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Abstract

We provide further boson-fermion q-polynomial identities for
the ‘finitised’ Virasoro characters χp,p′

r,s of the Forrester-Baxter min-
imal models M(p, p′), for certain values of r and s. The construc-
tion is based on a detailed analysis of the combinatorics of the

set Pp,p′

a,b,c(L) of q-weighted, length-L Forrester-Baxter paths, whose

generating function χ
p,p′

a,b,c(L) provides a finitisation of χp,p′
r,s . In this

paper, we restrict our attention to the case where the startpoint a
and endpoint b of each path both belong to the set of ‘Takahashi
lengths’. In the limit L → ∞, these polynomial identities reduce
to q-series identities for the corresponding characters.

We obtain two closely related fermionic polynomial forms for
each (finitised) character. The first of these forms uses the clas-
sical definition of the Gaussian polynomials, and includes a term
that is a (finitised) character of a certain M(p̂, p̂′) where p̂′ < p′.
We provide a combinatorial interpretation for this form using the
concept of ‘particles’. The second form, which was first obtained
using different methods by the Stony-Brook group, requires a mod-
ified definition of the Gaussian polynomials, and its combinatorial
interpretation requires not only the concept of particles, but also
the additional concept of ‘particle annihilation’.

†Research supported by the Australian Research Council (ARC)
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0. Introduction

0.1. Motivation

The physical spectrum of exactly-solvable lattice models can be de-
scribed in the language of highest-weight infinite dimensional representa-
tions of affine and Virasoro algebras [16]. The characters of these repre-
sentations are q-series that contain detailed information on the structure
and symmetries of the corresponding models. In the following discussion,
we wish to restrict attention to the characters of Virasoro highest-weight
representations.

The earliest known expressions for these characters are due to Feigen
and Fuchs [9] and Rocha-Caridi [17]. These expressions have alternating-
signs. A number of years ago, the Stony Brook group discovered com-
pletely new expressions for the character formulae1. These expressions
have constant-signs2.

For physical reasons that are beyond the scope of this work, the orig-
inal alternating-sign expressions are also known as ‘bosonic characters’.
Correspondingly, the constant-sign expressions are also known as ‘ferm-
ionic characters’ 3.

The structure of these new character formulae hints at the presence of
a completely new formulation of exactly-solvable models4. This possibility
has attracted attention for a number of reasons. One of these reasons is
the fact that certain physical problems, such as the long-distance asymp-
totics of the correlation functions, are too difficult to handle in the current
formulation. Further, there are reasons to believe that the new formula-
tion could be the right starting point to tackle them (see [6] and references
therein). At a more technical level, the availability of two distinct formu-
lations is mathematically enriching, as we can use one to learn about the
other.

However, although the bosonic characters are technically simple to
write down, and are completely known for all Virasoro representations, the
structure of the fermionic characters is strictly-speaking known explicitly
only in special cases, and generally only conceptually. In particular, the
characters of the ‘non-unitary’ Virasoro representations have turned out

1For references to the original Stony Brook papers, please refer to [6].
2The characterisation of the different expressions of the characters as ‘alternating-

sign’ and ‘constant-sign’ q-series is valid only for Virasoro but not for affine characters.
3For a complete discussion of the physical motivation of the terms ‘bosonic’ and

‘fermionic’, please refer to the original literature on the subject as cited in [6].
4Analogous developments in the context of highest-weight representations of affine

algebras also took place. They are outside the scope of this work.
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to be rather resistant to a complete formulation in fermionic form5.
This work is part of a series of papers that aim at a complete and

explicit derivation of the fermionic characters of a certain class of mod-
els first discussed by Forrester and Baxter [14]. The characters of the
Forrester-Baxter models correspond to the complete set of Virasoro char-
acters of the discrete, though not necessarily unitary, Virasoro algebras
with central charge c < 1, first discussed in [4]. As such, they form the
largest class of Virasoro characters with no W -symmetries.

As in previous works, our approach is purely combinatorial. Further,
the exposition is self-contained, in the sense that we have included all
concepts required in the derivations. Our main result is a combinatorial
derivation of two related finitised fermionic forms for the characters of a
certain class of Forrester-Baxter models. The first of these requires the
use of the classical form of Gaussian polynomials and can be interpreted
combinatorially using the concept of particles. The second has already
appeared in the works of Berkovich, McCoy and Schilling [7], requires the
use of a modified form of Gaussian polynomials, and has a combinatorial
interpretation in terms of particles and particle annihilation.

In a forthcoming paper, we further extend and refine the techniques
of this work to obtain a complete and explicit derivation of the fermionic
characters of the complete set of Forrester-Baxter models [13].

0.2. Overview of content of paper

The aim of this paper is to obtain fermionic expressions for χp,p′

a,b,c(L),

the generating function for the set Pp,p′

a,b,c(L) of restricted length-L paths
that have startpoint a and endpoint b.

