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Abstrat

We investigate deformations of lagrangian manifolds with singulari-

ties. We introdue a omplex similar to the de Rham-omplex whose o-

homology alulates deformation spaes. Examples of singular lagrangian

varieties are presented and deformations are alulated expliitly.

1 Introdution

In this paper, we develop some ideas of a deformation theory of singular la-

grangian subvarieties. Lagrangian submanifolds are quite fundamental objets,

so in a sense it is natural to extend the study of them to a larger lass of ob-

jets whih are allowed to have singularities. This has been done by Arnold,

Givental and others ([Giv88℄). However, not muh is known on the behavior

of lagrangian singularities under deformations. The aim of this artile is to de-

sribe the spaes of in�nitesimal deformations and obstrutions of a lagrangian

subvariety and to perform alulations for some onrete examples. It turns

out that the lagrangian property of a spae has a strong in�uene on its defor-

mations, e.g., there are examples of spaes X with dim(T 1
X) = ∞, whih have

nevertheless a versal deformation spae for the lagrangian deformations.

In the sequel, we will onsider the following situation: Let M be a 2n-
dimensional sympleti manifold over K = R or K = C (that is, a C∞

or

omplex analyti manifold of real resp. omplex dimension 2n endowed with

a losed, non-degenerated 2-form ω, holomorphi in the seond ase) and L a

redued analyti subspae of dimension n, given by an involutive ideal sheaf I,
i.e. an ideal sheaf satisfying {I, I} ⊂ I where { , } denotes the Poisson braket

orresponding to ω. This ondition ensures that L is a lagrangian submanifold in

a neighborhood of eah of its smooth points. A lagrangian deformation of L will

be a deformation in the usual sense (a �at family LS → S) with the additional

ondition that all �bers are lagrangian subvarieties of M . More preisely, we
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will all a diagram

M

��

�

�

// M × S

��

L
/

�

??
�

�
�

�

//

��

LS

/

�

??
�

�
�

��
{∗} // S

a lagrangian deformation of L i� LS → S is �at and {IS, IS}S ⊂ IS . Here

IS is the ideal sheaf de�ning LS in M × S and { , }S is the Poisson struture

de�ned on M × S by the (degenerate) form ωS := p∗ω, p : M × S → M
being the anonial projetion. This de�nition an be formalized using the

language of deformation funtors (see [Sev99℄ and [Sh68℄). This more formal

approah yields the de�nition of morphisms of deformations, in partiular, two

deformations LS ⊂ M × S and L′
T ⊂ N × T are alled equivalent i� there is

an �brewise isomorphism F : M × S → N × T satisfying F ∗ωT = ωS . Suh

an F omes from a sympleti di�eomorphism f : M → N and in ase that M
is simply onneted (whih we will suppose from now on), f is indued by an

hamiltonian vetor �eld, see lemma 3.

The tangent spae to the funtor of lagrangian deformations of L (that is,

the spae of lagrangian deformations of L over Spec(K[ǫ]) up to those indued

by hamiltonian vetor �elds of the ambient manifold) will be denoted by LT 1
L.

However, we will fous our attention to the loal ase mainly, that is, we will

study the sheaf LT 1
L of lagrangian deformations of L. For lagrangian submani-

folds, it follows from [Voi92℄, that the versal deformation spae is smooth, i.e.,

deformation of suh objets are unobstruted. This is probably not true in the

singular ase, although an example has not been found yet. See theorem 1 for

further details.

Aknowledgements: We would like to thank A. Givental who suggested

to investigate the deformation theory of lagrangian singularities in deember

1992.

2 The omplex C•

We start with a slightly more general situation: Let I ⊂ OM be an involutive

ideal sheaf, OL the struture sheaf of the subvariety L desribed by I and denote

by L := I/I2
the onormal sheaf. The formula {Ii, Ij} ⊂ Ii+j−1

, whih an

be easily veri�ed, shows that there are well-de�ned operations

L ×OL −→ OL

(g, f) 7−→ {g, f}
and

L × L −→ L
(g, h) 7−→ {g, h}

ompatible in the sense that {g, f · h} = {g, f}h+ f{g, h}. This implies that

the �rst operation an be rewritten as a morphism

L → Der(OL,OL) = ΘL

One says that L is a Lie algebroid (for details on Lie algebroids, see [Ma87℄).

2



De�nition 1. Let Cp
L be the following OL-module

Cp
L := HomOL

(
p∧
L,OL

)

and de�ne a di�erential:

(δ (φ)) (h1 ∧ . . . ∧ hp+1) :=∑p+1
i=1 (−1)

i
{
hi, φ

(
h1 ∧ . . . ∧ ĥi ∧ . . . hp+1

)}

+
∑

1≤i<j≤p+1

(−1)
i+j−1

φ
(
{hi, hj} ∧ h1 ∧ . . . ∧ ĥi ∧ . . . ∧ ĥj ∧ . . . ∧ hp+1

)

It is a straightforward omputation to hek that δ ◦ δ = 0, so we get indeed
a omplex. Following [Ma87℄, it is alled the standard omplex for the Lie

algebroid L. Remark that C0 = OL and C1 = HomOL
(I/I2,OL) =: NL, the

normal sheaf of I in OM . For the de�nition of δ, the fat that I is involutive is

essential: the seond term would not make sense otherwise.

We may de�ne a produt on the omplex (C•, δ):

Cp × Cq −→ Cp+q

(Φ,Ψ) 7−→ Φ ∧Ψ

with

(Φ ∧Ψ)(f1 ∧ . . . ∧ fp+q) =

∑

I
∐

J={1,... ,n}

i1<...<ip

j1<...<jq

sgn(I, J) · Φ(fi1 ∧ . . . ∧ fip) ·Ψ(fj1 ∧ . . . ∧ fjq )

The sign is de�ned as

sgn(I, J) := sgn

(
1, . . . . . . . . . . . , p+ q

i1, . . . , ip, j1, . . . , jq

)

Proposition 1. Let Φ ∈ Cp
, Ψ ∈ Cq

et Γ ∈ Cr
. Then we have

1. Φ ∧Ψ = (−1)deg(Φ)·deg(Ψ) ·Ψ ∧ Φ

2. (Φ ∧Ψ) ∧ Γ = Φ ∧ (Ψ ∧ Γ)

3. δ(Φ ∧Ψ) = δ(Φ) ∧Ψ + (−1)deg(Φ) · Φ ∧ δ(Ψ)

Proof. The �rst two points are trivial, while the third has to be heked by an

expliit alulation.

