On α -Critical Edges in König-Egerváry Graphs

Vadim E. Levit and Eugen Mandrescu Department of Computer Science Holon Academic Institute of Technology 52 Golomb Str., P.O. Box 305 Holon 58102, ISRAEL

Abstract

The stability number of a graph G, denoted by $\alpha(G)$, is the cardinality of a stable set of maximum size in G. If $\alpha(G - e) > \alpha(G)$, then e is an α -critical edge, and if $\mu(G - e) < \mu(G)$, then e is a μ -critical edge, where $\mu(G)$ is the cardinality of a maximum matching in G. G is a König-Egerváry graph if its order equals $\alpha(G) + \mu(G)$. Beineke, Harary and Plummer have shown that the set of α -critical edges of a bipartite graph is a matching. In this paper we generalize this statement to König-Egerváry graphs. We also prove that in a König-Egerváry graph α -critical edges are also μ -critical, and that they coincide in bipartite graphs. Eventually, we deduce that $\alpha(T) = \xi(T) + \eta(T)$ holds for any tree T, and characterize the König-Egerváry graphs enjoying this property, where $\xi(G)$ is the number of α -critical vertices of G, and $\eta(G)$ is the number of α -critical edges of G.

1 Introduction

Throughout this paper G = (V, E) is a simple (i.e., a finite, undirected, loopless and without multiple edges) graph with vertex set V = V(G), edge set E = E(G), and order n(G) = |V(G)|. If $X \subset V$, then G[X] is the subgraph of G spanned by X. By G - W we mean the subgraph G[V - W], if $W \subset V(G)$. For $F \subset E(G)$, by G - F we denote the partial subgraph of G obtained by deleting the edges of F, and we use G - e, if $W = \{e\}$. If $A, B \subset V$ and $A \cap B = \emptyset$, then (A, B) stands for the set $\{e = ab : a \in A, b \in B, e \in E\}$. The neighborhood of a vertex $v \in V$ is the set $N(v) = \{w : w \in V \text{ and } vw \in E\}$, and $N(A) = \cup \{N(v) : v \in A\}$, $N[A] = A \cup N(A)$ for $A \subset V$.

A set S of vertices is stable if no two vertices from S are adjacent. A stable set of maximum size will be referred to as a maximum stable set of G. The stability number of G, denoted by $\alpha(G)$, is the cardinality of a maximum stable set of G. Let $\Omega(G)$ denotes the set $\{S : S \text{ is a maximum stable set of } G\}$, $\sigma(G) = |\cap\{V - S : S \in \Omega(G)\}|$ and $\xi(G) = |core(G)|$, where $core(G) = \cap\{S : S \in \Omega(G)\}$, [12]. In other words, $\xi(G)$ equals the number of α -critical vertices of G, (a vertex $v \in V(G)$ is α -critical provided $\alpha(G - v) < \alpha(G)$).

By P_n, C_n, K_n we mean the chordless path on $n \ge 3$, the chordless cycle on $n \ge 4$ vertices, and respectively the complete graph on $n \ge 1$ vertices.

A matching (i.e., a set of non-incident edges of G) of maximum cardinality $\mu(G)$ is a maximum matching, and a perfect matching is one covering all vertices of G. An edge $e \in E(G)$ is μ -critical provided $\mu(G - e) < \mu(G)$. By their definition, μ -critical edges of G belong to all maximum matchings of G.

If $\alpha(G) + \mu(G) = n(G)$, then G is called a König-Egerváry graph, [4], [17]. Properties of these graphs were presented in several papers, like of Sterboul [17], Deming [4], Lovász and Plummer [14], Korach [8], Bourjolly and Pulleyblank [2], Paschos and Demange [16], Levit and Mandrescu [11], [13]. It is worth observing that a disconnected graph is of König-Egerváry type if and only if all its connected components are König-Egerváry graphs. In this paper, by "graph" we mean a connected graph having at least one edge.

An edge $e \in E(G)$ is α -critical whenever $\alpha(G - e) > \alpha(G)$. Let denote by $\eta(G)$ the number of α -critical edges of G. Notice that there are graphs in which: (a) any edge is α -critical (so-called α -critical graphs); e.g., all C_{2n+1} for $n \geq 3$; (b) no edge is α -critical; e.g., all C_{2n} for $n \geq 2$. More generally, Haynes et al., [7], have proved that a graph G has no α -critical edge if and only if $|N(x) \cap S| \geq 2$ holds for any $S \in \Omega(G)$ and every $x \in V(G) - S$.

Beineke, Harary and Plummer, [1], have shown that any two incident α -critical edges of a graph lie on an odd cycle, and hence, they deduce that no two α -critical edges of a bipartite graph can have a common endpoint. Independently, Zito, [21], has proved the same result for trees using a different technique. Some variations and strengthenings of these results are discussed in [18], [20], and [19].

In this paper we generalize the above assertion to König-Egerváry graphs. We also show that α -critical edges are μ -critical in a König-Egerváry graph, and that they coincide in bipartite graphs. As a corollary, we obtain one result of Zito, [21], stating that a vertex v is in some but not in all maximum stable sets of a tree T if and only if v is an endpoint of an α -critical edge of T. In the sequel, we analyze other relationships between α -critical edges and μ -critical edges in a König-Egerváry graph, and its corresponding implications to equalities and inequalities linking $\alpha(G)$, $\xi(G)$, $\eta(G)$, $\sigma(G)$, and $\mu(G)$. Eventually, we infer that $\alpha(T) = \xi(T) + \eta(T), \sigma(T) + \eta(T) =$ $\mu(T)$ and $\xi(T) + 2\eta(T) + \sigma(T) = n(T)$ holds for any tree T, and characterize the König-Egerváry graphs having these properties.

