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On the K-property of quantized Arnold cat maps

S.V. Neshveyev

Abstract

We prove that some quantized Arnold cat maps are entropic K-systems. This result
was formulated by H. Narnhofer [1], but the fact that the optimal decomposition for the
multi-channel entropy constructed there is not strictly local was not appropriately taken
care of. We propose a strictly local decomposition based on a construction of Voiculescu.

I Introduction

The concept of K-system is very important in ergodic theory. Narnhofer and Thirring [2] intro-
duced a non-commutative analogue of this notion. In [3] V.Ya. Golodets and the author proved
the following sufficient condition for the K-property: a W∗-system (M,φ, α) is an entropic K-
system if there exists a W∗-subalgebra M0 of M such that M0 ⊂ α(M0), ∩n∈Zα

n(M0) = C1,
∪n∈N(α

−n(M0)
′ ∩ αn(M0)) is weakly dense in M . This condition and the observation that

a subsystem of a K-system invariant under the modular group is a K-system too allow to
construct a large class of quantum K-systems (see, in particular, [3, 4, 5]). We know only
one class of quantum systems for which the K-property is obtained by different arguments.
This is quantized Arnold cat maps. This result was formulated in Narnhofer’s paper [1]. The
decompositions contructed in the course of the proof there are not strictly local, that leads to
a factor that again could only be controlled by using asymptotic abelian arguments. So the
essential interest lies in the construction of a completely positive map that is strictly local and
can be well controlled and generalized in a larger context.

II The K-property of quantized cat maps

Let G be a discrete abelian group, ω:G × G → T a bicharacter. Consider the twisted group
C∗-algebra C∗(G,ω) generated by unitaries ug, g ∈ G, such that

uguh = ω(g, h)ug+h.

The canonical trace τ on C∗(G,ω) is given by τ(ug) = 0 for g 6= 0. It is known that the
uniqueness of the trace is equivalent to the simplicity of C∗(G,ω), and is also equivalent to the
non-degeneracy of the pairing (g, h) 7→ ω(g, h)ω̄(h, g). In particular, if G is countable and the
pairing is non-degenerate, then πτ (C

∗(G,ω))′′ is the hyperfinite II1-factor. Each ω-preserving
automorphism T of G defines an automorphism αT of C∗(G,ω), αT (ug) = uTg.

The non-commutative torus Aθ (θ ∈ [0, 1)) is the algebra C∗(Z2, ωθ), where

ωθ(g, h) = eiπθσ(g,h), σ(g, h) = g1h2 − g2h1.

1

http://arxiv.org/abs/math/0002080v1


The following theorem was formulated in [1].

Theorem 1. Let T ∈ SL2(Z), SpecT = {λ, λ−1}. Suppose |λ| > 1 (so that λ is real) and
θ ∈ [0, 1) ∩ (2Zλ2 + 2Z). Then (πτ (Aθ)

′′, τ, αT ) is an entropic K-system.

We will prove the following more general result.

Theorem 2. Let T be an aperiodic ω-preserving automorphism of G. Suppose that

∑

n∈Z

|1− ω(g, T nh)| < ∞ ∀g, h ∈ G.

Then (πτ (C
∗(G,ω))′′, τ, αT ) is an entropic K-system.

It was proved in [1, Theorem 3.8] that under the assumptions of Theorem 1, for any
g, h ∈ Z

2, we have
|1− ω(g, T nh)| ≤ C|λ|−|n|,

so Theorem 1 is really follows from Theorem 2. The key observation for that estimate was the
equality

T nh =
1

λ2 − 1

2∑

i=0

(λn+i + λ−n−i)h̄i + λ−nh̄ (n ∈ N),

where h̄i ∈ Z
2 and h̄ ∈ R

2 depend only on h and T , which is obtained by computations in
a basis diagonalizing T . Since σ(g, h̄i), σ(g, h), λ

n+i + λ−n−i = TrT n+i are all integers and
θ ≡ 2s(λ2 − 1)mod 2Z for some s ∈ Z, we have

θσ(g, T nh) ≡ λ−n2s(λ2 − 1)σ(g, h̄)mod 2Z,

whence |1− ω(g, T nh)| ≤ |λ|−n2π|s|(λ2 − 1)|σ(g, h̄)|.

Starting the proof of Theorem 2, consider a unital completely positive mapping γ:A →
πτ (C

∗(G,ω)′′ of a finite-dimensional C∗-algebra A. By definition [2], we have to prove that

lim
n→∞

lim
k→∞

1

k
Hτ (γ, α

n
T ◦ γ, . . . , α

n(k−1)
T ◦ γ) = Hτ (γ).