Note that the last proposition says that (C•
L, δ,∧) is a di�erential graded

algebra, furthermore, we have C0
L = OL = Ω0

L. As one might hope, there is

indeed a tight onnetion between Ω•
L and C•

L.

Proposition 2. Suppose that L is lagrangian. Then there exists a morphism

J : Ω1
L → C1

L whih is an isomorphism outside the singular lous of L.

3



Proof. On a sympleti manifold, there is a anonial isomorphism β between

vetor �elds and one forms, given by β(V ) := iV ω. On the other hand, for

eah analyti subspae L ⊂ M we have two exat sequenes, dual to eah other,

namely, the onormal and the normal sequene, thus, there is the following

diagram:

L // Ω1
M ⊗OL

//

α:=β−1

��

Ω1
L

// 0

0 // ΘL
// ΘM ⊗OL

// NL
// T 1

L
// 0

Now the fundamental fat is that this diagram an be ompleted: the morphism

L → ΘL above ommutes with α, so we have

L //

α′

��

Ω1
M ⊗OL

α

��
ΘL

// ΘM ⊗OL

(1)

Note that the image of an element g ∈ L under α′
is just the hamiltonian vetor

�eld Hg. The morphisms J : Ω1
L → C1

L = NL we are looking for an now be

de�ned as the map indued by α, expliitly

J(df) = (g 7→ {f, g})

To see that J is an isomorphism near a smooth point of L it will be su�ient to

prove this for the map α′
(beause at smooth points x we have T 1

(L,x) = 0 and

the map Lx → Ω1
(L,x) ⊗ OL,x is injetive). So assume the sheaves L, Ω1

L, and

ΘL to be de�ned in a neighborhood of a smooth point whih means that they

all beome loally free. L then has to be identi�ed with the onormal bundle.

To prove that α′
is an isomorphism, we will onstrut an inverse. First note

that, by the fat that L is oisotropi, the morphism β : ΘM |L → Ω1
M |L atually

sends an element of ΘL to a form vanishing on all vetors tangent to L. So the

restrition of β to ΘL de�nes a morphism β′ : ΘL → L. The situation is as

follows:

0 // ΘL
//

β′

��

ΘM ⊗OL
//

β

��

NL
// 0

0 // L // Ω1
M ⊗OL

// Ω1
L

// 0

A diagram hase shows that β′
is injetive. On the other hand, we have

dim(L) = dim(ΘL), as L is lagrangian. So β′
is an isomorphism and the inverse

of α′
.

Corollary 1. The morphism J : Ω1
L → C1

L an be extended to a morphism of

DGA's

J : (Ω•
L, d,∧) −→ (C•

L, δ,∧)

whih is an isomorphism at smooth points of L.

4



Proof. Set

J(ω1 ∧ . . . ∧ ωp) := J(ω1) ∧ . . . ∧ J(ωp)

where ωi ∈ Ω1
L. Then it is immediate that J is an isomorphism on Lreg. To

prove that J ◦ d = δ ◦ J , it su�es to hek this in the lowest degrees, that is,

we have to show that the diagram

Ω0
L

��

d // Ω1
L

J

��
C0
L

δ // C1
L

ommutes. This follows diretly from Ω0
L = C0

L = OL.

In the last setion, we use the following elementary fat.

Lemma 1. The kernel of J is the omplex Tors(Ω•
L) onsisting of the torsion

subsheaves of Ωp
L.

Proof. We have Tors(Ω•
L) ⊂ Ker(J) as C•

L is torsion free. On the other hand,

the kernel is supported on the singular lous of L, so it must be a torsion sheaf,

hene Ker(J) ⊂ Tors(Ω•
L).

Remark: Although the de�nition of the modules Cp
L involves the ideal I, they

are probably intrinsi. This is at least lear in some speial ases as the following

lemma shows.

Lemma 2. Suppose L to be Cohen-Maaulay and regular in odimension one.

Then there is an isomorphism

(Ωp
L)

∗∗ ∼=
−→ Cp

L

where for an OL-module F , F∗
denotes HomOL

(F ,OL).

Proof. We will make use of the following fat: Let F be an OL-module of type

G∗
, then F is re�exive, i.e. F∗∗ = F . The morphism h : (Ωp

L)
∗∗ → Cp

L we are

looking is obtained by dualizing twie the morphism J : Ωp
L → Cp

L, this yields

J∗∗ : (Ωp
L)

∗∗ → (Cp
L)

∗∗ = Cp
L as Cp

L is of type Hom(−,OL). Clearly, h is an

isomorphism on the regular lous. We have an exat sequene

0 −→ K −→ (Ωp
L)

∗∗ h
−→ Cp

L −→ G −→ 0

where K and G are the kernel resp. okernel sheaves of the map h. This sequene
an be split

0 −→ K −→ (Ωp
L)

∗∗ −→ H −→ 0
0 −→ H −→ Cp

L −→ G −→ 0

with H = Im(h). Applying HomOL
(−,OL) yields

0 −→ H∗ −→ ((Ωp
L)

∗∗)∗ −→ K∗

0 −→ G∗ −→ (Cp
L)

∗ −→ H∗ −→ Ext1(G,OL)

Now we use the lemma of Ishebek (see [Mat89℄): Given a loal ring R, two R-
modules M and N with k = dim(M) and r = depth(N), then for all p < r− k,
the modules Extp(M,N) vanish. It follows that K∗ = G∗ = Ext1(G,OL) = 0,
so we have ((Ωp