2 α -Critical and μ -Critical Edges

According to a well-known result of König, [9], and Egerváry, [5], any bipartite graph is a König-Egerváry graph. It is easy to see that this class includes also some non-bipartite graphs (see, for instance, the graph $K_3 + e$ in Figure 1).

If $G_i = (V_i, E_i), i = 1, 2$, are two disjoint graphs, then $G = G_1 * G_2$ is defined as the graph with $V(G) = V(G_1) \cup V(G_2)$, and

$$E(G) = E(G_1) \cup E(G_2) \cup \{xy : for some \ x \in V(G_1) \ and \ y \in V(G_2)\}.$$

Clearly, if H_1, H_2 are subgraphs of a graph G such that $V(G) = V(H_1) \cup V(H_2)$

Figure 1: Graph $K_3 + e$.

and $V(H_1) \cap V(H_2) = \emptyset$, then $G = H_1 * H_2$, i.e., any graph of order at least two admits such decompositions. However, some particular cases are of special interest. For instance, if: $E(H_i) = \emptyset$, i = 1, 2, then $G = H_1 * H_2$ is bipartite; $E(H_1) = \emptyset$ and H_2 is complete, then $G = H_1 * H_2$ is a *split graph* [6].

The following result shows that the König-Egerváry graphs are, in this sense, between these two "extreme" situations. The equivalence of the first and the third parts of this proposition was proposed by Klee and included in [10] without proof (private communication).

Proposition 2.1 [13] The following assertions are equivalent:

(i) G is a König-Egerváry graph;

(*ii*) $G = H_1 * H_2$, where $V(H_1) = S \in \Omega(G)$ and $n(H_1) \ge \mu(G) = n(H_2)$;

(iii) $G = H_1 * H_2$, where $V(H_1) = S$ is a stable set in G, $|S| \ge n(H_2)$ and $(S, V(H_2))$ contains a matching M with $|M| = n(H_2)$.

In the sequel, we shall often represent a König-Egerváry graph G as G = S * H, where $S \in \Omega(G)$ and H = G[V - S] has $n(H) = \mu(G)$.

Lemma 2.2 [13] If G = (V, E) is a König-Egerváry graph, then any maximum matching of G is contained in (S, V - S), where $S \in \Omega(G)$.

Clearly, Lemma 2.2 is not valid for any graph. For instance, K_4 is a counterexample. Moreover, K_4 has α -critical edges that are incident. Nevertheless, there are graphs having only non-incident α -critical edges.

Theorem 2.3 If G is a König-Egerváry graph, then the following assertions hold:

- (i) for any α -critical edge e of G, the graph G e is still a König-Egerváry graph;
- (ii) any α -critical edge of G is also μ -critical;
- (iii) the α -critical edges of G form a matching.

Proof. (i) If e = xy is an α -critical edge G, then there is some $S \in \Omega(G)$ such that either $N(x) \cap S = \{y\}$ or $N(y) \cap S = \{x\}$. Suppose that $y \in S$. Since $S \in \Omega(G)$, we get, by Proposition 2.1, that G = S * H, where H = G[V - S] has $\mu(G) = n(H) = |M|$ and M is a maximum matching of G, included, by Lemma 2.2, in (S, V(G) - S). Hence, it follows that G - e = S' * V(H'), where $S' = S \cup \{x\} \in \Omega(G - e)$ and $n(H') = |M - \{e\}|$. According to Proposition 2.1(*iii*), we infer that G - e is also a König-Egerváry graph.

(*ii*) If $e \in E(G)$ is an α -critical edge of G, then according to (i) we obtain:

$$n(G) = \alpha(G) + \mu(G) \le \alpha(G - e) + \mu(G - e) = \alpha(G) + 1 + \mu(G - e) = n(G - e)$$

and this implies $\mu(G) = 1 + \mu(G - e)$, i.e., e is also μ -critical.

(*iii*) Let e_1, e_2 be two α -critical edges of G. We have to show that they are not incident. According to second part (*ii*), both edges are also μ -critical. Hence, it follows that $e_1, e_2 \in \cap \{M : M \text{ is a maximum matching of } G\}$ and this ensures that e_1, e_2 have no common endpoint. Consequently, the set of all α -critical edges of G yields a matching.

Notice that:

(a) Theorem 2.3(i) is not true for any μ -critical edge of a König-Egerváry graph; e.g., the edge e of $G = K_3 + e$ is μ -critical, but G - e is not a König-Egerváry graph; (b) Theorem 2.2(ii) is not true for any graph, and a solution of K and a gritical

(b) Theorem 2.3(*ii*) is not true for any graph; e.g., all the edges of K_3 are α -critical, but none is also μ -critical;

(c) the converse of Theorem 2.3(*ii*) is not valid for any König-Egerváry graph; e.g., the edge e of graph $K_3 + e$ is μ -critical, but is not also α -critical. However, as we shall see later, (namely Proposition 2.6), the μ -critical edges are also α -critical in the case of bipartite graphs.

