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Abstract

Let a countable amenable group G acts freely and ergodically on a Lebesgue space
(X,µ), preserving the measure µ. If T ∈ Aut (X,µ) is an automorphism of the equiva-
lence relation defined by G then T can be extended to an automorphism αT of the II1-factor
M = L∞(X,µ)⋊G. We prove that if T commutes with the action of G then H(αT ) = h(T ),
where H(αT ) is the Connes-Størmer entropy of αT , and h(T ) is the Kolmogorov–Sinai en-
tropy of T . We prove also that for given s and t, 0 ≤ s ≤ t ≤ ∞, there exists a T such that
h(T ) = s and H(αT ) = t.

Introduction

Entropy is an important notion in classical statistical mechanics and information theory. Initially
the conception of entropy for automorphism in the ergodic theory was introduced by Kolmogorov
and Sinai in 1958. This invariant proved to be extremely useful in the classical dynamical systems
theory and topological dynamics. The extension of this notion onto quantum dynamical systems
was done by Connes, Narnhofer, Størmer and Thirring [CS, CNT]. At the present time there
are several other promising approaches to entropy of C∗-dynamical systems [S, AF, V].

An important trend in dynamical entropy is its computation for various models. A lot of in-
teresting results was obtained in this field in the recent years. We note several of them. Størmer,
Voiculescu [SV], and the second author [N] computed the entropy of Bogoliubov automorphisms
of CAR and CCR algebras (see also [BG, GN2]). Pimsner, Popa [PP], Choda [Ch1] computed
the entropy of shifts of Temperley-Lieb algebras, Choda [Ch2], Hiai [H] and Størmer [St] com-
puted the entropy of canonical shifts. The first author, Størmer [GS1, GS2], Price [Pr] computed
entropy for a wide class of binary shifts.

In this paper we consider automorphisms of II1 factors arising from the dynamical systems
theory. Let a countable group G acts freely and ergodically on a Lebesgue space (X,µ) and
preserves µ. Then one can construct the crossed product M = L∞(X,µ) ⋊ G, which, as well
known, is a II1-factor. If T ∈ Aut (X,µ) defines an automorphism of the ergodic equivalence
relation induced by G then T can be extended to an automorphism αT of M [FM]. It is a
natural problem to compute the dynamical entropy H(αT ) in the sense of [CS] and to compare
it with the Kolmogorov-Sinai entropy h(T ) of T . It should be noted that this last problem is a
part of a more general problem. Namely, let M be a II1-factor, α ∈ Aut M , A its α-invariant
Cartan subalgebra, α(A) = A, then it is nature to investigate when H(α) is equal to H(α|A).
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These problems are studied in our paper. In Section 1 we prove that if T commutes with
the action of G then H(αT ) = h(T ). More generally, we prove that this result is valid for
crossed products of arbitrary algebras for entropies of Voiculescu [V] and of Connes-Narnhofer-
Thirring [CNT]. In Section 2 we consider two examples to illustrate this result. These examples
give non-isomorphic ergodic automorphisms of the hyperfinite ergodic equivalence relation with
the same entropy. In Section 3 we construct several examples showing that the entropies h(T )
and H(αT ) can be distinct. These systems are non-commutative analogs of dynamical systems
of algebraic origin (see [A, Y, LSW, S]). In particular, some of our examples are automorphisms
of non-commutative tori. In Section 4 we construct flows Tt such that H(αT1) > h(T1). In
particular, we show that the values h(T ) and H(αT ) can be arbitrary.

1 Computation of entropy of automorphisms of crossed prod-

ucts

Let (X,µ) be a Lebesgue space, G a countable amenable group of automorphisms Sg, g ∈ G, of
(X,µ) preserving µ, and T an automorphism of (X,µ), µ ◦ T = µ, such that

TSg = SgT, g ∈ G.

Theorem 1.1 Let (X,µ), G and T be as above. Suppose G acts freely and ergodically on (X,µ).
Then M = L∞(X,µ)⋊S G is the hyperfinite II1-factor with the trace-state τ induced by µ. The
automorphism T can be canonically extended to an automorphism αT of M , and

H(αT ) = h(T ) ,

where H(αT ) is the Connes-Størmer entropy of αT , and h(T ) is the Kolmogorov-Sinai entropy
of T .

