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Abstract

The stability number of a graph G, denoted by α(G), is the cardinality of a
stable set of maximum size in G. If α(G − e) > α(G), then e is an α-critical

edge, and if µ(G − e) < µ(G), then e is a µ-critical edge, where µ(G) is the
cardinality of a maximum matching in G. G is a König-Egerváry graph if its
order equals α(G) + µ(G). Beineke, Harary and Plummer have shown that the
set of α-critical edges of a bipartite graph is a matching. In this paper we
generalize this statement to König-Egerváry graphs. We also prove that in a
König-Egerváry graph α-critical edges are also µ-critical, and that they coincide
in bipartite graphs. Eventually, we deduce that α(T ) = ξ(T ) + η(T ) holds for
any tree T , and characterize the König-Egerváry graphs enjoying this property,
where ξ(G) is the number of α-critical vertices of G, and η(G) is the number of
α-critical edges of G.

1 Introduction

Throughout this paper G = (V,E) is a simple (i.e., a finite, undirected, loopless and
without multiple edges) graph with vertex set V = V (G), edge set E = E(G), and
order n(G) = |V (G)|. If X ⊂ V , then G[X ] is the subgraph of G spanned by X .
By G − W we mean the subgraph G[V − W ] , if W ⊂ V (G). For F ⊂ E(G), by
G− F we denote the partial subgraph of G obtained by deleting the edges of F , and
we use G − e, if W = {e}. If A,B ⊂ V and A ∩ B = ∅, then (A,B) stands for the
set {e = ab : a ∈ A, b ∈ B, e ∈ E}. The neighborhood of a vertex v ∈ V is the set
N(v) = {w : w ∈ V and vw ∈ E}, and N(A) = ∪{N(v) : v ∈ A}, N [A] = A ∪N(A)
for A ⊂ V .

A set S of vertices is stable if no two vertices from S are adjacent. A stable set of
maximum size will be referred to as a maximum stable set of G. The stability number
of G, denoted by α(G), is the cardinality of a maximum stable set of G. Let Ω(G)
denotes the set {S : S is a maximum stable set of G}, σ(G) = |∩{V − S : S ∈ Ω(G)}|
and ξ(G) = |core(G)|, where core(G) = ∩{S : S ∈ Ω(G)}, [12]. In other words, ξ(G)
equals the number of α-critical vertices of G, (a vertex v ∈ V (G) is α-critical provided
α(G − v) < α(G)).
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By Pn, Cn,Kn we mean the chordless path on n ≥ 3, the chordless cycle on n ≥
4 vertices, and respectively the complete graph on n ≥ 1 vertices.

A matching (i.e., a set of non-incident edges of G) of maximum cardinality µ(G)
is a maximum matching, and a perfect matching is one covering all vertices of G. An
edge e ∈ E(G) is µ-critical provided µ(G− e) < µ(G). By their definition, µ-critical
edges of G belong to all maximum matchings of G.

If α(G) + µ(G) = n(G), then G is called a König-Egerváry graph, [4], [17]. Prop-
erties of these graphs were presented in several papers, like of Sterboul [17], Deming
[4], Lovász and Plummer [14], Korach [8], Bourjolly and Pulleyblank [2], Paschos and
Demange [16], Levit and Mandrescu [11], [13]. It is worth observing that a discon-
nected graph is of König-Egerváry type if and only if all its connected components
are König-Egerváry graphs. In this paper, by ”graph” we mean a connected graph
having at least one edge.

An edge e ∈ E(G) is α-critical whenever α(G − e) > α(G). Let denote by η(G)
the number of α-critical edges of G. Notice that there are graphs in which: (a) any
edge is α-critical (so-called α-critical graphs); e.g., all C2n+1 for n ≥ 3; (b) no edge is
α-critical; e.g., all C2n for n ≥ 2. More generally, Haynes et al., [7], have proved that
a graph G has no α-critical edge if and only if |N(x) ∩ S| ≥ 2 holds for any S ∈ Ω(G)
and every x ∈ V (G)− S.

Beineke, Harary and Plummer, [1], have shown that any two incident α-critical
edges of a graph lie on an odd cycle, and hence, they deduce that no two α-critical
edges of a bipartite graph can have a common endpoint. Independently, Zito, [21],
has proved the same result for trees using a different technique. Some variations and
strengthenings of these results are discussed in [18], [20], and [19].

In this paper we generalize the above assertion to König-Egerváry graphs. We
also show that α-critical edges are µ-critical in a König-Egerváry graph, and that
they coincide in bipartite graphs. As a corollary, we obtain one result of Zito, [21],
stating that a vertex v is in some but not in all maximum stable sets of a tree T if
and only if v is an endpoint of an α-critical edge of T . In the sequel, we analyze other
relationships between α-critical edges and µ-critical edges in a König-Egerváry graph,
and its corresponding implications to equalities and inequalities linking α(G), ξ(G),
η(G), σ(G), and µ(G). Eventually, we infer that α(T ) = ξ(T ) + η(T ), σ(T ) + η(T ) =
µ(T ) and ξ(T ) + 2η(T ) + σ(T ) = n(T ) holds for any tree T , and characterize the
König-Egerváry graphs having these properties.