Corollary 2.4 A König-Egerváry graph is α -critical if and only if it is isomorphic to K_2 .

Since any bipartite graph is also a König-Egerváry graph, we obtain the following statement, due to Beineke, Harary and Plummer.

Theorem 2.5 [1] No two α -critical edges of a bipartite graph are incident.

Proposition 2.6 If G is a bipartite graph, then its α -critical edges coincide with its μ -critical edges.

Proof. By Theorem 2.3(*ii*), it suffices to show that any μ -critical edge e of G is also α -critical. Since G - e is still bipartite, and hence, also a König-Egerváry graph, it follows that $\alpha(G - e) + \mu(G - e) = n(G) = \alpha(G) + \mu(G) = \alpha(G) + 1 + \mu(G - e)$, and this implies $\alpha(G - e) > \alpha(G)$, i.e., e is an α -critical edge of G.

In Theorem 4.2 we will meet another type of König-Egerváry graphs with this property. Notice that there are also non-bipartite König-Egerváry graphs in which their μ -critical edges are α -critical (see the graph in Figure 2).

Figure 2: A Koenig-Egervary graph whose all μ -critical edges are α -critical.

It is well-known that if a tree has a perfect matching, then it is unique. Consequently, we obtain:

Corollary 2.7 A tree has a perfect matching if and only if the set of its α -critical edges forms a maximal matching of the tree.

Using the definition of König-Egerváry graphs and the fact that $\mu(G) \leq n(G)/2$ is true for any graph G, we get:

Lemma 2.8 If G admits a perfect matching, then G is a König-Egerváry graph if and only if $\alpha(G) = \mu(G)$. If G is a König-Egerváry graph, then $\mu(G) \leq \alpha(G)$.

Combining Corollary 2.7 and Lemma 2.8, we get the following result from [21].

Corollary 2.9 [21] If a tree T has a perfect matching M, then all the edges of M are α -critical and $2\alpha(T) = n(T)$.

Proposition 2.10 If G = (V, E) is a König-Egerváry graph, then the following assertions are true:

(i) any $S \in \Omega(G)$ meets each μ -critical edge in exactly one vertex;

(ii) any $S \in \Omega(G)$ meets each α -critical edge in exactly one vertex;

(iii) if G has a maximal matching consisting of only α -critical edges, then it is the unique perfect matching of G.

Proof. (i) and (ii) By Theorem 2.3(ii), any α -critical edge of G is also μ -critical. Consequently, we infer that

 $\{e \in E : e \text{ is } \alpha - critical\} \subseteq \cap \{M : M \text{ is a maximum matching of } G\} \subseteq (S, V - S)$

holds for any $S \in \Omega(G)$, according to Lemma 2.2. It follows that if e = xy is an α -critical or a μ -critical edge of G, then any $S \in \Omega(G)$ contains one of x and y, (since clearly, no stable set may contain both x and y).

(*iii*) Let M be a maximal matching of G consisting of only α -critical edges. By Theorem 2.3, all the edges of M are also μ -critical. Therefore, we infer that M is included in any maximum matching of G, and because M is a maximal matching, it results that M is the unique maximum matching of G. Suppose, on the contrary, that M is not perfect, and let $S \in \Omega(G)$. According to Proposition 2.1, G can be written as G = S * H, with $n(H) = |M| = \mu(G)$, and by Lemma 2.2 we have that $M \subseteq (S, V - S)$. Since G is a König-Egerváry graph without perfect matchings, Lemma 2.8 implies $|S| = \alpha(G) > \mu(G) = |M|$. Hence, it follows that there are at least two vertices $v_1, v_2 \in S$ having a common neighbor $w \in V(H)$ and such that one of them, say v_1 , is unmatched by M and $v_2w \in M$. Thus, $M \cup \{v_1w\} - \{v_2w\}$ is another maximum matching of G, in contradiction with the uniqueness of M. Consequently, M must be also perfect.

For trees, Proposition 2.10(ii) was proved by Zito in [21].

Notice that the matching in Proposition 2.10(iii) is not necessarily formed by pendant edges; e.g., P_6 has such a matching. Concerning the uniqueness of this matching, it is worth mentioning that: (a) if G is not a König-Egerváry graph, then it may have several different maximum matchings consisting of only α -critical edges (e.g., C_5); (b) if a König-Egerváry graph has a unique perfect matching, then it may contain non- α -critical edges (e.g., the edge e of $K_3 + e$ is not α -critical, but it belongs to the unique perfect matching of $K_3 + e$).

3 Equalities and Inequalities between Parameters

If $v \in N(core(G))$, then clearly follows that $v \in V(G) - S$, for any $S \in \Omega(G)$, that is $N(core(G)) \subseteq \cap \{V - S : S \in \Omega(G)\}$ holds for any graph G.

Lemma 3.1 [13] If G = (V, E) is a König-Egerváry graph, then $N(core(G)) = \cap \{V - S : S \in \Omega(G)\}.$

Notice that there are graphs that do not enjoy the above equality, for example, the graph G in Figure 3(a) has $N(core(G)) = \emptyset$ and $\cap \{V - S : S \in \Omega(G)\} = \{v\}$. There exist non-König-Egerváry graphs for which $N(core(G)) = \cap \{V - S : S \in \Omega(G)\}$, (see, for instance, the graph G from Figure 3(b)).

