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Let S be an abelian semigroup, written additively, that contains the identity
element 0. Let A be a nonempty subset of S. The cardinality of A is denoted
|A|. For any positive integer h, the sumset hA is the set of all sums of h not
necessarily distinct elements of A. We define hA = {0} if h = 0. Let A1, . . . , Ar,

and B be nonempty subsets of S, and let h1, . . . , hr be nonnegative integers.
We denote by

B + h1A1 + · · ·+ hrAr (1)

the set of all elements of S that can be represented in the form b+u1+ · · ·+ur,

where b ∈ B and ui ∈ hiAi for all i = 1, . . . , r. If the sets A1, . . . , Ar, and B are
finite, then the sumset (1) is finite for all h1, . . . , hr. The growth function of this
sumset is

γ(h1, . . . , hr) = |B + h1A1 + · · ·+ hrAr|.

For example, let S be the additive semigroup of nonnegative integers N0,
and let A1, . . . , Ar, and B be nonempty, finite subsets of N0, normalized so
that 0 ∈ B ∩ A1 ∩ · · · ∩ Ar and gcd(A1 ∪ · · · ∪ Ar) = 1. Let b∗ = max(B) and
a∗i = maxAi for i = 1, . . . , r. Han, Kirfel, and Nathanson [1, 5] determined the
asymptotic structure of the sumset B + h1A1 + · · ·+ hrAr. They proved that
there exist integers c and d and finite sets C ⊆ [0, c− 2] and D ⊆ [0, d− 2] such
that

B + h1A1 + · · ·+ hrAr = C ∪ [c, b∗ +
r
∑

i=1

a∗i hi − d] ∪

(

b∗ +
r
∑

i=1

a∗i hi −D

)

.

for min(h1, . . . , hr) sufficiently large. This implies that the growth function is
eventually a multilinear function of h1, . . . , hr, that is, there exists an integer ∆
such that

|B + h1A1 + · · ·+ hrAr| = a∗1h1 + · · ·+ a∗rhr + b∗ + 1−∆
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for min(h1, . . . , hr) sufficiently large. The explicit determination of the sets C

and D is a difficult unsolved problem in additive number theory. In the case
r = 1, it is called the linear diophantine problem of Frobenius. For a survey of
finite sumsets in additive number theory, see Nathanson [6].

The theorem about sums of finite sets of integers generalizes to sums in
an arbitrary abelian semigroup S. We shall prove that if A1, . . . , Ar, and B

are finite, nonempty subsets of S, then the growth function γ(h1, . . . , hr) is
eventually polynomial, that is, there exists a polynomial p(z1, . . . , zr) such that

γ(h1, . . . , hr) = |B + h1A1 + · · ·+ hrAr| = p(h1, . . . , hr)

for min(h1, . . . , hr) sufficiently large. The case r = 1 is due to Khovanskii [3, 4].
We use his method to extend the result to the case r ≥ 2. The idea of the proof is
to show that the growth function is the Hilbert function of a suitably constructed
module graded by the additive semigroupN

r
0 of r–tuples of nonnegative integers.

We need the following result about Hilbert functions. Let R be a finitely
generated N

r
0–graded connected commutative algebra over a field E. Then

R =
⊕

h∈N
r
0

Rh. Suppose that R is generated by s homogeneous elements

y1, . . . , ys with yi ∈ Rδi , that is, the degree of yi is deg yi = δi ∈ N
r
0. Let M

be a finitely generated N
r
0–graded R–module. For h = (h1, . . . , hr) ∈ N

r
0, we

define the Hilbert function

H(M,h) = dimE

(

M(h1,...,hr)

)

.

For z = (z1, . . . , zr), we define

zh = zh1

1 · · · zhr

r .

Consider the formal power series

F (M, z) =
∑

h∈N
r
0

H(M,h)zh.

Then there exists a vector β with integer coordinates and a polynomial P (M, z) =
P (M, z1, . . . , zh) with integer coefficients such that

F (M, z) =
zβP (M, z)
∏s

i=1(1 − zδi)
.

(This is Theorem 2.3 in Stanley [7, p. 33]).

Theorem 1 Let A1, . . . , Ar, and B be finite, nonempty subsets of an abelian

semigroup S. There exists a polynomial p(z1, . . . , zr) such that

|B + h1A1 + · · ·+ hrAr| = p(h1, . . . , hr)

for all sufficiently large integers h1, . . . , hr.
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Proof. For i = 1, . . . , r, let

Ai = {ai,1, . . . , ai,ki
} ,

where
|Ai| = ki ≥ 1.