2 α-Critical and µ-Critical Edges

According to a well-known result of König, [9], and Egerváry, [5], any bipartite graph
is a König-Egerváry graph. It is easy to see that this class includes also some non-
bipartite graphs (see, for instance, the graph K3 + e in Figure 1).

If Gi = (Vi, Ei), i = 1, 2, are two disjoint graphs, then G = G1 ∗ G2 is defined as
the graph with V (G) = V (G1) ∪ V (G2), and

E(G) = E(G1) ∪ E(G2) ∪ {xy : for some x ∈ V (G1) and y ∈ V (G2)}.

Clearly, if H1, H2 are subgraphs of a graph G such that V (G) = V (H1) ∪ V (H2)
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Figure 1: Graph K3 + e.

and V (H1) ∩ V (H2) = ∅, then G = H1 ∗ H2, i.e., any graph of order at least two
admits such decompositions. However, some particular cases are of special interest.
For instance, if: E(Hi) = ∅, i = 1, 2, then G = H1 ∗H2 is bipartite; E(H1) = ∅ and
H2 is complete, then G = H1 ∗H2 is a split graph [6].

The following result shows that the König-Egerváry graphs are, in this sense,
between these two ”extreme” situations. The equivalence of the first and the third
parts of this proposition was proposed by Klee and included in [10] without proof
(private communication).

Proposition 2.1 [13] The following assertions are equivalent:
(i) G is a König-Egerváry graph;
(ii) G = H1 ∗H2, where V (H1) = S ∈ Ω(G) and n(H1) ≥ µ(G) = n(H2);
(iii) G = H1 ∗ H2, where V (H1) = S is a stable set in G, |S| ≥ n(H2) and

(S, V (H2)) contains a matching M with |M | = n(H2).

In the sequel, we shall often represent a König-Egerváry graph G as G = S ∗H ,
where S ∈ Ω(G) and H = G[V − S] has n(H) = µ(G).

Lemma 2.2 [13] If G = (V,E) is a König-Egerváry graph, then any maximum
matching of G is contained in (S, V − S), where S ∈ Ω(G).

Clearly, Lemma 2.2 is not valid for any graph. For instance, K4 is a counterex-
ample. Moreover, K4 has α-critical edges that are incident. Nevertheless, there are
graphs having only non-incident α-critical edges.

Theorem 2.3 If G is a König-Egerváry graph, then the following assertions hold:
(i) for any α-critical edge e of G, the graph G− e is still a König-Egerváry graph;
(ii) any α-critical edge of G is also µ-critical;
(iii) the α-critical edges of G form a matching.

Proof. (i) If e = xy is an α-critical edge G, then there is some S ∈ Ω(G) such that
eitherN(x)∩S = {y} orN(y)∩S = {x}. Suppose that y ∈ S. Since S ∈ Ω(G), we get,
by Proposition 2.1, that G = S ∗H , where H = G[V − S] has µ(G) = n(H) = |M |
and M is a maximum matching of G, included, by Lemma 2.2, in (S, V (G) − S).
Hence, it follows that G − e = S′ ∗ V (H ′), where S′ = S ∪ {x} ∈ Ω(G − e) and
n(H ′) = |M − {e}|. According to Proposition 2.1(iii), we infer that G − e is also a
König-Egerváry graph.

(ii) If e ∈ E(G) is an α-critical edge of G, then according to (i) we obtain:

n(G) = α(G) + µ(G) ≤ α(G − e) + µ(G− e) = α(G) + 1 + µ(G− e) = n(G− e),

and this implies µ(G) = 1 + µ(G− e), i.e., e is also µ-critical.
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(iii ) Let e1, e2 be two α-critical edges of G. We have to show that they are not in-
cident. According to second part (ii), both edges are also µ-critical. Hence, it follows
that e1, e2 ∈ ∩{M : M is a maximum matching of G} and this ensures that e1, e2
have no common endpoint. Consequently, the set of all α-critical edges of G yields a
matching.

Notice that:
(a) Theorem 2.3(i) is not true for any µ-critical edge of a König-Egerváry graph;

e.g., the edge e of G = K3 + e is µ-critical, but G− e is not a König-Egerváry graph;
(b) Theorem 2.3(ii) is not true for any graph; e.g., all the edges ofK3 are α-critical,

but none is also µ-critical;
(c) the converse of Theorem 2.3(ii) is not valid for any König-Egerváry graph;

e.g., the edge e of graph K3 + e is µ-critical, but is not also α-critical. However, as
we shall see later, (namely Proposition 2.6), the µ-critical edges are also α-critical in
the case of bipartite graphs.