We will prove the following more general result.

Theorem 1.2 Let M be an approximately finite-dimensional W∗-algebra, σ its normal state,
T a σ-preserving automorphism. Suppose a discrete amenable group G acts on M by automor-
phisms Sg that commute with T and preserve σ. The automorphism T defines an automorphism
αT of M ⋊S G, and the state σ is extended to the dual state which we continue to denote by σ.
Then

(i) hcpaσ(αT ) = hcpaσ(T ), where hcpaσ is the completely positive approximation entropy of
Voiculescu [V];

(ii) hσ(αT ) = hσ(T ), where hσ is the dynamical entropy of Connes-Narnhofer-Thirring [CNT].

Since CNT-entropy coincides with KS-entropy in the classical case, and with CS-entropy for
tracial σ and approximately finite-dimensional M , Theorem 1.1 follows from Theorem 1.2.

To prove Theorem 1.2 we will generalize a construction of Voiculescu [V].

Lemma 1.3 Let B be a C∗-algebra, x1, . . . , xn ∈ B. Then the mapping Ψ:Matn(C)⊗B → B,

Ψ(eij ⊗ b) = xibx
∗
j ,

is completely positive.
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Proof. Consider the element V ∈ Matn(B) = Matn(C)⊗B,

V =









x1 . . . xn
0 . . . 0

. . .
0 . . . 0









.

Consider also the projection p = e11 ⊗ 1 ∈ Matn(C) ⊗ B. Then Ψ is the mapping Matn(B) →
pMatn(B)p = B, x 7→ V xV ∗.

Let λ be the canonical representation of G inM⋊G, so that (Adλ(g))(a) = Sg(a) for a ∈M .

Lemma 1.4 For any finite subset F of G, there exist normal unital completely positive mappings
IF :B(l2(F ))⊗M →M ⋊G and JF :M ⋊G→ B(l2(F )) ⊗M such that

IF (eg,h ⊗ a) =
1

|F |
λ(g)aλ(h)∗ =

1

|F |
λ(gh−1)Sh(a),

JF (λ(g)a) =
∑

h∈F∩g−1F

egh,h ⊗ Sh−1(a),

(IF ◦ JF )(λ(g)a) =
|F ∩ g−1F |

|F |
λ(g)a,

σ ◦ IF = trF ⊗ σ, αT ◦ IF = IF ◦ (id⊗ T ),

(trF ⊗ σ) ◦ JF = σ, (id⊗ T ) ◦ JF = JF ◦ αT ,

where trF is the unique tracial state on B(l2(F )).

Proof. The complete positivity of IF follows from Lemma 1.3. Consider JF . Suppose that
M ⊂ B(H), and consider the regular representation of M ⋊G on l2(G)⊗H:

λ(g)(δh ⊗ ξ) = δgh ⊗ ξ, a(δh ⊗ ξ) = δh ⊗ Sh−1(a)ξ (a ∈M).

Let PF be the projection onto l2(F ) ⊗H. Then a direct computation shows that the mapping
JF (x) = PFxPF , x ∈ M ⋊G, has the form written above. All others assertions follow immedi-
ately.

Proof of Theorem 1.2.

(i) Since there exists a τ -preserving conditional expectation M ⋊G→M , we have hcpaσ(αT ) ≥
hcpaσ(T ). To prove the opposite inequality we have to show that hcpaσ(αT , ω) ≤ hcpaσ(T )
for any finite subset ω of M ⋊ G. Fix ε > 0. We can find a finite subset F of G such that
||(IF ◦ JF )(x) − x||σ < ε for any x ∈ ω. Let (ψ, φ,B) ∈ CPA(B(l2(F )) ⊗M, trF ⊗ σ). Then
(IF ◦ ψ, φ ◦ JF , B) ∈ CPA(M ⋊G,σ). Suppose