We introduce a variable xi,j for each i = 1, . . . , r and j = 1, . . . , ki. Fix a field
E. We begin with the polynomial ring

R = E[x1,1, . . . , xr,kr
]

in the s = k1 + · · · + kr variables xi,j . The algebra R is connected since it is
an integral domain (cf. Hartshorne [2, Exercise 2.19, p. 82]). For each r–tuple
(h1, . . . , hr) ∈ N

r
0 we let

R(h1,...,hr)

be the vector subspace of R consisting of all polynomials that are homogeneous
of degree hi in the variables xi,1, . . . , xi,ki

. In particular, E = R(0,...,0). Then

R =
⊕

(h1,...,hr)∈N
r
0

R(h1,...,hr).

The multiplication in the algebra R is consistent with this direct sum decom-
position in the sense that

R(h1,...,hr)R(h′

1
,...,h′

r)
⊆ R(h1+h′

1
,...,hr+h′

r)
,

and so R is graded by the semigroup N
r
0.

Next we construct anN
r
0–gradedR–moduleM. To each r–tuple (h1, . . . , hr) ∈

N
r
0 we associate a finite-dimensional vector space M(h1,...,hr) over the field E in

the following way. To each element

u ∈ B + h1A1 + · · ·+ hrAr

we assign the symbol
[u, h1, . . . , hr].

Let M(h1,...,hr) be the vector space consisting of all E–linear combinations of
these symbols. Then

dimE M(h1,...,hr) = |B + h1A1 + · · ·+ hrAr|. (2)

Let
M =

⊕

(h1,...,hr)∈N
r
0

M(h1,...,hr).

This is an N
r
0–graded vector space over E.
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To make M a module over the algebra R, we must construct a bilinear
multiplication R×M → M. We define the product of the variable xi,j ∈ R and
the basis element [u, h1, . . . , hr] ∈ M as follows:

xi,j [u, h1, . . . , hr] = [u+ ai,j , h1, . . . , hi−1, hi + 1, hi+1, . . . , hr].

This makes sense since

u ∈ B + h1A1 + · · ·+ hiAi + · · ·+ hrAr

and so
u+ ai,j ∈ B + h1A1 + · · ·+ (hi + 1)Ai + · · ·+ hrAr.

This induces a well-defined multiplication of elements of M by polynomials in
R since, if i < i′,

xi′,j′ (xi,j [u, h1, . . . , hr])

= xi′,j′ [u+ ai,j , h1, . . . , hi + 1, . . . , hr]

= [u+ ai,j + ai′,j′ , h1, . . . , hi + 1, . . . , hi′ + 1, . . . , hr]

= [u+ ai′,j′ + ai,j , h1, . . . , hi + 1, . . . , hi′ + 1, . . . , hr]

= xi,j [u+ ai′,j′ , h1, . . . , hi′ + 1, . . . , hr]

= xi,j (xi′,j′ [u, h1, . . . , hr]) .

The case i ≥ i′ is similar. Note that this is the only place where we use the
commutativity of the semigroup S. It follows that M is an R–module. Moreover,

R(h1,...,hr)M(h′

1
,...,h′

r)
⊆ M(h1+h′

1
,...,hr+h′

r)
,

and so M is a graded R–module. Furthermore, the finite set

{[b, 0, . . . , 0] : b ∈ B} ⊆ M

generates M as an R–module.
Since xi,j ∈ Rδi,j , where deg(xi,j) = δi,j is the r–tuple whose i–th coordinate

is 1 and whose other coordinates are 0, and since

1

(1 − zi)ki
=

∞
∑

hi=0

(

hi + ki − 1

ki − 1

)

zhi

i ,

we have

F (M, z) =
∑

h∈N
r
0

H(M,h)zh

=
zβP (M, z)

∏r

i=1

∏ki

j=1(1− zδi,j )

=
zβP (M, z)

∏r

i=1(1 − zi)ki
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= zβP (M, z)

r
∏

i=1

∞
∑

hi=0

(

hi + ki − 1

ki − 1

)

zh1

i

= zβP (M, z)
∑

h=(h1,...,hr)∈N
r
0

r
∏

i=1

(

hi + ki − 1

ki − 1

)

zh.

This implies that the Hilbert function H(M,h) is a polynomial in h1, . . . , hr

for min(h1, . . . , hr) sufficiently large. By (2), the growth function is the Hilbert
function of M . This completes the proof.
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