Figure 3: (a) G is non-König-Egerváry with $N(core(G)) \neq \cap \{V - S : S \in \Omega(G)\}$; (b) G is a non-König-Egerváry graph with $N(core(G)) = \cap \{V - S : S \in \Omega(G)\}$.

Proposition 3.2 If G = (V, E) is a König-Egerváry graph, $G_0 = G - N[core(G)]$ and $S \in \Omega(G)$, then the following assertions are true:

(i) $|core(G)| \ge |N(core(G))|;$

(ii) |S - core(G)| = |V - S - N(core(G))|;

(iii) G_0 has a perfect matching and it is also a König-Egerváry graph.

Proof. According to Proposition 2.1, G can be written as G = S * H, where H = G[V-S] has $n(H) = \mu(G)$. Let denote A = S-core(G) and B = V(H) - N(core(G)). In [12] it has been proved that $|A| \leq |B|$ holds for any graph G. Since $\cap \{V - S : S \in \Omega(G)\} \subseteq V(H)$, and $N(core(G)) = \cap \{V - S : S \in \Omega(G)\}$ (see Lemma 3.1), we obtain $B = V(H) - \cap \{V - S : S \in \Omega(G)\}$.

(i) Since $|A| + |core(G)| = \alpha(G) \ge \mu(G) = n(H) = |B| + |N(core(G))|$ and, on the other hand $|A| \le |B|$, it follows that $|core(G)| \ge |N(core(G))|$.

(*ii*) Let M be a maximum matching in G. Since G is a König-Egerváry graph, Lemma 2.2 ensures that M is included in (S, V(H)), and $|M| = \mu(G) = n(H)$. The matching M matches B into A, because there are no edges connecting B and core(G). Hence, $|B| \leq |A|$. Together with $|A| \leq |B| |A| \leq |B|$, it implies |A| = |B|, i.e., |S - core(G)| = |V - S - N(core(G))|, and that $M \cap (A, B)$ is a perfect matching of $G[A \cup B]$.

(*iii*) Since, in fact, $G_0 = G[A \cup B]$, it follows necessarily that G_0 has a perfect matching. In addition, because A is stable, we get $\alpha(G_0) \leq \mu(G_0) = |A| \leq \alpha(G_0)$, i.e., $\alpha(G_0) = \mu(G_0)$, and according to Lemma 2.8, G_0 must be also a König-Egerváry graph.

Corollary 3.3 If G is a König-Egerváry graph, then $\alpha(G) + \sigma(G) = \mu(G) + \xi(G)$.

Proof. By Lemma 3.1, $N(core(G)) = \cap \{V - S : S \in \Omega(G)\}$ and according to Proposition 3.2(*ii*), |S - core(G)| = |V - S - N(core(G))|. Hence, we obtain that $\alpha(G) - \xi(G) = |S - core(G)| = |V - S - N(core(G))| = \mu(G) - \sigma(G)$.

Let us observe that there exist non-König-Egerváry graphs satisfying the equality $\alpha(G) + \sigma(G) = \mu(G) + \xi(G)$ (see graph W_1 in Figure 6). It is also interesting to notice that there exists a non-König-Egerváry graph enjoying the property that its subgraph $G_0 = G - N[core(G)]$ has a perfect matching (see Figure 8). Figure 4 shows a non-König-Egerváry graph G whose G_0 has no perfect matching.

Figure 4: G is a non-König-Egervary graph with $core(G) = \{a, b\}$ and $G_0 = C_5$.

Lemma 3.4 Let G = (V, E) and $G_0 = G - N[core(G)]$. Then the following assertions are valid:

(i) no α -critical edge in G has an endpoint in N[core(G)];

(*ii*) $\alpha(G) = \alpha(G_0) + \xi(G), \Omega(G_0) = \{S \cap V(G_0) : S \in \Omega(G)\}, core(G_0) = \emptyset;$

(iii) e = xy is an α -critical edge of G if and only if e is an α -critical edge of G_0 .

Proof. (i) Let e = xy be an α -critical edge in G, and let $\overline{S} \in \Omega(G - e)$. Since $|\overline{S}| = \alpha(G - e) > \alpha(G)$, it follows that $x, y \in \overline{S}$ and $\overline{S} - \{x\}, \overline{S} - \{y\} \in \Omega(G)$. Now, the inclusion $N(core(G)) \subseteq \cap \{V - S : S \in \Omega(G)\}$ completes the proof that no α -critical edge in G has an endpoint in N(core(G)), and respectively, in core(G).

(*ii*) By definition of G_0 , if $S \in \Omega(G)$, then $S - core(G) = S \cap V(G_0)$, and therefore

$$\alpha(G) - \xi(G) = |S - core(G)| \le \alpha(G_0).$$

For any $S_{G_0} \in \Omega(G_0)$ we have that $S_{G_0} \cup core(G)$ is stable, and hence

$$|S_{G_0} \cup core(G)| = \alpha(G_0) + \xi(G) \le \alpha(G).$$

Consequently, we get $\alpha(G) = \alpha(G_0) + \xi(G)$. Now it is easy to check that $\Omega(G_0) = \{S \cap V(G_0) : S \in \Omega(G)\}$ and $core(G_0) = \emptyset$.