Corollary 2.4 A König-Egerváry graph is α-critical if and only if it is isomorphic
to K2.

Since any bipartite graph is also a König-Egerváry graph, we obtain the following
statement, due to Beineke, Harary and Plummer.

Theorem 2.5 [1] No two α-critical edges of a bipartite graph are incident.

Proposition 2.6 If G is a bipartite graph, then its α-critical edges coincide with its
µ-critical edges.

Proof. By Theorem 2.3(ii), it suffices to show that any µ-critical edge e of G is also
α-critical. Since G − e is still bipartite, and hence, also a König-Egerváry graph, it
follows that α(G− e) + µ(G− e) = n(G) = α(G) + µ(G) = α(G) + 1 + µ(G− e), and
this implies α(G− e) > α(G), i.e., e is an α-critical edge of G.

In Theorem 4.2 we will meet another type of König-Egerváry graphs with this
property. Notice that there are also non-bipartite König-Egerváry graphs in which
their µ-critical edges are α-critical (see the graph in Figure 2).

✇ ✇ ✇ ✇
✇✇

�
�
�

Figure 2: A Koenig-Egervary graph whose all µ-critical edges are α-critical.

It is well-known that if a tree has a perfect matching, then it is unique. Conse-
quently, we obtain:

Corollary 2.7 A tree has a perfect matching if and only if the set of its α-critical
edges forms a maximal matching of the tree.
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Using the definition of König-Egerváry graphs and the fact that µ(G) ≤ n(G)/2
is true for any graph G, we get:

Lemma 2.8 If G admits a perfect matching, then G is a König-Egerváry graph if
and only if α(G) = µ(G). If G is a König-Egerváry graph, then µ(G) ≤ α(G).

Combining Corollary 2.7 and Lemma 2.8, we get the following result from [21].

Corollary 2.9 [21] If a tree T has a perfect matching M , then all the edges of M
are α-critical and 2α(T ) = n(T ).

Proposition 2.10 If G = (V,E) is a König-Egerváry graph, then the following as-
sertions are true:

(i) any S ∈ Ω(G) meets each µ-critical edge in exactly one vertex;
(ii ) any S ∈ Ω(G) meets each α-critical edge in exactly one vertex;
(iii ) if G has a maximal matching consisting of only α-critical edges, then it is the

unique perfect matching of G.

Proof. (i) and (ii) By Theorem 2.3(ii), any α-critical edge of G is also µ-critical.
Consequently, we infer that

{e ∈ E : e is α− critical} ⊆ ∩{M : M is a maximum matching of G} ⊆ (S, V − S)

holds for any S ∈ Ω(G), according to Lemma 2.2. It follows that if e = xy is an
α-critical or a µ-critical edge of G, then any S ∈ Ω(G) contains one of x and y, (since
clearly, no stable set may contain both x and y).

(iii ) Let M be a maximal matching of G consisting of only α-critical edges. By
Theorem 2.3, all the edges of M are also µ-critical. Therefore, we infer that M is
included in any maximum matching of G, and because M is a maximal matching,
it results that M is the unique maximum matching of G. Suppose, on the contrary,
that M is not perfect, and let S ∈ Ω(G). According to Proposition 2.1, G can be
written as G = S ∗ H , with n(H) = |M | = µ(G), and by Lemma 2.2 we have that
M ⊆ (S, V − S). Since G is a König-Egerváry graph without perfect matchings,
Lemma 2.8 implies |S| = α(G) > µ(G) = |M |. Hence, it follows that there are at
least two vertices v1, v2 ∈ S having a common neighbor w ∈ V (H) and such that one
of them, say v1, is unmatched by M and v2w ∈ M . Thus, M ∪ {v1w} − {v2w} is
another maximum matching of G, in contradiction with the uniqueness of M . Con-
sequently, M must be also perfect.

For trees, Proposition 2.10(ii) was proved by Zito in [21].
Notice that the matching in Proposition 2.10(iii) is not necessarily formed by

pendant edges; e.g., P6 has such a matching. Concerning the uniqueness of this
matching, it is worth mentioning that: (a) if G is not a König-Egerváry graph, then
it may have several different maximum matchings consisting of only α-critical edges
(e.g., C5); (b) if a König-Egerváry graph has a unique perfect matching, then it may
contain non-α-critical edges (e.g., the edge e of K3+ e is not α-critical, but it belongs
to the unique perfect matching of K3 + e).
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3 Equalities and Inequalities between Parameters

If v ∈ N(core(G)), then clearly follows that v ∈ V (G)− S, for any S ∈ Ω(G), that is
N(core(G)) ⊆ ∩{V − S : S ∈ Ω(G)} holds for any graph G.