L)
∗∗)∗ = (Cp

L)
∗
. Then obviously ((Ω1

L)
∗∗)∗∗ = (C1

L)
∗∗

and by the

argument above (Ω1
L)

∗∗ = C1
L so the map h is an isomorphism.
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3 Deformations

Reall that the spae of in�nitesimal embedded deformations of an analyti

algebra R, given as R = S/I where S is the ring of onvergent power series, is

equal to the normal module of I in S, i.e. HomR(I/I
2, R). Dividing out trivial

deformations gives the spae T 1
R, de�ned by the sequene

0 // HomR(Ω
1
R, R) // HomS(Ω

1
S , S) ⊗̂R // HomR(I/I

2, R) // T 1
R

// 0

On the other hand, the deformations of a manifold X over Spec(K[ǫ]/(ǫ2))
are parameterized by H1(X,ΘX). The otangent omplex is a tool to handle

these two speial ases in an integrated manner: in�nitesimal deformations of

an analyti spae L are in bijetion with H1(LX). It seems that the omplex

C•
L has to be seen as a �rst approximation to an equivalent for the otangent

omplex in the lagrangian ontext. More preisely, the following holds:

Theorem 1. The �rst three ohomology sheaves of C•
L are

• H0(C•
L) = KL.

• H1(C•
L) = LT 1

L .

• H2(C•
L) = LT 2

L . This symbol denotes the lagrangian obstrutions, that

is, LT 2
L is the sheaf of obstrutions to extend a lagrangian deformation to

higher order regardless whether it an be extended as a �at deformation.

The proof of the following preliminary lemma an be found in [Ban94℄.

Lemma 3. If H1(M,K) = 0, then eah di�eomorphism f : M → M satisfying

f∗ω = ω is the time 1 map of a �ow ϕt of a hamiltonian vetor �eld Hg for

some funtion g on M.

Proof of the theorem. H0(C•
L) equals Ker(δ : OL → C1

L). Take an element f of

Ker(δ). Then {f, g} ∈ I for all g ∈ I. If f is not a onstant, then the ideal

(I, f) is stritly larger than I, not the whole ring and still involutive. This is a

ontradition to the fat that L is lagrangian, whih means that I is maximal

under all involutive ideals. So the kernel must be the onstant sheaf.

To prove thatH1(C•
L) = LT 1

L , two things have to be heked: As C
1
L = NL, we

must �rst identify the elements of Ker(δ1 : C1
L → C2

L) with the �at lagrangian

deformations. Then we have to show that the image of δ0 : OL → C1
L are the

trivial deformations. But this is easy, beause for f ∈ OL, δ(f) ats as Hf , thus

induing a trivial deformation. Furthermore, by lemma 3, of all deformations

oming from vetor �elds on M , only those indued by hamiltonian vetor �elds

are trivial in the lagrangian sense. Now we hoose an open set U ⊂ L and

setions (f1, . . . , fk) generating I(U). Take an element Φ ∈ Ker(δ1), whih
means that

φ ({g, h})− {g, φ(h)} − {φ(g), h} = 0

for all f, g ∈ I/I2
. Then Φ orresponds to the deformation given by

Ĩ = (f1 + ǫφ(f1), . . . , fk + ǫφ(fk))

6



The ideal Ĩ is involutive i� for any two elements f + ǫφ(f), g + ǫφ(g), we have

{f + ǫφ(f), g + ǫφ(g)} ∈ Ĩ, whih is equivalent to

F := {f, g}+ ǫ ({f, φ(g)}+ {φ(f), g}) ∈ Ĩ

Consider G := {f, g} + ǫφ ({f, g}), whih is an element of Ĩ, so the ondition

F ∈ Ĩ is equivalent to F −G ∈ Ĩ, that is

{f, φ (g)}+ {φ (f) , g} − φ ({f, g}) ∈ I

This means exatly that φ ∈ Ker(δ1).
In order to interpret the seond ohomology group, we de�ne the bilinear

mapping

õb : C1
L × C1

L −→ C2
L

(Φ,Ψ) 7−→ (g ∧ h 7→ {Φ(g),Ψ(h)})

In this way we get a quadrati form ob(Φ) := õb(Φ,Φ). It an be immediately

veri�ed that this indues a map ob : H1(C•
L) → H2(C•

L). We will now prove

the following: Given a lagrangian deformation Φ ∈ LT 1
L . Then there is a lift to

seond order de�ning an involutive ideal i� ob(Φ) = 0 ∈ LT 2
L . The last ondition

is equivalent to the existene of Ψ ∈ LT 1
L with ob(Φ) = δ(Ψ), i.e.

{Φ(f),Φ(g)} = Ψ({f, g})− {f,Ψ(g)} − {Ψ(f), g} ∀f, g ∈ L

But this means that the following ideal is involutive.

J = (f1 + ǫΦ(f1) + ǫ2Ψ(f1), . . . , fk + ǫΦ(fk) + ǫ2Ψ(fk))

Remark: The fat that LT 2
L is not the real obstrution spae make preise

what was meant by saying that omplex C•
L is a �rst approximation of the

objet we are looking for: Hopefully, there is a modi�ed version of this omplex

whose ohomology gives, in omplete analogy with the otangent omplex, the

spaes T 1
and T 2

for �at lagrangian deformations. On the other hand, it

is perhaps not even neessary to impose �atness as the involutivity ondition

implies that the dimension annot drop, see also [Mat℄.

Corollary 2. There is an exat sequene

0 // H1(L,KL) // H1(C•
L)

// H0(L,LT 1
L )

// H2(L,KL) // H1(C•
L)

Furthermore, there are two speial ases:

• Let L be a ontratible spae. Then H1(C•
L) = H0(L,LT 1

L ) and in fat:

LT 1
L = H0(L,LT 1

L ).

• Let L be Stein and smooth. Then it follows that H1(C•
L) = H1(L,KL) and

the spae of global deformations is indeed LT 1
L = H1(L,KL).