||(ψ ◦ φ)(JF (x))− JF (x)||trF⊗σ < δ

for some x ∈ αk
T (ω) and k ∈ N. Then

||(IF ◦ ψ ◦ φ ◦ JF )(x)− x||σ ≤ ||(ψ ◦ φ)(JF (x)) − JF (x)||σ◦IF + ||(IF ◦ JF )(x)− x||σ < δ + ε,
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where we have used the facts that σ ◦ IF = trF ⊗ σ and that αT commutes with IF ◦ JF . Since
JF ◦ αT = (id⊗ T ) ◦ JF , we infer that

rcpσ(ω ∪ αT (ω) ∪ . . . ∪ α
n−1
T (ω); δ + ε) ≤ rcptrF⊗σ(JF (ω) ∪ . . . ∪ (id ⊗ T )n−1(JF (ω)); δ),

so that (for δ < ε)

hcpaσ(αT , ω; 2ε) ≤ hcpaσ(αT , ω; ε+ δ) ≤ hcpatrF⊗σ(id ⊗ T, JF (ω); δ)

≤ hcpatrF⊗σ(id⊗ T ) = hcpaσ(T ),

where the last equality follows from the subadditivity of the entropy [V]. Since ε > 0 was
arbitrary, the proof of the inequality hcpaσ(αT , ω) ≤ hcpaσ(T ) is complete.

(ii) We always have hσ(αT ) ≥ hσ(T ). To prove the opposite inequality consider a channel
γ:B →M ⋊G, i. e., a unital completely positive mapping of a finite-dimensional C∗-algebra B.
We have to prove that hσ(αT ; γ) ≤ hσ(T ). Fix ε > 0. We can choose F such that

||(IF ◦ JF ◦ γ − γ)(x)||σ ≤ ε||x|| for any x ∈ B.

By [CNT, Theorem IV.3],

1

n
Hσ(γ, αT ◦γ, . . . , αn−1

T ◦γ) ≤ δ+
1

n
Hσ(IF ◦JF ◦γ, αT ◦IF ◦JF ◦γ, . . . , αn−1

T ◦IF ◦JF ◦γ), (1.1)

where δ = δ(ε, rankB) → 0 as ε→ 0. Since σ ◦ IF = trF ⊗σ, it is easy to see from the definition
of mutual entropy Hσ [CNT] that

Hσ(IF ◦JF ◦γ, IF ◦JF ◦αT ◦γ, . . . , IF ◦JF ◦αn−1
T ◦γ) ≤ HtrF⊗σ(JF ◦γ, JF ◦αT ◦γ, . . . , JF ◦α

n−1
T ◦γ)

(1.2)
Since IF ◦JF commutes with αT , and JF ◦αT = (id⊗T )◦JF , we infer from (1.1) and (1.2) that

hσ(αT ; γ) ≤ δ + htrF⊗σ(id⊗ T ;JF ◦ γ) ≤ δ + htrF⊗σ(id⊗ T ).

Since we could choose F such that δ was arbitrary small, we see that it suffices to prove that
htrF⊗σ(id ⊗ T ) = hσ(T ). For abelian M this is proved by standard arguments, using [CNT,
Corollary VIII.8]. To handle the general case we need the following lemma.

Lemma 1.5 For any finite-dimensional C∗-algebra B, any state φ of B, and any positive linear
functional ψ on Matn(C)⊗B, we have

S(trn ⊗ φ,ψ) ≤ S(φ,ψ|B) + 2ψ(1) log n.

Proof. By [OP, Theorem 1.13],

S(trn ⊗ φ,ψ) = S(φ,ψ|B) + S(ψ ◦E,ψ),

where E = trn ⊗ id:Matn(C)⊗B → B is the (trn ⊗ φ)-preserving conditional expectation (note
that we adopt the notations of [CNT], so we denote by S(ω1, ω2) the quantity which is denoted
by S(ω2, ω1) in [OP]). By the Pimsner-Popa inequality [PP, Theorem 2.2], we have

E(x) ≥
1

n2
x for any x ∈ Matn(C)⊗B, x ≥ 0.
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In particular, ψ ◦ E ≥ 1
n2ψ, whence S(ψ ◦E,ψ) ≤ 2ψ(1) log n.