Lemma 3.1 [13] If G = (V,E) is a König-Egerváry graph, then
N(core(G)) = ∩{V − S : S ∈ Ω(G)}.

Notice that there are graphs that do not enjoy the above equality, for example, the
graph G in Figure 3(a) has N(core(G)) = ∅ and ∩{V − S : S ∈ Ω(G)} = {v}. There
exist non-König-Egerváry graphs for which N(core(G)) = ∩{V −S : S ∈ Ω(G)}, (see,
for instance, the graph G from Figure 3(b)).

✈ ✈
✈ ✈✈
�
�
�❅

❅
❅

v
(a) ✈ ✈

✈ ✈ ✈
✏✏✏✏✏

PPPPP

�
�
�❅

❅
❅��

❅❅(b)

Figure 3: (a) G is non-König-Egerváry with N(core(G)) 6= ∩{V −S : S ∈ Ω(G)}; (b)
G is a non-König-Egerváry graph with N(core(G)) = ∩{V − S : S ∈ Ω(G)}.

Proposition 3.2 If G = (V,E) is a König-Egerváry graph, G0 = G − N [core(G)]
and S ∈ Ω(G), then the following assertions are true:

(i) |core(G)| ≥ |N(core(G))|;
(ii ) |S − core(G)| = |V − S −N(core(G))|;
(iii ) G0 has a perfect matching and it is also a König-Egerváry graph.

Proof. According to Proposition 2.1, G can be written as G = S ∗ H , where H =
G[V −S] has n(H) = µ(G). Let denote A = S−core(G) and B = V (H)−N(core(G)).
In [12] it has been proved that |A| ≤ |B| holds for any graph G. Since ∩{V − S : S ∈
Ω(G)} ⊆ V (H), and N(core(G)) = ∩{V −S : S ∈ Ω(G)} (see Lemma 3.1), we obtain
B = V (H)− ∩{V − S : S ∈ Ω(G)}.

(i) Since |A|+ |core(G)| = α(G) ≥ µ(G) = n(H) = |B|+ |N(core(G)| and, on the
other hand |A| ≤ |B|, it follows that |core(G)| ≥ |N(core(G))|.

(ii) Let M be a maximum matching in G. Since G is a König-Egerváry graph,
Lemma 2.2 ensures that M is included in (S, V (H)), and |M | = µ(G) = n(H).
The matching M matches B into A, because there are no edges connecting B and
core(G). Hence, |B| ≤ |A|. Together with |A| ≤ |B| |A| ≤ |B|, it implies |A| = |B|,
i.e., |S − core(G)| = |V − S −N(core(G))|, and that M∩(A,B) is a perfect matching
of G[A ∪B].

(iii ) Since, in fact, G0 = G[A ∪ B], it follows necessarily that G0 has a perfect
matching. In addition, because A is stable, we get α(G0) ≤ µ(G0) = |A| ≤ α(G0),
i.e., α(G0) = µ(G0), and according to Lemma 2.8, G0 must be also a König-Egerváry
graph.

Corollary 3.3 If G is a König-Egerváry graph, then α(G) + σ(G) = µ(G) + ξ(G).
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Proof. By Lemma 3.1, N(core(G)) = ∩{V − S : S ∈ Ω(G)} and according to
Proposition 3.2(ii), |S − core(G)| = |V − S −N(core(G))|. Hence, we obtain that
α(G) − ξ(G) = |S − core(G)| = |V − S −N(core(G))| = µ(G)− σ(G).

Let us observe that there exist non-König-Egerváry graphs satisfying the equality
α(G) + σ(G) = µ(G) + ξ(G) (see graph W1 in Figure 6). It is also interesting to
notice that there exists a non-König-Egerváry graph enjoying the property that its
subgraph G0 = G−N [core(G)] has a perfect matching (see Figure 8). Figure 4 shows
a non-König-Egerváry graph G whose G0 has no perfect matching.

✇ ✇ ✇ ✇ ✇
✇ ✇ ✇

❅
❅
❅a

b

Figure 4: G is a non-König-Egervary graph with core(G) = {a, b} and G0 = C5.

Lemma 3.4 Let G = (V,E) and G0 = G−N [core(G)]. Then the following assertions
are valid:

(i) no α-critical edge in G has an endpoint in N [core(G)];
(ii ) α(G) = α(G0) + ξ(G),Ω(G0) = {S ∩ V (G0) : S ∈ Ω(G)}, core(G0) = ∅;
(iii ) e = xy is an α-critical edge of G if and only if e is an α-critical edge of G0.