7



Proof. The �rst fat is just the de�nition of the sheaf LT 1
L . In the seond ase,

note that the spae of embedded �at deformations isH0(L,NL), whereNL is the

normal bundle of L inM . As L is smooth, this happens to beH0(L,Ω1
L), so eah

in�nitesimal �at deformation orresponds to globally de�ned one-form on L. It
is losed i� the deformation is lagrangian and the subspae of exat one-forms

are deformations indued by hamiltonian vetor �elds (isodrasti deformations,

see [Wei90℄), these are the trivial ones. L is assumed to be a Stein manifold, in

this ase the �rst de Rham-ohomology group is exatly H1(L,KL).

By analogy with the otangent omplex, the following generalization is probably

true although we did not hek the details.

Proposition 1. The spae of in�nitesimal lagrangian deformations of a om-

plex spae L whih is a lagrangian subvariety of a sympleti manifold (M,ω)
is given by

LT 1
L = H

1(C•
L)

4 Finiteness of the ohomology

This setion is devoted to the proof of the following result.

Theorem 2. Let L ⊂ M be a lagrangian subvariety as above. Assume that the

following ondition is satis�ed: Denote by edim(p) the embedding dimension of

a point p ∈ L, that is edim(p) := dimK(mp/m
2
p), where mp is the maximal

ideal in the loal ring O(L,p). Let S
L
k be the following set

SL
k := {p ∈ L | edim(p) = 2n− k} ⊂ L

for all k ∈ {0, . . . , n}, then suppose that we have

dim(SL
k ) ≤ k

for all k. Under this ondition (whih will be alled �ondition P�), all Hi(C•
L)

are onstrutible sheaves of K-vetor spaes with respet to the strati�ation

given by the SL
k .

Before going into the details of the proof, we would like to explain the mean-

ing of the ondition (2).

Lemma 4. Let p ∈ SL
k ⊂ L with k > 0. Then the germ (L, p) an be deom-

posed into a produt

(L, p) = (L′, p′)× (K, 0)

where (L′, p′) is a germ of a lagrangian variety in the sympleti spae K2n−2
.

Furthermore, we have p′ ∈ SL′

k−1.

Proof. Let x1, . . . , x2n be oordinates of M entered at p. Then the fat that

edim(p) < 2n implies that there are oe�ients αi ∈ OL,p suh that the follow-

ing equation holds in OL,p
2n∑

i=1

αixi + h = 0

8



where h is an element of OL,p vanishing at seond order. So we have an element

in the ideal desribing (L, p) whose derivative do not vanish. Then (L, p) is

�bred by the hamiltonian �ow of this funtion. Expliitly, we an make an

analyti hange of oordinates, suh that α1 = 1, αi = 0 for all i > 1 and h = 0.
Than the ideal of (L, p) is of the form (x1, f1, . . . , fm) for some funtions fi
whih are independent of the variable xn+1 (provided that we have hosen the

sympleti form to be

∑n
i=1 dxi ∧ dxn+i).

Aording to the lemma, the set of points of the variety L an be divided into two

lasses, those with maximal embedding dimension (these are the �bad points�)

and those (with edim(p) < 2n) at whih L is deomposable. Condition P implies

that the bad points are isolated. As usual, the proof of the theorem onsists of

two parts: First, we will show that the ohomology sheaves are loally onstant

on the strata SL
k . This is an immediate onsequene of the following lemma.

Then it su�es to show that all stalks of Hp(C•
L) are �nite-dimensional.

Lemma 5 (Propagation of Deformations). Let

(L, 0) ⊂ (K2n, 0)

be a germ of a lagrangian subvariety whih an be deomposed, i.e., there is

a germ (L′, 0) (whih is lagrangian in (K2n−2, 0)) suh that (L, 0) = (L′, 0) ×
(K, 0). Denote by π : L → L′

the projetion. Then there is a quasi-isomorphism

of sheaf omplexes

j : π−1C•
L′ → C•

L

Proof. The proof of lemma 4 shows that the ideals I and I ′ desribing the two

germs di�er by exatly one element whose di�erential do not vanish at the origin.

This implies that the onormal sheaves L of L and L′
of L′

are related by the

formula L = π∗L′ ⊕OL. It follows that

Cp
L = HomOL

(
π∗

p∧
L′,OL

)
⊕HomOL

(
π∗

p−1∧
L′,OL

)

Now we have to desribe the di�erential on C•
L. We hoose loal Darboux o-

ordinates (p1, . . . , pn, q1, . . . , qn) on K2n
and (p2, . . . , pn, q2, . . . , qn) on K2n−2

.

Suppose that the two ideals are I = (f1, . . . , fm, p1) and I ′ = (f1, . . . , fm, p1, q1)
(if we onsider L′

as embedded in K2n
). Let Φ be an element of

HomOL

(
π∗

p∧
L′,OL

)

Then it an be written as a power series in q1 with oe�ients in C•
L′ . A diret

alulation shows that the di�erential on C•
L is

δ : Cp
L −→ Cp+1

L
∞∑
i=0

(Φ,Ψ) qi1 7→
∞∑
i=0

(
δΦi, δΨi + (−1)p+1(i+ 1)Φi+1

)
qi1

It is lear that the morphism j must be the obvious inlusion

HomOL′

(
p∧
L′,OL′

)
→֒ HomOL

(
π∗

p∧
L′,OL

)
⊕HomOL

(
π∗

p−1∧
L′,OL

)

9



We will now show that the okernel of this inlusion is ayli. Then it follows

immediately that j indues an isomorphism on the ohomology. So let Γ be an

element of Coker(j) ∩ Ker(δ), that is,

Γ =

∞∑

i=1

(Φi,Ψi)q
i
1 + (0,Ψ0)

where δΦi = 0 and δΨi = (−1)p(i+1)Φi+1 for all i. But then Γ vanishes in the

ohomology beause it an be written as Γ = δΛ with

Λ :=
∞∑

i=1

(
(−1)pΨi−1

i
, 0

)
qi1 ∈ Cp−1

L

Corollary 3. We have isomorphisms of sheaves

π−1Hi(C•
L′) ∼= Hi(C•

L)

Proof. This is obvious sine π−1
is an exat funtor.