These functions6 first arose in the calculation of one-point functions of
the Forrester-Baxter models [14]. The weighting originally assigned in [14]
to the paths is significantly different from that used here. The weighting
described in the current paper arose by obtaining a ‘weight-preserving’
bijection between partitions with prescribed hook-differences that were
considered in [3], and the paths of [14]. This bijection is described in [10].

The paths in Pp,p′

a,b,c(L) may be depicted on a (p′ − 2)× L grid that we
refer to as the (p, p′)-model, as described in Section 1.1. Of particular im-
portance is the shading of the (p, p′)-model, which determines the weights
wt(h) that we assign to the paths h.

A bosonic expression for χp,p′

a,b,c(L) is given in Section 1.3. This expres-

5The reason for that may of course eventually turn out to be the fact that we are
not using the most efficient tools to tackle this problem.

6To be precise, a certain renormalisation thereof.
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sion is readily proved using L-recurrence relations [14], or by using the
generating function for partitions with prescribed hook-differences given
in [3], and the bijection of [10]. The polynomial χp,p′

a,b,c(L) is seen to be a
finitisation of a Virasoro character.

In this paper, we tackle the particular cases where a and b are each
one of the Takahashi lengths T , or one of T ′ = {p′ − s : s ∈ T }. These
values depend on p and p′, and are defined in Section 5.1. Our methods
and results are a common generalisation of those of [10, 12].

On equating the bosonic expression for χp,p′

a,b,c(L) with either of the ferm-
ionic expressions, we obtain boson-fermion polynomial identities. Taking
the L → ∞ limit (using, for example, the variable change employed in
[10, 11]), these become q-series identities. Amongst them, in particular,
are the Rogers-Ramanujan identities, and their generalisations by An-
drews and Gordon [2]. In fact, the techniques employed by Agarwal and
Bressoud [1, 8] in their combinatorial proof of the Andrews-Gordon iden-
tities provided the genesis of the techniques employed here.

Before we develop a generalisation of Agarwal and Bressoud’s ‘Volcanic
activity’, we define in Section 2, a slightly different set Pp,p′

a,b,e,f(L) of paths,
which have assigned pre-segments and post-segments that are determined
by e, f ∈ {0, 1}. Their generating function χ̃p,p′

a,b,e,f(L) is defined in terms
of a path weighting that differs slightly from that defined earlier.

The B-transform, which is described in Section 3, enables χ̃p,p′+p
a′,b′,e,f(L

′),

for certain a′, b′ to be expressed in terms of χ̃p,p′+p
a,b,e,f (L). We derive this

transform combinatorially in three steps. The first step is known as the
B1-transform and enlarges the features of a path, so that the resultant
path resides in a larger model. The second step, referred to as a B2(k)-
transform, lengthens a path by appending k pairs of segments to the path.
Each of these pairs is known as a particle. The third step, the B3(λ)-
transform deforms the path in a particular way. This process may be
viewed as the particles moving through the path. The resulting transfor-
mation of generating functions is given in Corollary 3.14.

In Section 4, we see that χ̃p′−p,p′

a,b,1−e,1−f (L) may be obtained from

χ̃p,p′

a,b,e,f(L) in a combinatorially trivial way. This process is referred to
as a D-transform. In fact, it is more convenient to use the D-transform
combined with the B-transform. The resulting transformation of generat-
ing functions is given in Corollary 4.6.

To obtain a particular generating function χ̃p,p′

a,b,e,f(L), where p and
p′ are co-prime, we begin with one of the trivial generating functions
χ̃1,3
a′,b′,e′,f ′(L) given in Lemma 2.5, and perform a sequence of B- and BD-

transforms. This sequence is determined by the continued fraction of p′/p
which is described in Section 5.1.
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In fact, a basic application of the transforms does not generate all
elements of Pp,p′

a,b,e,f(L) in some cases. In these instances, the set generated
is deficient in the full set of paths that do not rise above (or below) a certain
height. Various results obtained in Section 6 enable us to keep track of
this height. Lemma 6.4 shows that this height bounds a portion of the
(p, p′)-model which is identical to a smaller (p̂, p̂′)-model. This property
enables (in one case), the final generating function to be expressed using
the generating function for paths in the (p̂, p̂′)-model.

Section 7 provides one further ingredient for the final construction.
There, it is shown how appending or removing the first segment of the
path affects the generating function.

Everything is now in place to carry out the proof of the main results.
These results are stated in Section 8.1. We provide two similar expressions
for χp,p′

a,b,c(L). These are Theorems 8.1 and 8.2. The first of these makes
use of the classical definition of the Gaussian polynomial:

[

A

B

]

q
=











(q)A
(q)A−B(q)B

if 0 ≤ B ≤ A;

0 otherwise,
(1)

where (q)0 = 1 and (q)n =
∏n

i=1(1 − qi) for n > 0. In some cases, the

expression also includes a term χp̂,p̂′

a,b,c(L) for p̂
′ < p̂. Thus this expression

may be viewed as a recursive fermionic expression for χp,p′

a,b,c(L). In the cases
where this additional term is not present (for a and b further restricted in
a certain way), the expressions were first stated in [5].