Proof. (i) Let e = xy be an α-critical edge in G, and let S ∈ Ω(G − e). Since
∣

∣S
∣

∣ = α(G − e) > α(G), it follows that x, y ∈ S and S − {x}, S − {y} ∈ Ω(G).
Now, the inclusion N(core(G)) ⊆ ∩{V − S : S ∈ Ω(G)} completes the proof that no
α-critical edge in G has an endpoint in N(core(G)), and respectively, in core(G).

(ii) By definition of G0, if S ∈ Ω(G), then S−core(G) = S∩V (G0), and therefore

α(G) − ξ(G) = |S − core(G)| ≤ α(G0).

For any SG0
∈ Ω(G0) we have that SG0

∪ core(G) is stable, and hence

|SG0
∪ core(G)| = α(G0) + ξ(G) ≤ α(G).

Consequently, we get α(G) = α(G0) + ξ(G). Now it is easy to check that Ω(G0) =
{S ∩ V (G0) : S ∈ Ω(G)} and core(G0) = ∅.

(iii ) Let e = xy be an α-critical edge of G. By (i), we infer that e ∈ E(G0), and
as we saw above, there is some stable set Sxy such that Sxy ∪ {x}, Sxy ∪ {y} ∈ Ω(G)
and Sxy ∪ {x, y} ∈ Ω(G− e). Hence, (ii) implies that

V (G0)∩(Sxy∪{x}), V (G0)∩(Sxy∪{y}) ∈ Ω(G0) and V (G0)∩(Sxy∪{x, y}) ∈ Ω(G0−e),

because V (G0)∩(Sxy ∪{x, y}) is stable in G0−e and larger than V (G0)∩(Sxy∪{x}).
Therefore, e is α-critical in G0, as well. Similarly, we can show that any α-critical
edge of G0 is α-critical in G too.

7



Proposition 3.5 If G is a König-Egerváry graph, then
(i) ξ(G) + η(G) ≤ α(G);
(ii ) σ(G) + η(G) ≤ µ(G);
(iii ) ξ(G) + 2η(G) + σ(G) ≤ n(G).

Proof. For any S ∈ Ω(G), we have that core(G) ⊆ S, and by Lemma 3.4(i), no
α-critical edge has an endpoint in core(G). In addition, according to Proposition
2.10(ii), S meets each α-critical edge in exactly one vertex. Hence, it follows that
ξ(G) + η(G) ≤ α(G), and using Corollary 3.3 we obtain (ii). Clearly, (iii ) follows
from (i) and (ii).

Notice that ξ(K3 + e) + η(K3 + e) = α(K3 + e) and also η(K3 + e) + σ(K3 + e) =
µ(K3 + e), but there are König-Egerváry graphs satisfying ξ(G) + η(G) < α(G) and
η(G) + σ(G) < µ(G). For instance, G = C6, and also the graph W in Figure 5 is a
König-Egerváry non-bipartite graph that has η(W ) = |{e}| = 1, ξ(W ) = |{a}| = 1 =
σ(W ), α(W ) = µ(W ) = 4.

✇ ✇ ✇ ✇
✇ ✇ ✇ ✇
❅
❅
❅

a

e

Figure 5: W is a non-bipartite Koenig-Egervary graph and ξ(W ) + η(W ) < α(W ).

Observe that Proposition 3.5 is not true for general graphs; e.g., the graph W1

in Figure 6 has α(W1) = 3, µ(W1) = 2, η(W1) = 3, ξ(W1) = 2, σ(W1) = 1. However,
there are non-König-Egerváry graphs satisfying ξ(G) + η(G) < α(G) and η(G) +
σ(G) < µ(G), for example, the graph W2 in Figure 6 has α(W2) = 3, η(W2) =
|{ab, cd}| , ξ(W2) = σ(W2) = 0. There also exist non-König-Egerváry graphs satisfy-
ing ξ(G) + η(G) = α(G) and η(G) + σ(G) = µ(G), e.g., the graph W3 in Figure 6.
Nevertheless, ξ(K5−e)+η(K5−e) = α(K5−e), but η(K5−e)+σ(K5−e) > µ(K5−e).

✇ ✇ ✇ ✇
✇✇

❅
❅

❅

W1 ✇ ✇

✇ ✇

✇
✇

✇
✁
✁
✁
✁
✁
✁

❆
❆
❆
❆
❆
❆

�
�
�

❅
❅
❅�

�
�

❆
❆
❆
❆
❆
❆

a

b

c

d

W2 ✇ ✇ ✇
✇ ✇
❅
❅
❅�

�
�

W3

Figure 6: Non-Koenig-Egervary graphs.

Proposition 3.6 If G is a König-Egerváry graph, then the following assertions are
equivalent:

(i) ξ(G) + η(G) = α(G);
(ii ) σ(G) + η(G) = µ(G);
(iii ) ξ(G) + 2η(G) + σ(G) = n(G).
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Proof. Suppose that ξ(G) + η(G) = α(G). According to Corollary 3.3, we get that
µ(G) = α(G)+σ(G)−ξ(G) = ξ(G)+η(G)+σ(G)−ξ(G) = η(G)+σ(G). The converse
is proven in the same way.