Since M is an AFD-algebra, to compute the entropy of id ⊗ T it suffices to consider subal-
gebras of the form B(l2(F )) ⊗ B, where B ⊂ M . From Lemma 1.5 and the definitions [CNT]
we immediately get

htrF⊗σ(id⊗ T ;B(l2(F ))⊗B) ≤ hσ(T ;B) + 2 log |F |.

Hence htrF⊗σ(id⊗ T ) ≤ hσ(T ) + 2 log |F |. Applying this inequality to Tm, we obtain

htrF⊗σ((id ⊗ T )m) ≤ hσ(T
m) + 2 log |F | ∀m ∈ N.

But since M is an AFD-algebra, we have htrF⊗σ((id⊗T )m) = m ·htrF⊗σ(id⊗T ) and hσ(T
m) =

m·hσ(T ). So dividing the above inequality bym, and lettingm→ ∞, we obtain htrF⊗σ(id⊗T ) ≤
hσ(T ), and the proof of Theorem is complete.

Remarks.

(i) For any AFD-algebra N and any normal state ω of N , we have hω⊗σ(id⊗T ) = hσ(T ). Indeed,
we may suppose that N is finite-dimensional and ω is faithful (because if p is the support of ω,
then hω⊗σ(id⊗ T ) = hω⊗σ((id⊗ T )|pNp⊗M )). Now the only thing we need is a generalization of
the Pimsner-Popa inequality. Let p1, . . . , pm be the atoms of a maximal abelian subalgebra of
the centralizer of the state ω. Then

(ω ⊗ id)(x) ≥

(

m
∑

i=1

1

ω(pi)

)−1

x for any x ∈ N ⊗M, x ≥ 0,

by [L, Theorem 4.1 and Proposition 5.4].
(ii) By Corollary 3.8 in [V], hcpaµ(T ) = h(T ) for ergodic T . For non-ergodic T , the entropies
can be distinct. Indeed, let X1 be a T -invariant measurable subset of X, λ = µ(X), 0 < λ < 1.
Set µ1 = λ−1µ|X1 , T1 = T |X1 , X2 = X\X1, µ2 = (1 − λ)−1µ|X2 , T2 = T |X2 . It is easy to see
that h(T ) = λh(T1) + (1− λ)h(T2). On the other hand, it can be proved that

hcpaµ(T ) = max{hcpaµ1(T1), hcpaµ2(T2)}.

So if h(T1), h(T2) <∞, h(T1) 6= h(T2), then h(T ) < hcpaµ(T ).
To obtain an invariant which coincides with KS-entropy in the classical case, one can modify

Voiculescu’s definition replacing rankB with expS(σ ◦ ψ) in [V, Definition 3.1]. Theorem 1.2
remains true for this modified entropy.

2 Examples

We present two examples to illustrate Theorem 1.1. These examples give non-isomorphic ergodic
automorphisms of amenable equivalence relations with the same KS-entropy.

Let us first describe a general construction.

Proposition 2.1 Let S0, S1, S2 be ergodic automorphisms of (X,µ) such that S0 commutes with
S1 and S2, and S1 is conjugate with neither S2, nor S

−1
2 by an automorphism commuting with S0.

Set Mi = L∞(X,µ) ⋊Si
Z, i = 1, 2, and let αi be the automorphism of Mi induced by S0. Then

there is no isomorphism φ ofM1 ontoM2 such that φ◦α1 = α2◦φ and φ(L∞(X,µ)) = L∞(X,µ).
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Proof. Suppose such a φ exists. Let Ui ∈ Mi be the unitary corresponding to αi, i = 1, 2,
A = L∞(X,µ) ⊂ M1. Set U = φ−1(U2). Since U is a unitary operator from M1 such that
(AdU)(A) = A, it is easy to check that U has the form

U =
∑

i∈Z

aiU
i
1Ei, ai ∈ T,

where {Ei} is a family of projections from A, EiEj = 0, for i 6= j,
∑

i
Ei =

∑

i
U i
1EiU

−i
1 = I.