The expression of Theorem 8.2 makes use of a modified definition of
the Gaussian polynomial ([15]):

[

A

B

]′

q
=











(qA−B+1)B
(q)B

if 0 ≤ B;

0 otherwise,
(2)

where (z)0 = 1 and (z)n =
∏n−1

i=0 (1 − zqi) for n > 0. These expressions
were first presented and proved in [7]. In fact, invoking the definition (2)

is somewhat overkill, since the only value of
[

A
B

]′
that we require that

differs from
[

A
B

]

is
[

−1
0

]′
= 1.

In [7], expressions for χp,p′

a,b,c(L) are presented, where b is now any value
with 1 ≤ b ≤ p′ − 1. However, only a ∈ T ∪ T ′ is still permitted. In [13],
we show that it is Theorem 8.1, and not Theorem 8.2, that generalises to
provide fermionic expressions for the most general χp,p′

a,b,c(L).
The remainder of Section 8 is concerned with the detailed derivation

of the expression for first χ̃p,p′

a,b,e,f(L), and then converting it to χp,p′

a,b,c(L).
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Section 8.3 describes the mn-system which aids the actual evaluation of
the fermionic expressions obtained. Section 8.4 describes how the proof for
Theorem 8.1 modifies to provide a proof for Theorem 8.2. Here we see that

the appearance of
[

−1
0

]′
may be viewed in terms of ‘particle annihilation’.

1. Paths

1.1. Paths and the (p, p′)-model

Let p and p′ be positive co-prime integers for which 0 < p < p′. Then,
given a, b, c, L ∈ Z≥0 such that 1 ≤ a, b, c ≤ p′− 1, b = c± 1, L+ a− b ≡ 0

(mod 2), a path h ∈ Pp,p′

a,b,c(L) is a sequence h0, h1, h2, . . . , hL, of integers
such that:

1. 1 ≤ hi ≤ p′ − 1 for 0 ≤ i ≤ L,

2. hi+1 = hi ± 1 for 0 ≤ i < L,

3. h0 = a, hL = b.

Note that the values of p and c do not feature in the above restrictions. As
described below, they specify how the elements of Pp,p′

a,b,c(L) are weighted.
The integers h0, h1, h2, . . . , hL, are readily depicted as a sequence of

heights on a two-dimensional L × (p′ − 2) grid. Adjacent heights are
connected by line segments passing from (i, hi) to (i+1, hi+1) for 0 ≤ i < L.

Scanning the path from left to right, each of these line segments points
either in the NE direction or in the SE direction. Fig. 1 shows a typical
path in the set P3,8

2,4,3(14). The shadings in Fig. 1 are explained below.

2

1

2

3

4

5

6

7

10 11 12 13 143 4 510 6 7 8 9

Figure 1: Typical path.

In the grid introduced above, the horizontal strip between adjacent
heights is referred to as a band. There are p′−2 bands. The hth band lies
between heights h and h+ 1.
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We now assign a parity to each band: the hth band is said to be an even
band if ⌊hp/p′⌋ = ⌊(h+1)p/p′⌋; and an odd band if ⌊hp/p′⌋ 6= ⌊(h+1)p/p′⌋.
The array of odd and even bands so obtained will be referred to as the
(p, p′)-model. It may immediately be deduced that the (p, p′)-model has
p′ − p− 1 even bands and p− 1 odd bands. In addition, it is easily shown
that for 1 ≤ r < p, the band lying between heights ⌊rp′/p⌋ and ⌊rp′/p⌋+1
is odd: it will be referred to as the rth odd band.

When drawing the (p, p′)-model, we distinguish the bands by shading
the odd bands. This was done in Fig. 1 for the (3, 8)-model.

We note that the band structure of the (p, p′)-model is up-down sym-
metrical, and that if p′ > 2p then the 1st band and the (p′ − 2)th band
are both even, and there are no two adjacent odd bands.

For 2 ≤ a ≤ p′ − 2, we say that a is interfacial if ⌊(a + 1)p/p′⌋ =
⌊(a − 1)p/p′⌋ + 1. Thus a is interfacial if and only if a lies between an
odd and even band in the (p, p′)-model. Thus for the case of the (3, 8)-
model depicted in Fig. 1, a is interfacial for a = 2, 3, 5, 6. Note that if a is
interfacial, the odd band that it borders is the ⌊(a+ 1)p/p′⌋th.

As is easily seen, the (p′ − p, p′)-model differs from the (p, p′)-model in
that each band has changed parity. It follows that if a is interfacial in the
(p, p′)-model then a is also interfacial in the (p′ − p, p′)-model.

1.2. Weighting the paths

Given a path h of length L, for 1 ≤ i < L, the values of hi−1, hi and
hi+1 determine the shape of the vertex at the point i. The four possible
shapes are given in Fig. 2.

i i+1i -1i i+1i -1i i+1i-1i i+1i

h i

-1

h i h ih i

Figure 2: Vertex shapes.