Let p ∈ SL
k be a point at whih L is deomposable, i.e. k > 0. By indution,

we �nd a neighborhood U ⊂ L of p suh there is an analyti isomorphism h :

U
∼=
−→ Z ×Bǫ(0)

k
, where Z is lagrangian in K2(n−k)

, Bǫ(0) := {z ∈ K | |z| < ǫ}
and eah q ∈ U ∩ SL

l orresponds via h to a point (q′, b) ∈ Z × B(ǫ)k with

q′ ∈ SZ
l−k. In partiular, the image of U ∩SL

k under h is ({pt}, B(ǫ)k), so by the

last orollary, Hp(C•
L) is onstant on U ∩ SL

k .

It remains to show that the stalks of the ohomology are �nite-dimensional.

Again by orollary 3, this is done one we have shown it for points with maximal

embedding dimension. We will use a method developed in [BG80℄. In this paper,

the following situation is onsidered. Let f : X → S be a morphism of omplex

spaes (with dim(S) = 1) and K•
a ertain sheaf omplex on X . Then, under

suitable onditions, the relative hyperohomologyRif∗K•
are oherent sheaves of

OS-modules. The proof of this theorems relies on a funtional analyti argument

of Kiehl and Verdier (see [KV71℄ or [Dou74℄) whih states, roughly speaking,

that if the mapping indued on the omplex of setions of K•
by a small shrinking

of the open set (over whih the setions are taken) is a quasi-isomorphism, then

the hyperohomology groups are �nite dimensional vetor spaes. We are going

to use this result in the form of [vS87℄.

Lemma 6. Let (L, p) ∈ (K2n, 0) be a germ of a lagrangian variety satisfying

ondition P whih is indeomposable at p. Then the stalk Hi(CL)p is a �nite-

dimensional K-vetor spae.

Proof. Choose a representative V for the the germ suh that edim(q) = 2n i�

q = p for all points q ∈ V . We refer the reader to theorem 1 in [vS87℄. We do

not onsider a relative situation here, so the map f : X → S in this theorem

is replaed by V → {0} (Obviously, V an be hosen suh that this map is a

standard representative of the germ (L, p) in the sense of de�nition 1 in [vS87℄,

i.e., V = L∩Bǫ(p)). The omplex of sheaves in the theorem is the omplex C•
L,

whih satis�es the �rst two properties (Cp
L is OL-oherent and the di�erential is

10



K-linear). Our task is to verify the third axiom, that is, we have to �nd a vetor

�eld of lass C∞
suh that Hp(C•

L) is transversally onstant (see de�nition 2 in

[vS87℄), this will be done in orollary 4. Now the proof of the theorem shows that

there is a smaller neighborhood V1 of p suh that Γ(V,Hp(Cp
L)) = Γ(V1,Hp(Cp

L)).
This gives the result by using [KV71℄ in the same way as in [vS87℄ or [BG80℄.

Lemma 7. Let q ∈ V ∩ SL
k with k > 0. Then there is a C∞

-vetor�eld in a

neighborhood W of q in M , tangent to V ∩ SL
k and transversal to ∂Bǫ(p).

Proof. It follows from lemma 4 that there exist k linear independent hamil-

tonian vetor �elds on M whih respets the stratum Sk
L. Now we have to

distinguish the ases K = R and K = C, in the �rst one, sine Sk
L is of real

dimension k and sine the intersetion of L and Bǫ(p) was transversal, it fol-
lows immediately that we an �nd a linear ombination of theses C∞

-�elds

whih is transversal to Bǫ(p). The same is true in the omplex ase, here we

have k independent hamiltonian �elds η1, . . . , ηk whih are holomorphi. As the

holomorphi tangent spae at eah point is anonially isomorphi (over R) to

the real one, we get 2k linear independent C∞
-�elds by applying this isomor-

phism to η1, . . . , ηk, iη1, . . . , iηk. These an be used to �nd a �eld transversal

to ∂Bǫ(p).

Corollary 4. There is a C∞
-vetor�eld ϑ on a neighborhood U of ∂Bǫ(p) in

M suh that Hp(C∞
L ) is transversally onstant with respet to U and ϑ.

Proof. Set U := (V \{p})◦. Then the last lemma yields a overing Ui of U and

vetor �elds ϑi de�ned in a neighborhood of Ui in M . Chose a partition of unity

subordinate to this overing to obtain a �eld on U whih is still transversal to

∂Bǫ. For eah point q ∈ U , whih is ontained in some stratum SL
k , ϑ is

neessarily tangent to SL
k , so the ohomology sheaves are onstant on the loal

integral urves of ϑ.

Remark: By the Riemann-Hilbert-orrespondene (see [Bjö93℄), the omplex

H• := H(C•
L), viewed as an objet of Db

c(KM ) (the derived ategory of on-

strutible sheaves of K-vetor spaes on M) orresponds via the de Rham-

funtor to a unique omplex of oherent DM -modules with regular holonomi

ohomology supported on L (i.e., an objet of Db
r.h.

(µL(DM ))).

Lemma 8. The omplex H•
satis�es the �rst perversity ondition, that is, the

following inequality holds.

dim(Hi(C•
L)) ≤ n− i

Proof. Let p ∈ SL
k . Then (L, p) = (L′, p′) × (Kk, 0) and Hi(C•

L)p = Hi(C•
L′)p′

.

But dim(L′) ≤ n− k, so Hi(C•
L′)p′ = 0 for all i > n− k.