(*iii*) Let e = xy be an α -critical edge of G. By (*i*), we infer that $e \in E(G_0)$, and as we saw above, there is some stable set S_{xy} such that $S_{xy} \cup \{x\}, S_{xy} \cup \{y\} \in \Omega(G)$ and $S_{xy} \cup \{x, y\} \in \Omega(G - e)$. Hence, (*ii*) implies that

$$V(G_0) \cap (S_{xy} \cup \{x\}), V(G_0) \cap (S_{xy} \cup \{y\}) \in \Omega(G_0) \text{ and } V(G_0) \cap (S_{xy} \cup \{x,y\}) \in \Omega(G_0-e),$$

because $V(G_0) \cap (S_{xy} \cup \{x, y\})$ is stable in $G_0 - e$ and larger than $V(G_0) \cap (S_{xy} \cup \{x\})$. Therefore, e is α -critical in G_0 , as well. Similarly, we can show that any α -critical edge of G_0 is α -critical in G too. Proposition 3.5 If G is a König-Egerváry graph, then

(i) $\xi(G) + \eta(G) \le \alpha(G);$ (ii) $\sigma(G) + \eta(G) \le \mu(G);$ (iii) $\xi(G) + 2\eta(G) + \sigma(G) \le n(G).$

Proof. For any $S \in \Omega(G)$, we have that $core(G) \subseteq S$, and by Lemma 3.4(*i*), no α -critical edge has an endpoint in core(G). In addition, according to Proposition 2.10(*ii*), S meets each α -critical edge in exactly one vertex. Hence, it follows that $\xi(G) + \eta(G) \leq \alpha(G)$, and using Corollary 3.3 we obtain (*ii*). Clearly, (*iii*) follows from (*i*) and (*ii*).

Notice that $\xi(K_3 + e) + \eta(K_3 + e) = \alpha(K_3 + e)$ and also $\eta(K_3 + e) + \sigma(K_3 + e) = \mu(K_3 + e)$, but there are König-Egerváry graphs satisfying $\xi(G) + \eta(G) < \alpha(G)$ and $\eta(G) + \sigma(G) < \mu(G)$. For instance, $G = C_6$, and also the graph W in Figure 5 is a König-Egerváry non-bipartite graph that has $\eta(W) = |\{e\}| = 1, \xi(W) = |\{a\}| = 1 = \sigma(W), \alpha(W) = \mu(W) = 4$.

Figure 5: W is a non-bipartite Koenig-Egervary graph and $\xi(W) + \eta(W) < \alpha(W)$.

Observe that Proposition 3.5 is not true for general graphs; e.g., the graph W_1 in Figure 6 has $\alpha(W_1) = 3$, $\mu(W_1) = 2$, $\eta(W_1) = 3$, $\xi(W_1) = 2$, $\sigma(W_1) = 1$. However, there are non-König-Egerváry graphs satisfying $\xi(G) + \eta(G) < \alpha(G)$ and $\eta(G) + \sigma(G) < \mu(G)$, for example, the graph W_2 in Figure 6 has $\alpha(W_2) = 3$, $\eta(W_2) = |\{ab, cd\}|, \xi(W_2) = \sigma(W_2) = 0$. There also exist non-König-Egerváry graphs satisfying $\xi(G) + \eta(G) = \alpha(G)$ and $\eta(G) + \sigma(G) = \mu(G)$, e.g., the graph W_3 in Figure 6. Nevertheless, $\xi(K_5 - e) + \eta(K_5 - e) = \alpha(K_5 - e)$, but $\eta(K_5 - e) + \sigma(K_5 - e) > \mu(K_5 - e)$.

Figure 6: Non-Koenig-Egervary graphs.

Proposition 3.6 If G is a König-Egerváry graph, then the following assertions are equivalent:

(i) $\xi(G) + \eta(G) = \alpha(G);$ (ii) $\sigma(G) + \eta(G) = \mu(G);$ (iii) $\xi(G) + 2\eta(G) + \sigma(G) = n(G).$ **Proof.** Suppose that $\xi(G) + \eta(G) = \alpha(G)$. According to Corollary 3.3, we get that $\mu(G) = \alpha(G) + \sigma(G) - \xi(G) = \xi(G) + \eta(G) + \sigma(G) - \xi(G) = \eta(G) + \sigma(G)$. The converse is proven in the same way.

Suppose $\xi(G) + 2\eta(G) + \sigma(G) = n(G)$. Proposition 3.5 claims that $\xi(G) + \eta(G) \leq \alpha(G)$ and $\sigma(G) + \eta(G) \leq \mu(G)$. Together with $\alpha(G) + \mu(G) = n(G)$, which is true for König-Egerváry graphs, it gives us the two equalities needed. Conversely, if, for instance, $\xi(G) + \eta(G) = \alpha(G)$ then, as we already proved, $\sigma(G) + \eta(G) = \mu(G)$. Summing these two equalities we obtain $\xi(G) + 2\eta(G) + \sigma(G) = n(G)$.

4 König-Egerváry Graphs for which $\xi + \eta = \alpha$

Lemma 4.1 Let G be a König-Egerváry graph and $G_0 = G - N[core(G)]$. If G_0 has a unique perfect matching then its α -critical edges coincide with its μ -critical edges.

Proof. By Theorem 2.3, it is enough to show that all the edges of M (the unique perfect matching of G_0) are also α -critical.