The four types of vertices shown in Fig. 2 are referred to as a straight-up
vertex, a straight-down vertex, a peak-up vertex and a peak-down vertex
respectively. Each vertex is also assigned a parity: this is the parity of
the band in which the segment between (i, hi) and (i+1, hi+1) lies. Thus,
there are eight types of paritied vertex.

For paths h ∈ Pp,p′

a,b,c(L), we define hL+1 = c, whereupon the shape and
parity of the vertex at i = L is well-defined.

The weight function for the paths is best specified in terms of a (x, y)-
coordinate system which is inclined at 45o to the original (i, h)-coordinate
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system and whose origin is at the path’s initial point at (i = 0, h = a).
Specifically,

x =
i− (h− a)

2
, y =

i+ (h− a)

2
.

Note that at each step in the path, either x or y is incremented and the
other is constant. In this system, the path depicted in Fig. 1 has its first
few coordinates at (0, 0), (0, 1), (0, 2), (0, 3), (1, 3), (1, 4), (1, 5), (1, 6),
(2, 6), . . .

Now, for 1 ≤ i ≤ L, we define the weight ci = c(hi−1, hi, hi+1) of the
ith vertex according to its shape, its parity and its (x, y)-coordinate, as
specified in Table 1.

Vertex ci Vertex ci

x 0

y 0

0 x

0 y

Table 1: Vertex weights.

In Table 1, the lightly shaded bands can be either even or odd bands (or
when hi = p′ − 1 or hi = 1 in the lowermost four cases, not a band in
the model at all). Note that for each vertex shape, only one parity case
has non-zero weight in general. We shall refer to those four vertices, with
assigned parity, for which in general, the weight is non-zero, as scoring
vertices. The other four vertices will be termed non-scoring.

We now define:

wt(h) =
L
∑

i=1

ci. (3)

To illustrate this procedure, consider again the path h depicted in
Fig. 1. The above table indicates that there are scoring vertices at i = 3,
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4, 5, 7, 8, 13 and 14. This leads to

wt(h) = 0 + 3 + 1 + 1 + 6 + 7 + 6 = 24.

The generating function χp,p′

a,b,c(L) for the set of paths P
p,p′

a,b,c(L) is defined
to be:

χp,p′

a,b,c(L; q) =
∑

h∈Pp,p′

a,b,c
(L)

qwt(h). (4)

Often, we drop the base q from the notation so that χp,p′

a,b,c(L) = χp,p′

a,b,c(L; q).
The same will be done for other functions without comment.

1.3. Bosonic generating function

By setting up recurrence relations for χp,p′

a,b,c(L), it may be readily veri-
fied that:

χp,p′

a,b,c(L) =
∞
∑

λ=−∞

qλ
2pp′+λ(p′r−pa)

[

L
L+a−b

2
− p′λ

]

q

(5)

−
∞
∑

λ=−∞

q(λp+r)(λp′+a)

[

L
L+a−b

2
− p′λ− a

]

q

,

where

r = ⌊pc/p′⌋+ (b− c+ 1)/2. (6)

In the limit L 7→ ∞, we obtain

lim
L→∞

χp,p′

a,b,c(L) = χp,p′

r,a , (7)

where r is defined in (6) and

χp,p′

r,s =
1

(q)∞

∞
∑

λ=−∞

(qλ
2pp′+λ(p′r−ps) − q(λp+r)(λp′+s)) (8)

is, up to a normalisation, the Rocha-Caridi expression [17] for the Virasoro
character of central charge c = 1−6(p′ − p)2/pp′ and conformal dimension

∆p,p′

r,s = ((p′r − ps)2 − (p′ − p)2)/4pp′. Therefore, χp,p′

a,b,c(L) provides a finite

analogue of the character χp,p′

r,a .
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2. Winged generating functions

For h ∈ Pp,p′

a,b,c(L), the values of b and c serve to specify a path post-
segment that extends between (L, b) and (L+1, c). We now define another
set of paths which specifies both the direction of a post-segment and a pre-
segment.

Let p and p′ be positive co-prime integers for which 0 < p < p′. Then,
given a, b, L ∈ Z≥0 such that 1 ≤ a, b ≤ p′ − 1, L + a − b ≡ 0 (mod 2),

and e, f ∈ {0, 1}, a path h ∈ Pp,p′

a,b,e,f(L) is a sequence h0, h1, h2, . . . , hL, of
integers such that:

1. 1 ≤ hi ≤ p′ − 1 for 0 ≤ i ≤ L,

2. hi+1 = hi ± 1 for 0 ≤ i < L,

3. h0 = a, hL = b.

If f = 0 (resp. f = 1) then the post-segment of each h ∈ Pp,p′

a,b,e,f(L) is
defined to be in the NE (resp. SE) direction. If e = 0 (resp. e = 1) then

the pre-segment of each h ∈ Pp,p′

a,b,e,f(L) is defined to be in the SE (resp.
NE) direction. This enables a shape and a parity to be assigned to both

the zeroth and the Lth vertices of h. For h ∈ Pp,p′

a,b,e,f(L), we define e(h) = e
and f(h) = f .