In ase that the seond perversity ondition is also satis�ed, the Hi
's are the

de Rham-ohomology modules of some DM -module supported on L. The fol-

lowing onsideration gives more evidene that the omplex C•
L is losely related

to D-module theory: Every omplex manifold is lagrangian in its own otan-

gent bundle. Consider Spener's omplex, whih is a resolution of OX as a

DX -module, expliitly:

Sp(OX)• : . . . → DX ⊗OX
Θp+1

X → DX ⊗OX
Θp

X → . . .DX → OX → 0

11



The de Rham-omplex of DX -module M is obtained as

DR(M) := HomDX
(Sp(OX)•,M)

If we de�ne a generalized version of the omplex C•
L as

Cp
L(M) := HomOL

(
p∧
L,M

)

for some module M over the Lie algebroid L, then Cp
X(M) (for X lagrangian

in T ∗X) is exatly the de Rham-omplex of the DX -Module M.

5 Examples and results

In this setion we will desribe some of the basi examples of singular lagrangian

submanifolds, in partiular those for whih results on their deformation spaes

are available. We start with the easiest ase, a plane urve C in K2
, given as

the zero set of a mapping f : K2 → K. Suh a urve C is obviously lagrangian.

In this ase the omplex C•
C is simpli�es to

C0
C = OC

δ
−→ C1

C = HomOC
(I/I2,OC) = HomOC

(OC ,OC) = OC

h 7−→ {h, f}

It follows immediately that H2(C•
C) = 0, while LT 1

C = H1(C•
C) = Coker(δ). This

sheaf is supported on the singular points of the urve, let x0 be suh a point.

Then we have

LT 1
C,x0

=
OC,x0

{{h, f} |h ∈ OC,x0
}

Now the following equalities hold

OC,x0

{{h, f}|h ∈ OC,x0
}

=
Ω2

K2,x0{
fΩ2

K2,x0

+ {df ∧ dh|h ∈ OC,x0
}
}

=
Ω2

K2,x0{
fΩ2

K2,x0

+ df ∧ dΩ0
K2,x0

}

beause OC,x0

∼= Ω2
K2,x0

/(fΩ2
K2,x0

) and the Poisson braket of two funtions f
and g orresponds under the isomorphism OK2,x0

∼= ΩK2,x0
to the 2-form df∧dg.

But it is known (see [Mal74℄) that the dimension of the last quotient equals µ,
the Milnor number of the plane urve singularity (C, x0). So the result is:

LT 1
C =

∏

x0∈Sing(C)

K
µ(C,x0)

This is remarkable beause the usual T 1
C has dimension τ (the Tjurina number)

whih is in general smaller than µ. The di�erene orresponds to the spae

of deformations of the restrition of the sympleti struture to L (see also

[Giv88℄).

Applying lemma 5, we see that the dimension of LT 1
for a surfae singularity

whih is a urve germ, rossed with a smooth fator is also equal to the Milnor
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number of this urve. This result an also be obtained by a diret alulus,

e.g., for a uspidal edge given in four-spae (with oordinates A,B,C,D and

sympleti form dA∧ dC + dB ∧ dD) by the two equations A,B2 −C3
, we get

LT 1 = K2
and LT 2 = 0.

We will proeed with further examples of lagrangian surfaes in K4
, whih

satisfy ondition P of theorem 2. So there are three strata: one point with

embedding dimension four (supposed to be the origin), the singular lous away

from this point and the regular lous. In order to simplify the alulation of

the ohomology of C•
, we will suppose that our varieties are strongly quasi-

homogeneous in the sense of [CJNMM96℄, that is, one an hoose loal oor-

dinates of the ambient spae around eah point of L suh that the de�ning

equations beome weighted homogeneous with positive weights. In this ase,

the de Rham-omplex is a resolution of the onstant sheaf as one an see by

onsidering the deomposition of the modules Ωp
L into eigenspaes of the Lie-

derivative.

Lemma 9. Let L ⊂ M be a strongly quasi-homogeneous lagrangian subvariety.

Consider the map J : (Ω•
L, d,∧) → (C•

L, δ,∧) of DGA's from orollary 1. Denote

by Ω̃•
L the subomplex Im(J) in C•

L. Then Ω̃•
L is a resolution of KL.

Proof. By the long exat ohomology sequene, it su�es to prove that the

omplex Ker(J) is ayli. This an be done in exatly the same way as for

Ω•
L provided that the inner derivative iE (E being the quasi-homogeneous Euler

vetor �eld) maps Ker(J)∩Ωp
L into Ker(J)∩Ωp−1

L . But this follows from lemma

1 beause if ω is a torsion element than the same holds for iEω.

Corollary 5. Denote by G•
L the okernel of the map J . Then there is an exat

sequene of OL-modules

0 −→ Ω̃•
L −→ C•

L −→ G•
L −→ 0

and the long assoiated long exat sequene gives

Hi(C•
L) = Hi(G•

L)

for all i ≥ 0. In partiular, if L is of dimension two, then we get

H1(C•
L) = Ker(δ : G1

L → G2
L)

H2(C•
L) = Coker(δ : G1

L → G2
L)

We an thus alulate LT 1
L and LT 2

L by omputing the indued morphism

δ : G1
L → G2

L. As J is an isomorphism at smooth points, the sheaves Gi
L are sup-

ported on the singular lous of L, whih is of dimension one. In a neighborhood

of all of its regular points q (points with embedding dimension three), the germ

is deomposable and the dimension of Hi(C•
L)q is given by lemma 5. So we are

only interested in the one speial point with maximal embedding dimension. We

now hoose an element p ∈ OL whih is �nite when restrited to the support of

Gi
L, note that although this is set-theoretially equal to the singular lous of L,

it may have embedded omponents. We will suppose that p maps the origin in

K4
to the origin in K. Consider the sheaves p∗G1

L and p∗G2
L, these are modules

over OK. Denote by Ẽ resp. F̃ the modules of setion of p∗G1
L resp. p∗G2

L in
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a small neighborhood of the origin. Then they an be deomposed into torsion

and torsion free parts, the former being supported on the origin while the latter

is free over K{t}. In pratie, this is done as follows: As G1
L and G2

L are graded

modules over OL and the map δ : G1
L → G2

L is homogeneous, we onsider the

deomposition of these modules into homogeneous parts. The map p is �nite,

so the torsion submodules of Ẽ and F̃ orresponds to homogeneous parts of G1
L

and G2
L in a �nite number of degrees. This yields a deomposition of Ẽ and F̃

into Ẽ = Ê⊕E and F̃ = F̂ ⊕F suh that Ê and F̂ are supported on the origin,

while E and F are free. Ê and F̂ being artinian, the kernel and okernel of δ|Ê
an be omputed expliitly. The following lemma is used to do this for δ|E .