Suppose ξ(G)+ 2η(G)+σ(G) = n(G). Proposition 3.5 claims that ξ(G)+ η(G) ≤
α(G) and σ(G) + η(G) ≤ µ(G). Together with α(G) + µ(G) = n(G), which is true
for König-Egerváry graphs, it gives us the two equalities needed. Conversely, if, for
instance, ξ(G) + η(G) = α(G) then, as we already proved, σ(G) + η(G) = µ(G).
Summing these two equalities we obtain ξ(G) + 2η(G) + σ(G) = n(G).

4 König-Egerváry Graphs for which ξ + η = α

Lemma 4.1 Let G be a König-Egerváry graph and G0 = G−N [core(G)]. If G0 has
a unique perfect matching then its α-critical edges coincide with its µ-critical edges.

Proof. By Theorem 2.3, it is enough to show that all the edges of M (the unique
perfect matching of G0) are also α-critical.

According to Proposition 2.1, we may write G as G = S ∗ H , where S ∈ Ω(G)
and H = G[V − S] has n(H) = µ(G). By virtue of Lemma 3.4(ii), G0 has α(G0) =
|S − core(G)| = q and core(G0) = ∅. Let M = {aibi : 1 ≤ i ≤ q} and suppose that
{ai : 1 ≤ i ≤ q} = A ⊆ S. We shall show that any aibi ∈ M is α-critical, by exhibiting
a maximum stable set S0 in G0 that satisfies: bi ∈ S0 and S0 ∩N(ai) = {bi}. For the
sake of simplicity, let us take i = 1. In the sequel, if D ⊆ V (G0), then by M(D) we
mean the set of vertices, which D is matched onto.

Claim 1. There exists some S0 ∈ Ω(G0) with b1 ∈ S0.
Otherwise, anyW ∈ Ω(G0) contains a1, because |M | = |W | and |W ∩ {aj , bj}| = 1

holds for every j ∈ {1, 2, ..., q}. Hence, it follows that a1 ∈ core(G0), in contradiction
with core(G0) = ∅.

Claim 2. The following procedure gives rise to some S0 ∈ Ω(G0) that contains b1.

Input: G0, A = {a1, a2, ..., aq}, b1 ∈ B = {b1, b2, ..., bq} = M(A);
Output: b1 ∈ S0 ∈ Ω(G0);
S0 := {b1};
D := {b1};
while (N(D) ∩ A)−M(S0) 6= ∅ do

begin

Step 1. S1 := S0;
Step 2. S0 := S0 ∪M((N(D) ∩ A)−M(S0));
Step 3. D := S0 − S1;

end

Step 4. S0 := S0 ∪M(B − S0).

Clearly, |S0| = q and no edge of G0 joins some al ∈ S0 to any bj ∈ S0, according
to building procedure of S0. Any maximum stable set W ∈ Ω(G0) that contains b1
must contain also all bj ∈ S0, because |W | = |M | and |W ∩ {aj, bj}| = 1 holds for
every j ∈ {1, 2, ..., q}. Hence, the set {bj : bj ∈ S0} is stable, and consequently, we

9



obtain that S0 ∈ Ω(G0). An example of S0 ∈ Ω(G0) obtained by this procedure is
illustrated in Figure 7.

S0 = S0 ∪ {a5} = {b1, b2, b3, b4, a5}

S0 = S0 ∪ {b4} = {b1, b2, b3, b4}, D = ∅

S0 = S0 ∪ {b2, b3} = {b1, b2, b3}, D = {b2, b3}

S0 = {b1} = D = S1

③ ③
① ①
✈ ✈
✈ ✈
t t

❅
❅
❅
❅
❅
❅

✟✟✟✟✟✟

�
�
�
�
�
�

�
�
�
�
�
�

❏
❏
❏
❏
❏
❏
❏
❏❏

✟✟✟✟✟✟
✩

✪a5 b5

a4 b4

a3 b3

a2 b2

a1 b1

G0

Figure 7: The graph G0 has a unique perfect matching and ξ (G0) = 0.

Claim 3. S0 ∪ {a1} ∈ Ω(G0 − a1b1), and hence, the edge a1b1 is α-critical in G0.
Firstly, no ai ∈ S0 is adjacent to a1, because ai, a1 ∈ A. Secondly, no bj ∈ S0−{b1}

is adjacent to a1, otherwise there exists an even cycle C, with half of its edges belong-
ing to M , which means that (M − E (C))∪ (E (C)−M) is another perfect matching
in G0, in contradiction with the premises on G0. Therefore, S0∪{a1} ∈ Ω(G0−a1b1)
and this implies that the edge a1b1 is α-critical in G0. Since a1b1 is an arbitrary edge
of M , we may conclude that all the edges of M are α-critical in G0.