We now define a weight w̃t(h), for h ∈ Pp,p′

a,b,e,f(L). For 1 ≤ i < L, set
c̃i = c(hi−1, hi, hi+1) as above. Then, set

c̃L =















x if hL − hL−1 = 1 and f(h) = 1;

y if hL − hL−1 = −1 and f(h) = 0;

0 otherwise,

where (x, y) is the coordinate of the Lth vertex of h. We then designate
this vertex as scoring if it is a peak vertex (hL = hL−1 − (−1)f(h)), and as
non-scoring otherwise.

We define:

w̃t(h) =
L
∑

i=1

c̃i. (9)

Consider the corresponding path h′ ∈ Pp,p′

a,b,c(L) with c = b + (−1)f ,

defined by h′
i = hi for 0 ≤ i ≤ L. From Table 1, we see that w̃t(h) = wt(h′)

if the post-segment of h lies in an even band.
In what follows, we work entirely in terms of w̃t(h), and the generating

functions that we derive from it. Only at the end of our work, do we revert
back to wt(h) to obtain fermionic expressions for χp,p′

a,b,c(L).
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Define the generating function

χ̃p,p′

a,b,e,f(L; q) =
∑

h∈Pp,p′

a,b,e,f
(L)

qw̃t(h), (10)

where w̃t(h) is given by (9). Of course, χ̃p,p′

a,b,0,f (L) = χ̃p,p′

a,b,1,f(L).

2.1. Striking sequence of a path

For each path h, define π(h) ∈ {0, 1} to be the parity of the band
between heights h0 and h1 (if L(h) = 0, we set h1 = h0 + (−1)f(h)). Thus,
for the path h shown in Fig. 1, we have π(h) = 1. In addition, define
d(h) = 0 when h1 − h0 = 1 and d(h) = 1 when h1 − h0 = −1. We then
see that if e(h) + d(h) + π(h) ≡ 0 (mod 2) then the 0th vertex is a scoring
vertex, and if e(h)+d(h)+π(h) ≡ 1 (mod 2) then it is a non-scoring vertex.

Now consider each path h ∈ Pp,p′

a,b,e,f(L) as a sequence of straight lines,
alternating in direction between NE and SE. Then, reading from the left,
let the lines be of lengths w1, w2, w3, . . . , wl, for some l, with wi > 0 for
1 ≤ i ≤ l. Thence w1+w2+ · · ·+wl = L(h), where L(h) = L is the length
of h.

For each of these lines, the last vertex will be considered to be part
of the line but the first will not. Then, the ith of these lines contains
wi vertices, the first wi − 1 of which are straight vertices. Then write
wi = ai + bi so that bi is the number of scoring vertices in the ith line.
The striking sequence of h is then the array:

(

a1 a2 a3 · · · al
b1 b2 b3 · · · bl

)(e(h),f(h),d(h))

.

With π = π(h), e = e(h) and d = d(h), we define

m(h) =







(e + d+ π)mod 2 +
∑l

i=1 ai if L > 0;

|f − e| if L = 0,

whence m(h) is the number of non-scoring vertices possessed by h (alto-
gether, h has L(h) + 1 vertices). We also define α(h) = (−1)d((w1 +w3 +
· · ·)− (w2 + w4 + · · ·)) and for L > 0,

β(h) =























(−1)d((b1 + b3 + · · ·)− (b2 + b4 + · · ·))
if e + d+ π ≡ 0 (mod 2);

(−1)d((b1 + b3 + · · ·)− (b2 + b4 + · · ·)) + (−1)e

otherwise.
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For L = 0, we set β(h) = f − e.
For example, for the path shown in Fig. 1 for which d(h) = 0 and

π(h) = 1, the striking sequence is:

(

2 0 1 1 1 2 0

1 1 2 1 0 1 1

)(e,1,0)

.

In this case, m(h) = 8− e, α(h) = 2, and β(h) = 2− e.
We note that given the startpoint h0 = a of the path, the path can be

reconstructed from its striking sequence7. In particular, hL = b = a+α(h).
In addition, the nature of the final vertex may be deduced from al and bl

8

Lemma 2.1 Let the path h have the striking sequence
(

a1
b1

a2
b2

a3
b3

···
···

al
bl

)(e,f,d)
,

with wi = ai + bi for 1 ≤ i ≤ l. Then

w̃t(h) =
l
∑

i=1

bi(wi−1 + wi−3 + · · ·+ w1+i mod 2).

Proof: For L = 0, both sides are clearly 0. So assume L > 0. First consider
d = 0. For i odd, the ith line is in the NE direction and its x-coordinate is
w2 +w4 + · · ·+wi−1. By the prescription of the previous section, and the
definition of bi, this line thus contributes bi(w2 + w4 + · · ·+ wi−1) to the
weight w̃t(h) of h. Similarly, for i even, the ith line is in the SE direction
and contributes bi(w1+w3+ · · ·+wi−1) to w̃t(h). The lemma then follows
for d = 0. The case d = 1 is similar. ✷

2.2. Path parameters

We make the following definitions:

αp,p′

a,b = b− a;

βp,p′

a,b,e,f =
⌊

bp
p′

⌋

−
⌊

ap
p′

⌋

+ f − e;

δp,p
′

a,e =











0 if
⌊

(a+(−1)e)p
p′

⌋

=
⌊

ap
p′

⌋

;

1 if
⌊

(a+(−1)e)p
p′

⌋

6=
⌊

ap
p′

⌋

.