Lemma 10. The rank of E and F is the Milnor number µ of the transversal

urve singularity, i.e. the germ (L′, 0) suh that (L, p) = (L′, 0)× (K, 0) for all
p ∈ Sing(L) \ 0. Therefore, δ|E : E → F is an (E,F )-onnetion in the sense of

[Mal74℄.

Proof. This is an expliit alulation involving the de�nition of the omplex

C•
L and the map J : Ω•

L → C•
L. It su�es to alulate the rank of (G1

L)p and

(G2
L)p. So suppose that (L, p) is a deomposable germ. We hoose oordinates

(x, y, s, t) ∈ K4
(with sympleti form ω = dx∧dy+ds∧dt) around p suh that

L is given as the zero lous of s and a funtion f depending only on x and y.
Denote the ideal generated by these two funtions by I and by R the stalk of

OL at the point p. Then we an identify I/I2 with R2
, so HomR(I/I

2, R) is
free on the two generators n1 and n2, where

n1(f) = 1 n1(s) = 0
n2(f) = 0 n2(s) = 1

while HomR(I/I
2∧I/I2, R) is just R, generated by the homomorphism sending

f ∧ s to 1 in R. The omplex C•
at the point p then reads:

R −→ Rn1 ⊕Rn2 −→ R
h 7−→ ({h, f}, {h, s})

(p, q) 7−→ {p, s}+ {f, q}

where the pair (p, q) ∈ R2 = HomR(I/I
2, R) denotes the homomorphism send-

ing f ∈ I/I2 to p ∈ R and s ∈ I/I2 to q ∈ R.
Now we have to investigate the modules of di�erential forms on L at x. In

general

Ωp
R = Ωp

S/(IΩ
p
S + dI ∧Ωp−1

S )

where S is the ring K{x, y, s, t}. This leads to

Ω1
R = M1 ⊕M2

Ω2
R = M3 ⊕M4

where we have used the following abbreviations:

M1 =
Rdx⊕Rdy

Rdf

M2 = Rdt

M3 =
Rdx ∧ dy

R df ∧ dx⊕Rdf ∧ dy

M4 =
Rdx ∧ dt⊕Rdy ∧ dt

R df ∧ dt
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J : Ω•
L → C•

L an be desribed as

J : M1 −→ Rn1 ⊕Rn2

dx 7−→ ({x, f}, {x, s}) = (∂yf, 0)

dy 7−→ ({y, f}, {y, s}) = (−∂xf, 0)

J : M2 −→ Rn1 ⊕Rn2

dt 7−→ ({t, f}, {t, s}) = (0, 1)

J : M3 −→ R

dx ∧ dy 7−→ J(dx) ∧ J(dy) = 0

J : M4 −→ R

dx ∧ dt 7−→ J(dx) ∧ J(dt) = ∂yf

dy ∧ dt 7−→ J(dx) ∧ J(dt) = −∂xf

E and F are the okernels of the maps J : M1 ⊕ M2 → Rn1 ⊕ Rn2 and

J : M3 ⊕M4 → R, respetively. So the result is

E = F = R/ (∂xf, ∂yf) = K{t} ⊗ OL′,p/ (∂xf, ∂yf) = K{t}τ

As L is strongly quasi-homogeneous, we have weighted homogeneous loal equa-

tions for the transversal slie whih gives τ = µ.

Denote δ|E by D for short. Then D is a �rst-order di�erential operator D :
Oµ

K
→ Oµ

K
whih respets the grading. So it is of the form

D = t∂t1+A

where A is a onstant µ × µ-matrix. Thus, the seond part of the ohomology

of C•
L (i.e. kernel and okernel of δ) an be dedued from the solutions of the

di�erential system given by D. All expliit alulations have been done using

Maaulay2.

The �rst interesting example we are going to study is the so alled �open

swallowtail�. For details of its de�nition, see [Giv82℄ and [Giv83℄. Consider the

spae of polynomials in one variable of degree d := 2k + 1 with �xed leading

oe�ient and sum of roots equal to zero, that is, the spae

P2k+1 =
{
x2k+1 +A2x

2k−1 + . . .+A2k+1x
0
}

∼= K
2k

whih omes equipped with the following sympleti struture

ω =
k+1∑

i=2

(2k + 1− i)! (i − 2)! · (−1)idAi ∧ dA2k+3−i

We will write Σk for the subspae onsisting of those polynomials whih have a

root of multipliity greater than k. This spae is obviously of dimension k and

it an be shown that the form ω vanishes on its regular lous. So we have a

lagrangian subvariety in the spae P2k+1, whih is alled open swallowtail. To

get a more onrete impression of how it looks like, we will desribe the easiest

examples. For k = 1, Σ1 ⊂ P3 is just the ordinary usp in the plane, this
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Figure 1: The open swallowtail Σ2 ⊂ K4

ase has already been disussed above. For k = 2, we obtain a surfae in the

four-dimensional spae (see the oneptual �gure 1)

P5 =
{
x5 +Ax3 +Bx2 + Cx+D | (A,B,C,D) ∈ K

4
}

(the sympleti form is ω = 3dA∧dD+dC∧dB) onsisting of those polynomials

f with a root of multipliity at least three. Suh a f an be written as f =
(x− a)3(x2 + 3ax+ b), so there is a normalization of Σ2 given by

n : K2 −→ P5 = K
4

(a, b) 7−→ (b− 6a2, 8a3 − 3ab, 3a2b− 3a4,−a3b)

Note that the singular lous of Σ2 is a again a usp as well as the transversal

urve singularity.