According to Proposition 2.1, we may write G as G = S * H, where $S \in \Omega(G)$ and H = G[V - S] has $n(H) = \mu(G)$. By virtue of Lemma 3.4(*ii*), G_0 has $\alpha(G_0) = |S - core(G)| = q$ and $core(G_0) = \emptyset$. Let $M = \{a_i b_i : 1 \le i \le q\}$ and suppose that $\{a_i : 1 \le i \le q\} = A \subseteq S$. We shall show that any $a_i b_i \in M$ is α -critical, by exhibiting a maximum stable set S_0 in G_0 that satisfies: $b_i \in S_0$ and $S_0 \cap N(a_i) = \{b_i\}$. For the sake of simplicity, let us take i = 1. In the sequel, if $D \subseteq V(G_0)$, then by M(D) we mean the set of vertices, which D is matched onto.

Claim 1. There exists some $S_0 \in \Omega(G_0)$ with $b_1 \in S_0$.

Otherwise, any $W \in \Omega(G_0)$ contains a_1 , because |M| = |W| and $|W \cap \{a_j, b_j\}| = 1$ holds for every $j \in \{1, 2, ..., q\}$. Hence, it follows that $a_1 \in core(G_0)$, in contradiction with $core(G_0) = \emptyset$.

Claim 2. The following procedure gives rise to some $S_0 \in \Omega(G_0)$ that contains b_1 .

Input: $G_0, A = \{a_1, a_2, ..., a_q\}, b_1 \in B = \{b_1, b_2, ..., b_q\} = M(A);$ Output: $b_1 \in S_0 \in \Omega(G_0);$ $S_0 := \{b_1\};$ $D := \{b_1\};$ while $(N(D) \cap A) - M(S_0) \neq \emptyset$ do begin Step 1. $S_1 := S_0;$ Step 2. $S_0 := S_0 \cup M((N(D) \cap A) - M(S_0));$ Step 3. $D := S_0 - S_1;$ end Step 4. $S_0 := S_0 \cup M(B - S_0).$

Clearly, $|S_0| = q$ and no edge of G_0 joins some $a_l \in S_0$ to any $b_j \in S_0$, according to building procedure of S_0 . Any maximum stable set $W \in \Omega(G_0)$ that contains b_1 must contain also all $b_j \in S_0$, because |W| = |M| and $|W \cap \{a_j, b_j\}| = 1$ holds for every $j \in \{1, 2, ..., q\}$. Hence, the set $\{b_j : b_j \in S_0\}$ is stable, and consequently, we obtain that $S_0 \in \Omega(G_0)$. An example of $S_0 \in \Omega(G_0)$ obtained by this procedure is illustrated in Figure 7.

Figure 7: The graph G_0 has a unique perfect matching and $\xi(G_0) = 0$.

Claim 3. $S_0 \cup \{a_1\} \in \Omega(G_0 - a_1b_1)$, and hence, the edge a_1b_1 is α -critical in G_0 . Firstly, no $a_i \in S_0$ is adjacent to a_1 , because $a_i, a_1 \in A$. Secondly, no $b_j \in S_0 - \{b_1\}$ is adjacent to a_1 , otherwise there exists an even cycle C, with half of its edges belonging to M, which means that $(M - E(C)) \cup (E(C) - M)$ is another perfect matching in G_0 , in contradiction with the premises on G_0 . Therefore, $S_0 \cup \{a_1\} \in \Omega(G_0 - a_1b_1)$ and this implies that the edge a_1b_1 is α -critical in G_0 . Since a_1b_1 is an arbitrary edge of M, we may conclude that all the edges of M are α -critical in G_0 .

It is interesting to notice that if G_0 were bipartite for every König-Egerváry graph G, then it would be possible to prove Lemma 4.1 using only Proposition 2.6. Figures 2, 7 show that Proposition 2.6 is not enough for our purposes, because there exist non-bipartite König-Egerváry graphs G with nonempty cores and whose $G_0 = G - N[core(G)]$ have a unique perfect matching.

Theorem 4.2 Let G be a König-Egerváry graph and $G_0 = G - N[core(G)]$. Then the following assertions are equivalent:

(i) G_0 has a unique perfect matching;

(ii) α -critical edges of G_0 form a maximal matching in G_0 ;

- (*iii*) $\xi(G) + \eta(G) = \alpha(G);$ (*iv*) $\sigma(G) + \eta(G) = \mu(G);$

Proof. According to Proposition 3.2, G_0 is also a König-Egerváry graph and has a perfect matching, say M_0 .

 $(i) \Leftrightarrow (ii)$ If M_0 is the unique perfect matching of G_0 , all its edges are μ -critical and, by Lemma 4.1, α -critical, as well. In other words, the α -critical edges of G_0 form a maximal matching. The converse is true according to Proposition 2.10(*iii*).

 $(i) \Rightarrow (iii)$ Assume that M_0 is the unique perfect matching of G_0 . By Lemma 3.4(*ii*), it follows that $\alpha(G_0) = \alpha(G) - \xi(G)$. Lemma 3.4(*iii*) and the uniqueness of M imply that $\alpha(G_0) = \eta(G_0) = \eta(G)$. Hence, it results in $\xi(G) + \eta(G) = \alpha(G)$.

 $(iii) \Leftrightarrow (iv) \Leftrightarrow (v)$ It is the claim of Proposition 3.6.