(The superscripts of αp,p′

a,b are superfluous, of course.) It may be seen that

the value of δp,p
′

a,e gives the parity of the band in which the path pre-segment
resides.

7We only need w1, w2, . . . , wl together with d.
8Thus the value of f in the striking sequence is redundant — we retain it for

convenience.
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Lemma 2.2 Let h ∈ Pp,p′

a,b,e,f(L). Then α(h) = αp,p′

a,b and β(h) = βp,p′

a,b,e,f .

Proof: That α(h) = αp,p′

a,b follows immediately from the definitions.

The second result is proved by induction on L. If h ∈ Pp,p′

a,b,e,f(0) then

a = b, whence βp,p′

a,b,e,f = f − e = β(h), immediately from the definitions.

For L > 0, let h ∈ Pp,p′

a,b,e,f(L) and assume that the result holds for all

h′ ∈ Pp,p′

a,b′,e,f ′(L − 1). We consider a particular h′ by setting h′
i = hi for

0 ≤ i < L, b′ = hL−1 and choosing f ′ ∈ {0, 1} so that f ′ = 0 if either
b − b′ = 1 and the Lth segment of h lies in an even band, or b− b′ = −1
and the Lth segment of h lies in an odd band; and f ′ = 1 otherwise. It
may easily be checked that the (L−1)th vertex of h′ is scoring if and only
if the (L− 1)th vertex of h is scoring. Then, from the definition of β(h),
we see that:

β(h) =











β(h′) + 1 if b− b′ = 1 and f = 1;
β(h′)− 1 if b− b′ = −1 and f = 0;
β(h′) otherwise.

The induction hypothesis gives β(h′) = ⌊b′p/p′⌋ − ⌊ap/p′⌋ + f ′ − e. Then
when the Lth segment of h lies in an even band so that ⌊bp/p′⌋ = ⌊b′p/p′⌋,
consideration of the four cases of b − b′ = ±1 and f ∈ {0, 1} shows that
β(h) = ⌊bp/p′⌋−⌊ap/p′⌋+f−e. When the Lth segment of h lies in an odd
band so that ⌊bp/p′⌋ = ⌊b′p/p′⌋+ b− b′, consideration of the four cases of
b−b′ = ±1 and f ∈ {0, 1} again shows that β(h) = ⌊bp/p′⌋−⌊ap/p′⌋+f−e.
The result follows by induction. ✷

2.3. Scoring generating functions

We now define a generating function for paths that have a particular
number of non-scoring vertices. First define Pp,p′

a,b,e,f(L,m) to be the subset

of Pp,p′

a,b,e,f(L) comprising those paths h for which m(h) = m. Then define:

χp,p′

a,b,e,f(L,m; q) =
∑

h∈Pp,p′

a,b,e,f
(L,m)

qw̃t(h). (11)

Lemma 2.3 Let β = βp,p′

a,b,e,f . Then

χp,p′

a,b,e,f(L) =
∑

m≡L+β

(mod 2)

χp,p′

a,b,e,f(L,m).
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Proof: Let h ∈ Pp,p′

a,b,e,f(L). We claim that m(h)+L(h)+β(h) ≡ 0 (mod 2).

This will follow from showing that L(h)−m(h)+(−1)d(h)β(h) is even. If h

has striking sequence
(

a1
b1

a2
b2

a3
b3

···
···

al
bl

)(e,f,d)
, then L(h)−m(h) = (b1 + b2 +

· · ·+ bl)− (e+ d+ π)mod 2, where π = π(h). For e + d+ π ≡ 0 (mod 2),
we immediately obtain L(h) −m(h) + (−1)dβ(h) = 2(b1 + b3 + . . .). For
e+ d+ π 6≡ 0 (mod 2), we obtain L(h)−m(h) + (−1)dβ(h) = 2(b1 + b3 +
. . .) − 1 + (−1)d+e, whence the claim is proved in all cases. The lemma

then follows, once it is noted, via Lemma 2.2, that β(h) = βp,p′

a,b,e,f . ✷

Note 2.4 Since each element of Pp,p′

a,b,e,f(L,m) has L+1 vertices, it follows

that χp,p′

a,b,e,f(L,m) is non-zero only if 0 ≤ m ≤ L + 1. Therefore the sum
in Lemma 2.3 may be further restricted to 0 ≤ m ≤ L+ 1.

2.4. A seed

The following result provides a seed on which the results of later sec-
tions will act.

Lemma 2.5 If L ≥ 0 is even then:

χ1,3
1,1,0,0(L,m) = χ1,3

2,2,1,1(L,m) = δm,0q
1
4
L2

.