The spae Σ2 is our main example, we will desribe in some detail how

to apply the general results in this ase. Using elimination theory, we an

alulate the de�ning equations of Σ2 in K4
. It turns out that the swallowtail

is a determinantal variety given by the minors of the matrix




9D 9B2 − 32AC
3C −5AB + 125D
−9B 45A2 − 100C




The ideal whih de�nes Σ2 is generated by the following three polynomials

f1 = −27B2C + 96AC2 − 45ABD + 1125D2,

f2 = 81B3 − 288ABC + 405A2D − 900CD

f3 = −45AB2 + 135A2C − 300C2 + 1125BD

So Σ2 is not a omplete intersetion but nevertheless Cohen-Maaulay by the

Hilbert-Burh theorem. We list the ommutators {fi, fj} (for 1 ≤ i < j ≤ 3)
with respet to the given set of generators (this is a diret proof that Σ2 ⊂ K4

is involutive):

{f1, f2} = −576Af1 + 81Bf2 − 96Cf3

{f1, f3} = 15Af2 − 12Bf3

{f2, f3} = −900f1 + 18Af3
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Σ2 is quasi-homogeneous with the weights (2, 3, 4, 5) for the variables A, B, C,
D, respetively. We an thus apply the mahinery developed above to obtain

that

(
LT 1

Σ2

)
0
= 0, while

(
LT 2

Σ2

)
0
= K. The operator D is in this ase

t∂t 1+




11/40 −245/2 0 0
33/4000 109/40 0 0

0 0 49/15 −59/27
0 0 51/100 11/15




For K = C, the monodromy of the loally onstant sheaf LT 1
|Sing(Σ2) \0

has the

following eigenvalues

−
8

10
, −

13

10
, −

22

10
, −

27

10

The seond large lass of examples are the onormal spaes. Given any

submanifold Y of an n-dimensional manifold X , the total spae of the onormal

bundle T ∗
Y X is always a lagrangian submanifold of T ∗X . More generally, if Y

is an analyti subspae, we an take the losure of the spae of onormals to

all smooth points of Y . The result (whih is alled onormal spae of Y in X)

is still lagrangian, but may have singularities. This is an important lass of

lagrangian subvarieties, as the harateristi variety of a holonomi DX -module

is always a �nite union of onormal spaes. Obviously, these spaes are onial

in the �bers of T ∗X . If X is a plane urve in C ⊂ K2
, then the onormal spae

T ∗
CK

2
will be a surfae in K4

. Here the results are as follows.

equation of C LT
1

LT
2

eigenvalues (multipliity, if 6= 1)

y2 − x5 0 0 − 4
5
,− 16

5

y3 − x7 0 0 − 37
7
,− 61

7
,− 69

7
,− 85

7
,− 93

7
,− 117

7

y5 − x7 0 0 − 116
7
,− 132

7
,− 148

7
,− 164

7
,

y3 − x6
K K − 7

2
,− 10

2

(2)
,− 13

2

xy(x+ y)(x− y)(x− 2y) K
2

K
2 −

In the last example, there is only an isolated singularity, so the modules G1
L and

G2
L are artinien.

Finally, there is a third lass of singular lagrangian subvarieties, these are

ompletely integrable hamiltonian systems. Suh a system is given in the 2n-
dimensional phase spae by n Poisson-ommuting funtions. The ideal formed

by them then obviously satis�es the involutivity ondition. If, additionally,

the ommon zero set of these funtion is a omplete intersetion, then it will be

lagrangian in our sense. The lagrangian deformation spae of suh a system is at

least n-dimensional (addition of a onstant is �at and the ideal stays involutive).

To get the equations of some interesting examples, we will proeed as follows.

Choose oordinates (p1, q1, p2, q2) of K
4
and set z1 = p1 + iq1 and z2 = p2 + iq2

(This an obviously be done only in the real ase, but it is a formal alulus

whih works as well for K = C as for K = R). We an now express funtions on

K4
in the variables z1, z2, z1, z2, and the Poisson braket beomes

{f, g} = 2i (∂z1
f · ∂z1g − ∂z1

g · ∂z1f + ∂z2
f · ∂z2g − ∂z2

g · ∂z2f)
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We want to �nd funtions f1, f2 suh that {f1, f2} = 0. Set, for example

f = λz1z1 + µz2z2 and let us look for a g = zα1 z1
βzγ2 z2

δ
for some parame-

ters λ, µ, α, β, γ, δ ∈ N. It an be easily veri�ed that the ommuting ondition

transforms to

λ(α− β) − µ(γ − δ) = 0

The following table shows results for some resonane (r) oe�ients λ, µ and

exponents (e) α, β, γ, δ.

r e LT
1

LT
2

eigenvalues (multipliity)

1, 0 0, 0, 1, 1 K
2

K −3(4)

1, 2 0, 2, 1, 0 K
3

K
2 − 2

2

(2)
,− 3

2

(2)
,− 4

2

(2)
,− 5

2

(2)
,− 6

2

(2)

1, 3 3, 0, 0, 1 K
4

K
3 − 3

3

(2)
,− 5

3

(2)
,− 7

3

(4)
,− 9

3

(4)
,− 11

3

(4)
,− 13

3

(2)
,− 15

3

(2)

1, 4 4, 0, 0, 1 K
5

K
4 − 4

4

(2)
,− 7

4

(2)
,− 9

4

(2)
,− 10

4

(2)
,− 12

4

(2)
,− 13

4

(2)
,

− 14
4

(2)
,− 15

4

(2)
,− 16

4

(2)
,− 17

4

(2)
,− 18

4

(2)
,− 19

4

(2)
,

− 20
4

(2)
,− 22

4

(2)
,− 23

4

(2)
,− 25

4

(2)
,− 28

4

(2)

Remark: The eigenvalues in all examples have a symmetry property, whih

we annot prove at this moment. These eigenvalues looks very similar to the

spetrum of an isolated hypersurfae singularity. One might speulate that

there is a mixed Hodge struture related to this theory and that the eigenval-

ues share further properties with the spetrum, e.g. the semi-ontinuity under

deformations.
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