 $(v) \Rightarrow (ii)$ By Proposition 3.1,

 $|N(core(G))| = |\cap \{V - S : S \in \Omega(G)\}| = \sigma(G).$

Hence, $n(G_0) = n(G) - \xi(G) - \sigma(G)$. Now, our premise claims that $2\eta(G) = n(G_0)$. By Lemma 3.4(*iii*) we obtain $2\eta(G_0) = n(G_0)$. According to Theorem 2.3(*iii*) the set of α -critical edges of G form a matching, say M. Applying again Lemma 3.4(*iii*), we see that $M_0 = M$ and it consists of α -critical edges of G_0 .

Notice that Theorem 4.2 fails for non-König-Egerváry graphs. In Figure 8 is presented a non-König-Egerváry graph G having $\xi(G) = |\{v\}| = 1, \eta(G) = 10$, (all the edges of the two C_5 are α -critical), $\alpha(G) = 5 < \mu(G) = 6$, but $G_0 = G - N[core(G)]$ owns a unique perfect matching.

Figure 8: A non-Koenig-Egervary graph satisfying $\xi(G) + \eta(G) < \alpha(G)$.

Now using Theorem 4.2 we are giving a new characterization of the bipartite graphs that have a unique perfect matching (see some previous discussions of this topic in [3] and [15]). This result generalizes Corollary 2.9.

Corollary 4.3 Let G be a bipartite graph. Then the following assertions are equivalent:

(i) G has a unique perfect matching; (ii) α -critical edges of G form a maximal matching; (iii) $\eta(G) = \alpha(G)$; (iv) $\eta(G) = \mu(G)$; (v) $2\eta(G) = n(G)$.

Proof. $(i) \Leftrightarrow (ii)$ If M is the unique perfect matching of G, all its edges are μ -critical and, by Proposition 2.6, α -critical, as well. In other words, the α -critical edges of G form a maximal matching. The converse is true according to Proposition 2.10(*iii*).

The other equivalences follow from Theorem 4.2, and the observation that if a bipartite graph has a perfect matching, then the two stable sets of its standard partition are maximum, and, consequently, $\xi(G) = 0$.

It is interesting to notice that the equality $2\alpha(G) = n(G)$ mentioned in Corollary 2.9 follows from Corollary 4.3, but it can not join the above series of equivalences (see, for example, C_4).

Let us also observe that for the bipartite graph G in Figure 9, the subgraph $G_0 = G - N[core(G)]$ has more than one perfect matching.

Proposition 4.4 If G is a König-Egerváry graph and there is some $S \in \Omega(G)$ such

$$\xi(G) + \eta(G) = \alpha(G), \sigma(G) + \eta(G) = \mu(G), \text{ and } \xi(G) + 2\eta(G) + \sigma(G) = n(G).$$

that the set W = (S, V(G) - S) generates a forest, then

Proof. If $G_0 = G - N[core(G)]$, A = S - core(G), B = V(G) - S - N(core(G)), then Proposition 3.2(*iii*) implies that G_0 is also a König-Egerváry graph and has a perfect matching, say M. Let G_1 be the partial graph of G_0 having $W \cap E(G_0)$ as edge set. Then, M is a perfect matching in G_1 , as well. Since G_1 is a forest, M is unique. By Lemma 2.2, any maximum matching of G_0 is contained in (A, B), and since the edges from (A, B) yield a unique perfect matching, namely M, it follows that M is the unique perfect matching of G_0 itself. Hence, according to Theorem 4.2, we obtain that $\xi(G) + \eta(G) = \alpha(G)$. By Proposition 3.5(*iii*), it implies $\sigma(G) + \eta(G) = \mu(G)$, and immediately $\xi(G) + 2\eta(G) + \sigma(G) = n(G)$.

It is worth observing that if (S, V(G) - S) generates a forest for some $S \in \Omega(G)$, this is not necessarily true for all maximum stable sets of G. For example, the graph G presented in Figure 10(*i*) and Figure 10(*ii*) has the partition $\{S_1 = \{a, b, c, d\} \in \Omega(G), V(G) - S_1\}$ such that $(S_1, V(G) - S_1)$ does not generate a forest, (see Figure 10(*i*)), while for the partition $\{S_2 = \{a, b, y, z\} \in \Omega(G), V(G) - S_2\}$ the set $(S_2, V(G) - S_2)$ generates a forest (see Figure 10(*ii*)). Let us also remark that the converse of Proposition 4.4 is not generally true. For instance, the graph in Figure 10(*ii*) is a counterexample.

Figure 10: König-Egervary graphs satisfying $\xi(G) + \eta(G) = \alpha(G)$.

Corollary 4.5 If T is a tree, then

 $\xi(T) + \eta(T) = \alpha(T), \sigma(T) + \eta(T) = \mu(T), \text{ and } \xi(T) + 2\eta(T) + \sigma(T) = n(T).$

As a consequence of Corollary 4.5, we obtain:

Corollary 4.6 [21] If T is a tree, then a vertex $v \in V(T)$ is in some but not in all maximum stable sets of T if and only if v is an endpoint of an α -critical edge.

Proof. If $v \in V(T)$ is in some but not in all maximum stable sets of T, then there exists $S \in \Omega(T)$ such that $v \in S - core(T)$. By Theorem 2.3, α -critical edges of T form a matching. Proposition 2.6 ensures that they are also μ -critical, because T is bipartite. Consequently, these edges belong to any maximum matching, which, according to Lemma 2.2, is included in (S, V(T) - S). Since, by Lemma 3.4(*i*), no α -critical edge has an endpoint in N[core(T)], and Corollary 4.5 ensures that $\eta(T) = \alpha(T) - \xi(T) = |S - core(T)|$, we infer that v must be an endpoint of an α -critical edge.