For a finite set X, we denote by Mat(X) the C∗-algebra of linear operators on l2(X). Let
{exy}x,y∈X be the canonical system of matrix units in Mat(X). For X ⊂ G, we define a unital
completely positive mapping iX :Mat(X) → C∗(G,ω) by

iX(exy) =
1

|X|
uxu

∗
y =

ω̄(x− y, y)

|X|
ux−y.

As follows from [6] (see Lemmas 5.1 and 6.1 there), there exist a net {Xi}i of finite subsets in
G and, for each i, a unital completely positive mapping jXi

:C∗(G,ω) → Mat(Xi) such that
||(iXi

◦ jXi
)(a)− a||→

i
0 ∀a ∈ C∗(G,ω). ¿From this we may conclude that any partition of unit

in πτ (C
∗(G,ω))′′ can be approximated in strong operator topology by a partition of the form

{iX(ak)}k, where {ak}k is a partition of unit in Mat(X). Hence, for any ε > 0, there exist
a finite subset X ⊂ G and a finite partition of unit 1 =

∑

i∈I ai in Mat(X) such that, for
bi = iX(ai), we have

Hτ (γ) < ε+
∑

i

ητ(bi) +
∑

i

S(τ(γ(·)), τ(γ(·)bi)),
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where ηx = −x log x. Set Xnk =
∑k

l=1 T
n(l−1)(X).

The following lemma was proved in [1] for G = Z
2.

Lemma. Let G be a discrete abelian group, T an aperiodic endomorphism of G, KerT = 0,
Y a finite subset of G, 0 ∈ Y . Then there exists n0 ∈ N such that if

k∑

l=1

T n(l−1)yl = 0 (1)

for some y1, . . . , yk ∈ Y , n ≥ n0, k ∈ N, then y1 = . . . = yk = 0.

Proof. First consider the case where G is finitely generated. Then the periodic part of G is
finite. Since T acts on it aperiodically, it is trivial, so G ∼= Z

n for some n ∈ N. Then T is
defined by a non-degenerate matrix with integral entries, which we denote by the same letter T .
It is known that the aperiodicity is equivalent to T ∩ SpecT = ∅. Let SpecT = {λ1, . . . , λm},
Vi ⊂ C

n be the root space corresponding to λi, and Pi the projection onto Vi along ⊕j 6=iVj.
Then (1) is equivalent to the system of equalities

k∑

l=1

T n(l−1)Piyl = 0, (2)

i = 1, . . . ,m. Fix i. Suppose, for definiteness, that |λi| < 1, and choose δ, 0 < δ < 1 − |λi|.
Since T |Vi

is a sum of Jordan cells, there exists a constant C such that

||T n|Vi
|| ≤ C(|λi|+ δ)n ∀n ∈ N.

There exists also a constant M > 0 such that, for y ∈ Y , we have either Piy = 0 or M−1 ≤
||Piy|| ≤ M . Finally, choose ni ∈ N such that

∞∑

n=ni

MC(|λi|+ δ)n < M−1.

Then if the equality (2) holds with n ≥ ni, then Piy1 = 0. Since KerT = 0, we can rewrite (2)
as
∑k−1

l=1 T n(l−1)Piyl+1 = 0. Thus we sequentially obtain Piy1 = . . . = Piyk = 0. So we may
take n0 = maxi ni.

We prove the general case by induction on |Y | using the same method as in [7] to reduce
the proof to the case considered above.

Let H0 be the group generated by Y, TY, T 2Y, . . . . Set Hn = T nH0, H∞ = ∩nHn,
Y ′ = Y ∩H∞. Suppose Y ′ 6= Y . There exists n1 ∈ N such that Y ′ = Y ∩Hn1 . If the equality
(1) holds with n ≥ n1, then y1 ∈ Hn1 ∩ Y = Y ′ ⊂ H∞. Then

∑k
l=2 T

n(l−1)yl ∈ H∞. Since

KerT = 0 and TH∞ = H∞, we conclude that
∑k−1

l=1 T n(l−1)yl+1 ∈ H∞. Thus we sequentially
obtain that y1, . . . , yk ∈ Y ′. Since |Y ′| < |Y |, we may apply the inductive assumption.

If Y ′ = Y , then Y ⊂ H1, hence there exists n ∈ N such that if H̄ is the group generated
by Y, TY, . . . , T nY , then Y ⊂ TH̄. Then H̄ is a finitely generated group, T−1 an aperiodic
endomorphism of H̄. For this case Lemma is already proved.