It is interesting to notice that if G0 were bipartite for every König-Egerváry graph
G, then it would be possible to prove Lemma 4.1 using only Proposition 2.6. Figures
2, 7 show that Proposition 2.6 is not enough for our purposes, because there exist
non-bipartite König-Egerváry graphs G with nonempty cores and whose G0 = G −
N [core(G)] have a unique perfect matching.

Theorem 4.2 Let G be a König-Egerváry graph and G0 = G − N [core(G)]. Then
the following assertions are equivalent:

(i) G0 has a unique perfect matching;
(ii ) α-critical edges of G0 form a maximal matching in G0;
(iii ) ξ(G) + η(G) = α(G);
(iv) σ(G) + η(G) = µ(G);
(v) ξ(G) + 2η(G) + σ(G) = n(G).

Proof. According to Proposition 3.2, G0 is also a König-Egerváry graph and has a
perfect matching, say M0.

(i) ⇔ (ii) If M0 is the unique perfect matching of G0, all its edges are µ-critical
and, by Lemma 4.1, α-critical, as well. In other words, the α-critical edges of G0 form
a maximal matching. The converse is true according to Proposition 2.10(iii).

(i) ⇒ (iii) Assume that M0 is the unique perfect matching of G0. By Lemma
3.4(ii), it follows that α(G0) = α(G) − ξ(G). Lemma 3.4(iii) and the uniqueness of
M imply that α(G0) = η(G0) = η(G). Hence, it results in ξ(G) + η(G) = α(G).
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(iii ) ⇔ (iv ) ⇔(v) It is the claim of Proposition 3.6.
(v) ⇒ (ii) By Proposition 3.1,

|N(core(G))| = | ∩ {V − S : S ∈ Ω(G)}| = σ(G).

Hence, n(G0) = n(G) − ξ(G) − σ(G). Now, our premise claims that 2η(G) = n(G0).
By Lemma 3.4(iii) we obtain 2η(G0) = n(G0). According to Theorem 2.3(iii) the set
of α-critical edges of G form a matching, say M . Applying again Lemma 3.4(iii), we
see that M0 = M and it consists of α-critical edges of G0.

Notice that Theorem 4.2 fails for non-König-Egerváry graphs. In Figure 8 is
presented a non-König-Egerváry graph G having ξ(G) = |{v}| = 1, η(G) = 10, (all the
edges of the two C5 are α-critical), α(G) = 5 < µ(G) = 6, but G0 = G−N [core(G)]
owns a unique perfect matching.

✇ ✇ ✇ ✇ ✇ ✇

✇ ✇ ✇ ✇
✇
✇PPPPPPPPP

✏✏✏✏✏✏✏✏✏

✟✟✟✟✟✟

�
�
�

❆
❆
❆
❆
❆
❆

❍❍❍❍❍❍

✁
✁
✁
✁
✁
✁

❅
❅
❅

✟✟✟✟✟✟

✏✏✏✏✏✏✏✏✏

❍❍❍❍❍❍

PPPPPPPPP

v

Figure 8: A non-Koenig-Egervary graph satisfying ξ(G) + η(G) < α(G).

Now using Theorem 4.2 we are giving a new characterization of the bipartite
graphs that have a unique perfect matching (see some previous discussions of this
topic in [3] and [15]). This result generalizes Corollary 2.9.

Corollary 4.3 Let G be a bipartite graph. Then the following assertions are equiva-
lent:

(i) G has a unique perfect matching;
(ii ) α-critical edges of G form a maximal matching;
(iii ) η(G) = α(G);
(iv) η(G) = µ(G);
(v) 2η(G) = n(G).

Proof. (i) ⇔ (ii) If M is the unique perfect matching of G, all its edges are µ-critical
and, by Proposition 2.6, α-critical, as well. In other words, the α-critical edges of G
form a maximal matching. The converse is true according to Proposition 2.10(iii).

The other equivalences follow from Theorem 4.2, and the observation that if a
bipartite graph has a perfect matching, then the two stable sets of its standard par-
tition are maximum, and, consequently, ξ(G) = 0.

It is interesting to notice that the equality 2α(G) = n(G) mentioned in Corollary
2.9 follows from Corollary 4.3, but it can not join the above series of equivalences
(see, for example, C4).

Let us also observe that for the bipartite graph G in Figure 9, the subgraph
G0 = G−N [core(G)] has more than one perfect matching.
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✇ ✇ ✇ ✇
✇ ✇ ✇

Figure 9: ξ(G) = 2, η(G) = 0, α(G) = 4, σ(G) = 1, µ(G) = 4, n(G) = 7.