Since α1(U) = U , we have α1(Ei) = Ei, i ∈ Z. But S0 is ergodic, therefore Ei = I or Ei = 0.
Hence U = aiU

i
1 for some i ∈ Z and ai ∈ T. Since φ is an isomorphism, we have either i = −1,

or i = 1. We see that φ|L∞(X,µ) is an automorphism that commutes with S0 and conjugates S2
with either S−1

1 , or S1.

Remark. It follows from Proposition 2.1 that S0 defines non-isomorphic automorphisms of the
ergodic equivalence relations induced by S1 and S2 on X correspondingly, despite of H(α1) =
H(α2) = h(S0).

Example 2.2 Let X = [0, 1] be the unit interval, µ the Lebesgue measure on X, t0, t1 and
t2 irrational numbers from [0, 1] such that t2 6= t1, 1 − t1. Consider the shifts Six = x + ti
(mod 1), x ∈ [0, 1]. Any automorphism of X commuting with S0 commutes with S1 and S2.
Since S1 6= S±1

2 , Proposition 2.1 is applicable. Note that h(S0) = 0.

Example 2.3 Let (X,µ) be a Lebesgue space, Tt a Bernoulli flow on (X,µ) with h(T1) = log 2
[O]. Choose ti ∈ R, ti 6= 0 (i = 0, 1, 2), t1 6= ±t2, and set Si = Tti . Then h(S1) 6= h(S2), and we
can apply Proposition 2.1.

3 Entropy of automorphisms and their restrictions to a Cartan

subalgebra

Let M be a II1-factor, A its Cartan subalgebra, α ∈ Aut M such that α(A) = A. We consider
cases when H(α) > H(α|A).

Suppose a discrete abelian group G acts freely and ergodically by automorphisms Sg on
(X,µ), β an automorphism of G, and S an automorphism of (X,µ) such that TSg = Sβ(g)T .
Then T induces an automorphism αT of M = L∞(X,µ)⋊S G. Explicitly,

αT (f)(x) = f(T−1x) for f ∈ L∞(X,µ), αT (λ(g)) = λ(β(g)).

The algebra A = L∞(X,µ) is a Cartan subalgebra of M . On the other hand, the operators λ(g)
generate a maximal abelian subalgebra B ∼= L∞(Ĝ) ofM , and αT |B = β̂, the dual automorphism
of Ĝ. We have

H(αT ) ≥ max{h(T ), h(β̂)},

so if h(β̂) > h(T ), then H(αT ) > H(αT |A).

To construct such examples we consider systems of algebraic origin.

6



Let G1 and G2 be discrete abelian groups, and T1 an automorphism of G1. Suppose there
exists an embedding l:G2 →֒ Ĝ1 such that l(G2) is a dense T̂1-invariant subgroup. Set T2 =
T̂1|G2 . The group G2 acts by translations on Ĝ1 (g2 · χ1 = χ1 + l(g2)), and we fall into the
situation described above (with X = Ĝ1, G = G2, T = T̂1 and β = T2).

The roles of G1 and G2 above are almost symmetric. Indeed, to be given an embeddingG2 →֒
Ĝ1 with dense range is just the same as to be given a non-degenerate pairing 〈· , ·〉:G1×G2 → T,
then the equality T2 = T̂1|G2 means that this pairing is T1 × T2-invariant. The pairing gives rise
to an embedding r:G1 →֒ Ĝ2. Then G1 acts on Ĝ2 by translations g1 · χ2 = χ2 − r(g1), and
L∞(Ĝ1)⋊G2

∼= G1 ⋉L∞(Ĝ2). In fact, both algebras are canonically isomorphic to the twisted
group W∗-algebra W ∗(G1 ×G2, ω), where ω is the bicharacter defined by

ω((g′1, g
′
2), (g

′′
1 , g

′′
2 )) = 〈g′′1 , g

′
2〉.

Then αT is nothing else than the automorphism induced by the ω-preserving automorphism
T1 × T2.