Applying Lemma to the set Y = X −X we see that the mapping

Xk → Xnk, (x1, . . . , xk) 7→
k∑

l=1

T n(l−1)xl,
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is a bijection for all k ∈ N and for all n ∈ N sufficiently large. This bijection induces an
isomorphism of Mat(Xk) onto Mat(Xnk). Composing it with iXnk

:Mat(Xnk) → C∗(G,ω) and
identifying Mat(Xk) with Mat(X)⊗k we obtain a unital completely positive mapping

σnk:Mat(X)⊗k → C∗(G,ω).

Set b(n, k)i1...ik = σnk(ai1 ⊗ . . .⊗ aik). By definition [8], we obtain
1

k
Hτ (γ, α

n
T ◦ γ, . . . , α

n(k−1)
T ◦ γ) ≥

≥
1

k

∑

i1,...,ik

ητ(b(n, k)i1...ik) +
1

k

k∑

l=1

∑

il

S
(

τ
(

γ(·)
)

, τ
(

γ(·)α
−n(l−1)
T (b(n, k)

(l)
il
)
))

,

where b(n, k)
(l)
il

=
∑

i1,...,̂il,...,ik

b(n, k)i1...ik .

If we denote by τY the unique tracial state on Mat(Y ), then τY = τ ◦ iY , so that τ ◦σnk =
τ⊗k
X , whence

τ(b(n, k)i1...ik) =

k∏

l=1

τX(ail) =

k∏

l=1

τ(bil).

So the first term in the inequality above is equal to
∑

i ητ(bi), and in order to prove Theorem
it remains to show that

||α
−n(l−1)
T (b(n, k)

(l)
il
)− bil || →

n→∞
0

uniformly on k, l ∈ N (l ≤ k) and il ∈ I. Let θl be the embedding of Mat(X) into Mat(X)⊗k

defined by
θl(a) = 1⊗ . . . ⊗ 1

︸ ︷︷ ︸

l−1

⊗a⊗ 1⊗ . . .⊗ 1
︸ ︷︷ ︸

k−l

.

Then b(n, k)
(l)
il

= (σnk ◦ θl)(ail). Thus we just have to estimate

||α
−n(l−1)
T ◦ σnk ◦ θl − iX ||.

Using the facts that ω is bilinear and T -invariant we obtain
σnk(ex1x1 ⊗ . . .⊗ exl−1xl−1

⊗ exy ⊗ exl+1xl+1
⊗ . . . ⊗ exkxk

) =

=
1

|X|k
ω̄



T n(l−1)(x− y), T n(l−1)y +
k∑

i=1,i 6=l

T n(i−1)xi



uTn(l−1)(x−y)

=





k∏

i=1,i 6=l

ω̄(x− y, T n(i−l)xi)

|X|




ω̄(x− y, y)

|X|
uTn(l−1)(x−y),

so that
||(α

−n(l−1)
T ◦ σnk ◦ θl − iX)(exy)|| =

=
1

|X|

∣
∣
∣
∣
∣
∣

∑

x1,...,x̂l,...,xk





k∏

i=1,i 6=l

ω̄(x− y, T n(i−l)xi)

|X|



− 1

∣
∣
∣
∣
∣
∣

=
1

|X|

∣
∣
∣
∣
∣
∣

k∏

i=1,i 6=l

(

1

|X|

∑

z∈X

ω̄(x− y, T n(i−l)z)

)

− 1

∣
∣
∣
∣
∣
∣

.
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We must show that the latter expression tends to zero as n → ∞ uniformly on k, l ∈ N

(l ≤ k). This follows from

∑

n∈Z

∣
∣
∣
∣
∣
1−

1

|X|

∑

z∈X

ω(x− y, T nz)

∣
∣
∣
∣
∣
< ∞.

So the proof of Theorem 2 is complete.

III Classical case

If ω ≡ 1, then C∗(G,ω) = C(Ĝ), the algebra of continuous functions on the dual group Ĝ. It
is known that an automorphism T of G is aperiodic iff the dual automorphism of Ĝ is ergodic.
Thus we obtain a classical Rohlin’s result [7] stating that ergodic automorphisms of compact
abelian groups have completely positive entropy. Note that in this case we have

b(n, k)i1...ik = bi1α
n
T (bi2) . . . α

n(k−1)
T (bik),

so what is really necessary for the proof is Lemma above and the possibility of approximating in
mean measurable partitions of unit by partitions consisting from trigonometric polynomials,
which can be proved by elementary methods without appealing to Voiculescu’s completely
positive mappings.
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