If L > 0 is odd then:

χ1,3
1,2,0,1(L,m) = χ1,3

2,1,1,0(L,m) = δm,0q
1
4
(L2−1).

Proof: The (1, 3)-model comprises one even band. Thus when L is even,
there is precisely one h ∈ P1,3

1,1,0,0(L). It has hi = 1 for i even, and hi = 2 for

i odd. We see that h has striking sequence
(

0
1

0
1

0
1

···
···

0
1

)(0,0,0)
and m(h) = 0.

Lemma 2.1 then yields w̃t(h) = 0+1+1+2+2+3+ · · ·+(1
2
L−1)+ 1

2
L =

(L/2)2, as required.
The other expressions follow in a similar way. ✷

2.5. Partitions

A partition λ = (λ1, λ2, . . . , λk) is a sequence of k integer parts
λ1, λ2, . . . , λk, satisfying λ1 ≥ λ2 ≥ · · · ≥ λk > 0. It is to be understood
that λi = 0 for i > k. The weight wt (λ) of λ is given by wt (λ) =

∑k
i=1 λi.

We define Y(k,m) to be the set of all partitions λ with at most k parts,
and for which λ1 ≤ m. A proof of the following well known result may be
found in [2].
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Lemma 2.6 The generating function,

∑

λ∈Y(k,m)

qwt (λ) =

[

m+ k

m

]

q

.

3. The B-transform

In this section, we introduce the B-transform which maps paths
Pp,p′

a,b,e,f(L) into Pp,p′+p
a′,b′,e,f(L

′) for certain a′, b′ and various L′.
The band structure of the (p, p′+p)-model is easily obtained from that

of the (p, p′)-model. Indeed, according to Section 1.1, for 1 ≤ r < p, the
rth odd band of the (p, p′ + p)-model lies between heights ⌊r(p′ + p)/p⌋ =
⌊rp′/p⌋ + r and ⌊r(p′ + p)/p⌋ + 1 = ⌊rp′/p⌋ + r + 1. Thus the height of
the rth odd band in the (p, p′ + p)-model is r greater than that in the
(p, p′)-model. Therefore, the (p, p′ + p)-model may be obtained from the
(p, p′)-model by increasing the distance between neighbouring odd bands
by one unit and appending an extra even band to both the top and the
bottom of the grid. For example, compare the (3, 8)-model of Fig. 1 with
the (3, 11)-model of Fig. 3.

The B-transform has three components, which we refer to as path-
dilation, particle-insertion, and particle-motion. These three components
will also be known as the B1-, B2- and B3-transforms respectively. In
fact, particle-insertion is dependent on a parameter k ∈ Z≥0, and particle-
motion is dependent on a partition λ that has certain restrictions. Con-
sequently, we sometimes refer to particle-insertion and particle-motion as
B2(k)- and B3(λ)-transforms respectively. Then, combining the B1-, B2(k)-
and B3(λ)-transforms produces the B(k, λ)-transform.

3.1. Path-dilation

The B1-transform acts on a path h ∈ Pp,p′

a,b,e,f(L) to yield a path h(0) ∈

Pp,p′+p
a′,b′,e,f(L

(0)), for certain a′, b′ and L(0). First, the starting point a′ of the

new path h(0) is specified to be:

a′ = a+

⌊

ap

p′

⌋

+ e.

If r = ⌊ap/p′⌋ then r is the number of odd bands below h = a in the
(p, p′)-model. Since the height of the rth odd band in the (p, p′+p)-model
is r greater than that in the (p, p′)-model, we thus see that under path-
dilation, the height of the startpoint above the next lowermost odd band
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(or if there isn’t one, the bottom of the grid) has either increased by one
or remained constant.

We define d(h(0)) = d(h). The above definition specifies that e(h(0)) =
e(h) and f(h(0)) = f(h).

In the case that L = 0 and e = f , we specify h(0) by setting
L(0) = L(h(0)) = 0. When L = 0 and e 6= f , we leave the action of
the B1-transform on h undefined (it will not be used in this case). Thus
in Lemmas 3.3, 3.6, 3.7, 3.10, 3.13, 4.4, 4.5 and and Corollary 3.4, we
implicitly exclude consideration of the case L = 0 and e 6= f . However, it
must be considered in the proofs of Corollaries 3.14 and 4.6.

In the case L > 0 consider, as in Section 2.1, h to comprise l straight
lines that alternate in direction, the ith of which is of length wi and
possesses bi scoring vertices. h(0) is then defined to comprise l straight
lines that alternate in direction (since d(h(0)) = d(h), the direction of the
first line in h(0) is the same as that in h), the ith of which has length

w′
i =











wi + bi if i ≥ 2 or e(h) + d(h) + π(h) ≡ 0 (mod 2);

w1 + b1 + 2π(h)− 1
if i = 1 and e(h) + d(h) + π(h) 6≡ 0 (mod 2).