Let R = Z[t, t−1] be the ring of Laurent polynomials over Z, f ∈ Z[t], f 6= 1, a polynomial
whose irreducible factors are not cyclotomic, equivalently, f has no roots of modulus 1. Fix

n ∈ {2, 3, . . . ,∞}. Set G1 = R/(f∼) and G2 =
n
⊕
k=1

R/(f), where f∼(t) = f(t−1). Let Ti be

the automorphism of Gi of multiplication by t. Let χ be a character of G2. Then the mapping
R ∋ f1 7→ f1(T̂2)χ ∈ Ĝ2 defines an equivariant homomorphism G1 → Ĝ2. In other words, if
χ = (χ1, . . . , χn) ∈ Ĝ2 ⊂ R̂n, then the pairing is given by

〈f1, (g1, . . . , gn)〉 =

n
∏

k=1

χk(f
∼
1 · gk),

where (f∼1 · gk)(t) = f1(t
−1)gk(t). This pairing is non-degenerate iff the orbit of χ under the

action of T̂2 generates a dense subgroup of Ĝ2. Since T2 is aperiodic, the dual automorphism is
ergodic. Hence the orbit is dense for almost every choice of χ.

Now let us estimate entropy. First, by Yuzvinskii’s formula [Y, LW], h(T̂1) = m(f), h(T̂2) =
n ·m(f), where m(f) is the logarithmic Mahler measure of f ,

m(f) =

∫ 1

0
log |f(e2πis)|ds = log |am|+

∑

j:|λj|>1

log |λj |,

where am is the leading coefficient of f , and {λj}j are the roots of f . Now suppose that the
coefficients of the leading and the lowest terms of f are equal to 1. Then G1×G2 is a free abelian
group of rank (n + 1) deg f , and by a result of Voiculescu [V] we have H(αT ) ≤ h(T̂1 × T̂2) =
(n+ 1)m(f).

Note also that since the automorphism T1×T2 is aperiodic, the automorphism αT is mixing.
Let us summarize what we have proved.

Theorem 3.1 For given n ∈ {2, 3, . . . ,∞} and a polynomial f ∈ Z[t], f 6= 1, whose coefficients
of the leading and the lowest terms are equal to 1 and which has no roots of modulus 1, there exists
a mixing automorphism α of the hyperfinite II1-factor and an α-invariant Cartan subalgebra A
such that

H(α|A) = m(f), n ·m(f) ≤ H(α) ≤ (n+ 1)m(f).

7



The possibility of constructing on this way systems with arbitrary values H(α|A) < H(α)
is closely related to the question, whether 0 is a cluster point of the set {m(f) | f ∈ Z[t]} (note
that it suffices to consider irreducible polynomials whose leading coefficients and constant terms
are equal to 1). This question is known as Lehmer’s problem, and there is an evidence that the
answer is negative (see [LSW] for a discussion).

In estimating the entropy above we used the result of Voiculescu stating that the entropy
of an automorphism of a non-commutative torus is not greater than the entropy of its abelian
counterpart. It is clear that this result should be true for a wider class of systems. Consider the
most simple case where the polynomial f is a constant.

Example 3.2 Let f = 2 and n = 2. Then G1 = R/(2) ∼= ⊕
k∈Z

Z/2Z, G2 = G1 ⊕ G1, T1 is the

shift to the right, T2 = T1 ⊕ T1. Let G1(0) = Z/2Z ⊂ G1 and G2(0) = Z/2Z ⊕ Z/2Z ⊂ G2 be
the subgroups sitting at the 0th place. Set

G
(n)
i = Gi(0) ⊕ TiGi(0)⊕ . . .⊕ T n

i Gi(0).

Then H(αT ) ≤ hcpaτ (αT ) ≤ lim
n→∞

1

n
log rankC∗(G

(n)
1 ×G

(n)
2 , ω) ≤ 3 log 2, so (for A = L∞(Ĝ1))

H(αT |A) = log 2 and 2 log 2 ≤ H(αT ) ≤ 3 log 2.