Proposition 4.4 If G is a König-Egerváry graph and there is some S ∈ Ω(G) such
that the set W = (S, V (G)− S) generates a forest, then

ξ(G) + η(G) = α(G), σ(G) + η(G) = µ(G), and ξ(G) + 2η(G) + σ(G) = n(G).

Proof. If G0 = G−N [core(G)], A = S− core(G), B = V (G)−S−N(core(G)), then
Proposition 3.2(iii) implies that G0 is also a König-Egerváry graph and has a perfect
matching, say M . Let G1 be the partial graph of G0 having W ∩ E(G0) as edge set.
Then, M is a perfect matching in G1, as well. Since G1 is a forest, M is unique.
By Lemma 2.2, any maximum matching of G0 is contained in (A,B), and since the
edges from (A,B) yield a unique perfect matching, namely M , it follows that M is
the unique perfect matching of G0 itself. Hence, according to Theorem 4.2, we obtain
that ξ(G) + η(G) = α(G). By Proposition 3.5(iii), it implies σ(G) + η(G) = µ(G),
and immediately ξ(G) + 2η(G) + σ(G) = n(G).

It is worth observing that if (S, V (G) − S) generates a forest for some S ∈ Ω(G),
this is not necessarily true for all maximum stable sets of G. For example, the graph
G presented in Figure 10(i) and Figure 10(ii) has the partition {S1 = {a, b, c, d} ∈
Ω(G), V (G) − S1} such that (S1, V (G) − S1) does not generate a forest, (see Figure
10(i)), while for the partition {S2 = {a, b, y, z} ∈ Ω(G), V (G)−S2} the set (S2, V (G)−
S2) generates a forest (see Figure 10(ii)). Let us also remark that the converse of
Proposition 4.4 is not generally true. For instance, the graph in Figure 10(iii) is a
counterexample.

✇ ✇ ✇
✇ ✇ ✇ ✇
❅
❅
❅�

�
�

✟✟✟✟✟✟

�
�
�

a b c d

x y z

(i)

✇ ✇ ✇ ✇
✇ ✇ ✇
❍❍❍❍❍❍�

�
�

�
�
�

y a b z

c x d

(ii)

✇ ✇ ✇
✇ ✇ ✇
�
�
�❅

❅
❅

a b c

dxy

(iii)

Figure 10: König-Egervary graphs satisfying ξ(G) + η(G) = α(G).

Corollary 4.5 If T is a tree, then

ξ(T ) + η(T ) = α(T ), σ(T ) + η(T ) = µ(T ), and ξ(T ) + 2η(T ) + σ(T ) = n(T ).

As a consequence of Corollary 4.5, we obtain:

Corollary 4.6 [21] If T is a tree, then a vertex v ∈ V (T ) is in some but not in all
maximum stable sets of T if and only if v is an endpoint of an α-critical edge.
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Proof. If v ∈ V (T ) is in some but not in all maximum stable sets of T , then there
exists S ∈ Ω(T ) such that v ∈ S − core(T ). By Theorem 2.3, α-critical edges of
T form a matching. Proposition 2.6 ensures that they are also µ-critical, because
T is bipartite. Consequently, these edges belong to any maximum matching, which,
according to Lemma 2.2, is included in (S, V (T ) − S). Since, by Lemma 3.4(i),
no α-critical edge has an endpoint in N [core(T )], and Corollary 4.5 ensures that
η(T ) = α(T ) − ξ(T ) = |S − core(T )|, we infer that v must be an endpoint of an
α-critical edge.

Conversely, let e = vw be an α-critical edge in T and S ∈ Ω(T − e). Since
∣

∣S
∣

∣ = α(T−e) > α(T ), it follows that v, w ∈ S and therefore, S−{v}, S−{w} ∈ Ω(T ).

Hence, v is in some, namely, in S − {w}, but not in all maximum stable sets of T ,
namely, not in S − {v}.

Notice that Corollary 4.5 and Corollary 4.6 are not valid for general bipartite
graphs (see, for instance, the graph in Figure 9).

5 Conclusions

In this paper we state several properties of α-critical and µ-critical edges belonging
to König-Egerváry graphs. These findings generalize some previously known results
for trees and bipartite graphs. We have proved that for bipartite graphs and for
some special König-Egerváry graphs, their sets of α-critical edges and µ-critical edges
coincide. It seems to be interesting to characterize all the graphs having this property.
From the other point of view, since the α-critical edges of a König-Egerváry graph span
disjoint cliques of order two, one may be interested in describing the type of graphs
where their α-critical edges span disjoint cliques of order larger than two. Another
challenging problem is to describe classes of non-König-Egerváry graphs G satisfying
ξ(G) + η(G) = α(G), ξ(G) + η(G) ≤ α(G), and/or α(G) + σ(G) = µ(G) + ξ(G).
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