Conversely, let e = vw be an α -critical edge in T and $\overline{S} \in \Omega(T - e)$. Since $|\overline{S}| = \alpha(T - e) > \alpha(T)$, it follows that $v, w \in \overline{S}$ and therefore, $\overline{S} - \{v\}, \overline{S} - \{w\} \in \Omega(T)$. Hence, v is in some, namely, in $\overline{S} - \{w\}$, but not in all maximum stable sets of T, namely, not in $\overline{S} - \{v\}$.

Notice that Corollary 4.5 and Corollary 4.6 are not valid for general bipartite graphs (see, for instance, the graph in Figure 9).

5 Conclusions

In this paper we state several properties of α -critical and μ -critical edges belonging to König-Egerváry graphs. These findings generalize some previously known results for trees and bipartite graphs. We have proved that for bipartite graphs and for some special König-Egerváry graphs, their sets of α -critical edges and μ -critical edges coincide. It seems to be interesting to characterize all the graphs having this property. From the other point of view, since the α -critical edges of a König-Egerváry graph span disjoint cliques of order two, one may be interested in describing the type of graphs where their α -critical edges span disjoint cliques of order larger than two. Another challenging problem is to describe classes of non-König-Egerváry graphs G satisfying $\xi(G) + \eta(G) = \alpha(G), \ \xi(G) + \eta(G) \leq \alpha(G), \ and/or \ \alpha(G) + \sigma(G) = \mu(G) + \xi(G).$

References

- L. W. Beineke, F. Harary and M. D. Plummer, On the critical lines of a graph, Pacific Journal of Mathematics 22 (1967) 205-212.
- [2] J. M. Bourjolly and W. R. Pulleyblank, König-Egerváry graphs, 2-bicritical graphs and fractional matchings, Discrete Applied Mathematics 24 (1989) 63-82.
- [3] K. Cechlárová, The uniquely solvable bipartite matching problem, Operations Research Letters 10 (1991) 221-224.
- [4] R. W. Deming, Independence numbers of graphs an extension of the König-Egerváry theorem, Discrete Mathematics 27 (1979) 23-33.
- [5] E. Egerváry, On combinatorial properties of matrices, Matematikai Lapok 38 (1931) 16-28.

- [6] S. Foldes and P. L. Hammer, *Split Graphs*, Proceedings of 8th Southeastern Conference on Combinatorics, Graph Theory and Computing (F. Hoffman et al. eds), Louisiana State University, Baton Rouge, Louisiana, 311-315.
- [7] T. W. Haynes, L. M. Lawson, R. C. Brigham and R. D. Dutton, Changing and unchanging of the graphical invariants: minimum and maximum degree, maximum clique size, node independence number and edge independence number, Congressus Numerantium 72 (1990) 239-252.
- [8] E. Korach, On dual integrality, min-max equalities and algorithms in combinatorial programming, University of Waterloo, Department of Combinatorics and Optimization, Ph.D. Thesis, 1982.
- [9] D. König, Graphen und Matrizen, Matematikai Lapok **38** (1931) 116-119.
- [10] E. L. Lawler, Combinatorial Optimization: Networks and Matroids, (1976) Holt, Renehart and Winston.
- [11] V. E. Levit and E. Mandrescu, Well-covered and König-Egerváry graphs, Congressus Numerantium 130 (1998) 209-218.
- [12] V. E. Levit and E. Mandrescu, Combinatorial properties of the family of maximum stable sets of a graph, Los Alamos Archive, prE-print math.CO/9912047, 1999, 13 pp.
- [13] V. E. Levit and E. Mandrescu, On α^+ -stable König-Egerváry graphs, The Ninth SIAM Conference on Discrete Mathematics, University of Toronto, Canada (1998), Los Alamos Archive, prE-print math.CO/9912022, 1999, 13 pp.
- [14] L. Lovász and M. D. Plummer, *Matching theory*, Annals of Discrete Mathematics 29 (1986) North-Holland.
- [15] J. E. Martínez-Legaz, On the uniqueness of perfect matching in bipartite graphs, Expositiones Mathematicae 14 (1996) 473-480.
- [16] V. T. Paschos and M. Demange, A generalization of König-Egerváry graphs and heuristics for the maximum independent set problem with improved approximation ratios, European Journal of Operation Research 97 (1997) 580-592.
- [17] F. Sterboul, A characterization of the graphs in which the transversal number equals the matching number, Journal of Combinatorial Theory Series B 27 (1979) 228-229.
- [18] L. Suranyi, On line critical graphs, Colloquia Mathematica Societatis Janos Bolyai 10, Infinite and finite sets (1973) 1411-1444.
- [19] B. Toft, Coluring, Stable Sets and Perfect Graphs, in: Handbook of Combinatorics, Volume 1, Chapter 4, eds. R.L. Graham, M. Grötschel and L. Lovász, (1995) Elsevier.

- [20] W. Wessel, Criticity with respect to properties and operations in graph theory, Colloquia Mathematica Societatis Janos Bolyai 37, Infinite and finite sets (1981) 829-837.
- [21] J. Zito, The structure and maximum number of maximum independent sets in trees, Journal of Graph Theory 15 (1991) 207-221.