The actual value of H(αT ) is probably depends on the choice of the character χ ∈ Ĝ2. We want
to show that H(αT ) = 2 log 2 for some special choice of χ. For this it suffices to require the

pairing 〈· , ·〉|
G

(n)
1 ×G

(n)
2

be non-degenerate in the first variable for any n ≥ 0 (so that C∗(G
(n)
2 ) is

a maximal abelian subalgebra of C∗(G
(n)
1 ×G

(n)
2 , ω), and the rank of the latter algebra is equal

to 4(n+ 1)). The embedding G1 →֒ Ĝ2 is given by

g1 7→
∏

n∈Z:g1(n)6=0

T̂ n
2 χ, g1 = (g1(n))n ∈ ⊕

n∈Z
Z/2Z.

So we must choose χ in a way such that the character
∏m

k=1 T̂
nk

2 χ is non-trivial on G
(n)
2 for any

0 ≤ n1 < . . . < nm ≤ n. Identify Ĝ2 with
∏

n∈Z(Z/2Z ⊕ Z/2Z). Then T̂2 is the shift to the
right, and we may take any χ = (χn)n such that

(i) χn = 0 for n < 0, χ0 6= 0;
(ii) the group generated by T̂ n

2 χ is dense in Ĝ2.

Finally, we will show that it is possible to construct systems with positive entropy, which
have zero entropy on a Cartan subalgebra.

Example 3.3 Let p be a prime number, p 6= 2, Ĝ1 = Zp (the group of p-adic integers), G2 =
∪n∈N2

−n
Z ⊂ Ĝ1, T̂1 and T2 the automorphisms of multiplication by 2. The group G1 is the

inductive limit of the groups Z/pnZ, and T1 acts on them as the automorphism of division by 2.
Hence

H(αT |A) = lim
n→∞

H(αT |C∗(Z/pnZ)) = 0.

Since G2 = R/(t− 2), we have h(T̂2) = log 2, so H(αT ) ≥ log 2. We state that

H(αT ) = hcpaτ (αT ) = log 2.

8



The automorphism T
pn−1(p−1)
1 is identical on Z/pnZ. Since

W ∗(Z/pnZ×G2, ω) = Z/pnZ ⋉ L∞(Ĝ2),

by Theorem 1.2 we infer

hcpaτ (α
pn−1(p−1)
T |W ∗(Z/pnZ×G2,ω)) = h(T̂

pn−1(p−1)
2 ),

whence hcpaτ (αT |W ∗(Z/pnZ×G2,ω)) = log 2, and

hcpaτ (αT ) = lim
n→∞

hcpaτ (αT |W ∗(Z/pnZ×G2,ω)) = log 2.

4 Flows on II1-factors with invariant Cartan subalgebras

Using examples of previous sections and the construction of associated flow we will construct
systems with arbitrary values of H(α|A) and H(α) (0 ≤ H(α|A) ≤ H(α) ≤ ∞).

Suppose a discrete amenable group G acts freely and ergodically by measure-preserving
transformations Sg on (X,µ), T an automorphism of (X,µ) and β an automorphism of G such
that TSg = Sβ(g)T . Consider the flow Ft associated with T . So Y = R/Z×X, dν = dt× dµ,

Ft(ṙ, x) = (ṙ + ṫ, T [r+t]x) for r ∈ [0, 1), x ∈ X,

where t 7→ ṫ is the factorization mapping R → R/Z. The semidirect product group G0 = G×β Z

acts on (X,µ). This action is ergodic. It is also free, if

there exist no g ∈ G and no n ∈ N such that Sg = T n on a set of positive measure. (4.1)

Let Γ be a countable dense subgroup of R/Z, it acts by translations on R/Z. Set G = Γ×G0.
The group G is amenable. It acts freely and ergodically on (Y, ν). The corresponding equivalence
relation is invariant under the flow, so we obtain a flow αt on L

∞(Y, ν)⋊G. Compute its entropy.
Let αT be the automorphism of L∞(X,µ) ⋊G defined by T . We state that

H(αt) = |t|H(αT ), hcpaτ (αt) = |t|hcpaτ (αT ), and H(αt|L∞(Y,ν)) = |t|h(T ). (4.2)

Since h(Ft) = |t|h(F1) = |t|h(id×T ), the last equality in (4.2) is evident. To prove the first two
note that

