 4.2 below.

Suppose now that $A_{m'}$ skips a number. Then we may find $j \in A_{m'}$ and $n \in \mathbb{Z}$ such that $\delta_{n,j} = 0$, and (4.4) may be improved to $M \ge 1 + r^{-1}$ by using (4.3) instead of (4.2). \Box

Lemma 4.2 Let $\tilde{S}(\beta)$ be as in (4.7), then $\tilde{S}(\beta) = 1$ for all $0 < \beta < 1$.

Proof. By Proposition 2.2, $\Lambda = 2\mathbf{Z} \cup (\frac{p}{n} + 2\mathbf{Z})$, where $n \in \mathbf{Z}$ and p is an odd integer, is a spectrum for $\Omega = (0, \frac{1}{2}) \cup (\frac{n}{2}, \frac{n+1}{2})$. Plugging this back into (4.2) we obtain that:

$$1 = \sum_{k \in \mathbf{Z}} \frac{1}{4\pi^2 (\beta + k)^2} \left| e^{2\pi i \beta} - 1 \right|^2$$

for $\beta = \frac{p}{2n}$. However, the set of β of this form is dense in **R**, hence by continuity the lemma holds for all $\beta \in (0, 1)$. \Box

5 Conclusion

Proof of Theorem 1.1. If Λ is as in Lemma 3.3(*ii*), then Theorem 1.1(*i*) is satisfied; we may therefore assume that (3.3) holds. From Lemma 3.5 we have:

$$\Lambda - \Lambda \subset Z_1 \cup (Z_2 \cap Z_3), \ Z_2 \cap Z_3 \subset r^{-1}\mathbf{Z}, \ Z_1 \subset (\lambda_* + r^{-1}\mathbf{Z}),$$

$$(5.1)$$

for some $\lambda_* \in \mathbf{R}$, hence $M \leq 2$. However, by Lemma 4.1 $M \geq r^{-1} \geq 2$, and this may be improved to $M \geq 3$ if one of the A_m 's skips a number. Therefore we must have $r = \frac{1}{2}$ and:

$$\Lambda - \Lambda = 2\mathbf{Z} \cup (\lambda_* + 2\mathbf{Z}), \ Z_2 \cap Z_3 = 2\mathbf{Z}, \ Z_1 = \lambda_* + 2\mathbf{Z}.$$
(5.2)

Pick $\lambda_{ij}, \lambda_{kl} \in \mathbb{Z}_1$ such that $\lambda_{ij} - \lambda_{kl} = 2$. From the definition of \mathbb{Z}_1 we have $\lambda_{ij}a, \lambda_{kl}a \in \mathbb{Z} + \frac{1}{2}$, hence:

$$2a = \frac{a}{r} = \lambda_{ij}a - \lambda_{kl}a \in \mathbf{Z},$$

so that $a = \frac{n}{2}$ for some $n \in \mathbb{Z}$. Finally, we have $\lambda_* a = \frac{1}{2}n\lambda_* \in \mathbb{Z} + \frac{1}{2}$, hence $\lambda_* n = p$ for some odd integer p. Thus Ω and Λ satisfy *(ii)* of Theorem 1.1.

References

- E. M. Coven, A. Meyerowitz: Tiling the integers with translates of one finite set, J. Algebra 212 (1999), 161–174.
- B. Fuglede: Commuting self-adjoint partial differential operators and a group theoretic problem, J. Funct. Anal. 16 (1974), 101–121.
- [3] A. Iosevich, N. H. Katz, S. Pedersen: Fourier bases and a distance problem of Erdös, Math. Res. Lett. 6 (1999), 251–255.
- [4] A. Iosevich, N. H. Katz, T. Tao: Convex bodies with a point of curvature do not have Fourier bases, Amer. J. Math, to appear.
- [5] A. Iosevich, N. H. Katz, T. Tao: preprint in preparation.
- [6] A. Iosevich, S. Pedersen: Spectral and tiling properties of the unit cube, Internat. Math. Res. Notices 16 (1998), 819–828.
- [7] P. Jørgensen: Spectral theory of finite volume domains in \mathbb{R}^n , Adv. Math. 44 (1982), 105–120.
- [8] P. Jørgensen, S. Pedersen: Spectral theory for Borel sets in \mathbb{R}^n of finite measure, J. Funct. Anal. 107 (1992), 72–104.
- [9] P. Jørgensen, S. Pedersen: Spectral pairs in Cartesian coordinates, J. Fourier Anal. Appl. 5 (1999), 285–302.
- [10] M. Kolountzakis: Non-symmetric convex domains have no basis of exponentials, preprint, 1999.
- [11] M. Kolountzakis: Packing, tiling, orthogonality, and completeness, preprint, 1999.
- [12] J. C. Lagarias, J. A. Reed, Y. Wang: Orthonormal bases of exponentials for the n-cube, preprint, 1998.
- [13] J. C. Lagarias, Y. Wang: Tiling the line with translates of one tile, Invent. Math. 124 (1996), 341–365.
- [14] J. C. Lagarias, Y. Wang: Spectral sets and factorizations of finite abelian groups, J. Funct. Anal. 145 (1997), 73–98.

- [15] D. J. Newman: Tesselation of integers, J. Number Theory 9 (1977), 107–111.
- [16] S. Pedersen: Spectral theory of commuting self-adjoint partial differential operators, J. Funct. Anal. 73 (1987), 122–134.
- [17] S. Pedersen: Spectral sets whose spectrum is a lattice with a base, J. Funct. Anal. 141 (1996), 496–509.
- [18] R. Tijdeman: Decomposition of the integers as a direct sum of two subsets, London Math. Soc. Lecture Note Ser., vol.215, Cambridge Univ. Press, 1995, pp. 261–276.