H(αt) = |t|H(α1) and hcpaτ (αt) = |t|hcpaτ (α1)

(see [OP, Proposition 10.16] for the first equality, the second is proved analogously). We have

L∞(Y, ν)⋊ G = (L∞(R/Z)⋊ Γ)⊗ (L∞(X,µ)⋊G0), α1 = id⊗ α̃T ,

where α̃T is the automorphism of L∞(X,µ) ⋊ G0 defined by T . Since completely positive
approximation entropy is subadditive and monotone [V], we have hcpaτ (id⊗ α̃T ) = hcpaτ (α̃T ).
We have also H(id ⊗ α̃T ) = H(α̃T ) by Remark following the proof of Theorem 1.2. Since

L∞(X,µ) ⋊G0 = (L∞(X,µ)⋊S G)⋊αT
Z,

we obtain hcpaτ (α̃T ) = hcpaτ (αT ) andH(α̃T ) = H(αT ) by virtue of Theorem 1.2. So hcpaτ (α1) =
hcpaτ (αT ) and H(α1) = H(αT ), and the proof of the equalities (4.2) is complete.
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Theorem 4.1 For any s and t, 0 ≤ s < t ≤ ∞, there exist an automorphism α of the hyperfinite
II1-factor and an α-invariant Cartan subalgebra A such that

H(α|A) = s and H(α) = t.

Proof. Consider a system from Example 3.3. Then the condition (4.1) is satisfied, so the
construction above leads to a flow αt and an αt-invariant Cartan subalgebra A1 such that

H(αt|A1) = 0 and H(αt) = hcpaτ (αt) = |t| log 2.

As in Example 2.3, consider a Bernoulli flow St on (X,µ) with h(S1) = log 2. Then for the
corresponding flow βt on L

∞(X,µ)⋊S1 Z we have (with A2 = L∞(X,µ))

H(βt|A2) = H(βt) = hcpaτ (βt) = |t| log 2.

Since Connes-Størmer’ entropy is superadditive [SV] and Voiculescu’s entropies are subadditive,
we conclude that

H((αt ⊗ βs)|A1⊗A2) = |s| log 2, H(αt ⊗ βs) = H(αt) +H(βs) = (|t|+ |s|) log 2.

Finally, consider an infinite tensor product of systems from Example 3.3. Thus we obtain
an automorphism γ and an α-invariant Cartan subalgebra A3 such that

H(γ|A3) = 0 and H(γ) = ∞.

Then H(βs ⊗ γ)|A2⊗A3) = |s| log 2, H(βs ⊗ γ) = ∞.

5 Final remarks

5.1. Let p1 and p2 be prime numbers, pi ≥ 3, i = 1, 2. Construct automorphisms α1 and α2 as
in Example 3.3.

Proposition 5.1 If p1 6= p2, then α1 and α2 are not conjugate as automorphisms of the hyper-
finite II1-factor, though H(α1) = H(α2) = log 2.

Proof. Indeed, the automorphisms define unitary operators Ui on L
2(M, τ). As we can see, the

point part Si of the spectrum of Ui is non-trivial. If p1 6= p2, then S1 6= S2, so α1 and α2 are
not conjugate.

5.2. The automorphisms of Theorem 3.1 and Example 3.2 are ergodic. On the other hand, the
automorphisms of Example 3.3 are not ergodic, even on the Cartan subalgebra. Moreover, any
ergodic automorphism of compact abelian group has positive entropy (it is even Bernoullian),
so with the methods of Section 3 we can not construct ergodic automorphisms with positive
entropy and zero entropy restriction to a Cartan subalgebra (however, for actions of Zd, d ≥ 2,
we are able to construct such examples).

The construction of Section 4 leads to non-ergodic automorphisms also, even if we start with
an ergodic automorphism (such as in Example 3.2).

Acknowledgement. The first author (V.G.) is grateful to Erling Størmer for interesting
and helpful discussions of the first version of this paper.
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239 (1967) (Russian); Engl. transl. Sib. Math. J. 8, 172–178 (1968).

12