In particular, this determines L(0) = L(h(0)) and b′ = h
(0)

L(0).
As an example, consider the path h shown in Fig. 1 as an element of

P3,8
2,4,e,1(14). Here d(h) = 0, π(h) = 1 and ⌊ap/p′⌋ = 0.
Thus when e = 0, the action of path-dilation on h produces the path

given in Fig. 3.

222120191817161514131211109876543210

10

9

8

7

6

5

4

3

2

1

Figure 3:

This path is an element of P3,11
2,6,e,1(22).

When e = 1, the action of path-dilation on h produces the element of
P3,11

3,6,e,1(21) given in Fig. 4.
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Figure 4:

The situation at the start point may be considered as falling into one
of eight cases, corresponding to e(h), d(h), π(h) ∈ {0, 1}.9 In Table 2, we
illustrate the four cases that arise when d(h) = 0 (the four cases for d(h) =
1 may be obtained from these by an up-down reflection and changing the
value of e(h)).10

e(h)=0;
π(h)=0:

e(h)=1;
π(h)=0:

e(h)=0;
π(h)=1:

e(h)=1;
π(h)=1:

Table 2: B1-transforms at the startpoint.

Lemma 3.1 Let 1 ≤ p < p′, 1 ≤ a < p′, e ∈ {0, 1} and a′ = a+⌊ap/p′⌋+

e. Then ⌊a′p/(p′ + p)⌋ = ⌊ap/p′⌋ and δp,p
′+p

a′,e = 0.

Proof: Let r = ⌊ap/p′⌋ whence p′r ≤ pa < p′(r + 1). Then, for x ∈
{0, 1}, we have (p′ + p)r ≤ p(a + r + x) < (p′ + p)r + p′ + xp, so that
⌊(a+ r+x)p/(p′+p)⌋ = r. In particular, ⌊a′p/(p′+p)⌋ = r, and ⌊(a+ r+
e+(−1)e)p/(p′+p)⌋ = r. Thus r = ⌊a′p/(p′+p)⌋ = ⌊(a′+(−1)e)p/(p′+p)⌋
which gives the required results. ✷

9Theses cases may be seen to correspond to the eight cases of vertex type as listed
in Table 1.

10The examples here are such that w1 ≥ 3.
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This result asserts, amongst other things, that the pre-segment of h(0)

always lies in an even band. This is also evident from Table 2.

Note 3.2 The action of path-dilation on h ∈ Pp,p′

a,b,e,f(L) yields a path

h(0) ∈ Pp,p′+p
a′,b′,e,f(L

(0)) that has, including the vertex at i = 0, no adjacent
scoring vertices, except in the case where π(h) = 1 and e(h) = d(h), when
a single pair of scoring vertices occurs in h(0) at i = 0 and i = 1.

Also note that π(h(0)) = π(h) unless π(h) = 1 and e(h) = d(h), in
which case π(h(0)) = 0.

Now compare the ith line of h(0) (which has length w′
i) with the ith line

of h (which has length wi). Now for the sake of the following argument,
assume that there are odd bands immediately below (i.e. between heights
0 and 1), and immediately above (i.e. between heights p′ − 1 and p′) the
(p, p′)-model and do likewise for the (p, p′ + p)-model.

If the lines in question are in the NE direction, we claim that the height
of the final vertex of that in h(0) above the next lower odd band is one
greater than that in h. If the lines in question are in the SE direction, we
claim that the height of the final vertex of that in h(0) below the next higher
odd band is one greater than that in h. In particular, if either the first
or last segment of the ith line is in an odd band, then the corresponding
segment of h(0) lies in the same odd band.

We also claim that if that of h has a straight vertex that passes into the
kth odd band in the (p, p′)-model then that of h(0) has a straight vertex
that passes into the kth odd band in the (p, p′ + p)-model.

These claims follow because in passing from the (p, p′)-model to the
(p, p′ + p)-model, the distance between neighbouring odd bands has in-
creased by one, and because the length of each line has increased by one for
every scoring vertex and possibly a small adjustment made to the length
of the first line. In effect, a new straight vertex has been inserted imme-
diately prior to each scoring vertex and, if e(h)+ d(h)+π(h) 6≡ 0 (mod 2),
adjusting the length of the resulting first line by 2π(h)− 1.

Lemma 3.3 Let h ∈ Pp,p′

a,b,e,f(L) have striking sequence
(

a1
b1

a2
b2

a3
b3

···
···

al
bl

)(e,f,d)
,

and let h(0) ∈ Pp,p′+p
a′,b′,e,f(L

(0)) be obtained from the action of the B1-transform

on h. If e(h) + d(h) + π(h) ≡ 0 (mod 2) then h(0) has striking sequence:
(

a1 + b1 a2 + b2 a3 + b3 · · · al + bl
b1 b2 b3 · · · bl

)(e,f,d)

,

and if e(h) + d(h) + π(h) 6≡ 0 (mod 2) then h(0) has striking sequence:
(

a1 + b1 + π − 1 a2 + b2 a3 + b3 · · · al + bl
b1 + π b2 b3 · · · bl

)(e,f,d)

.



19

Moreover, if m = m(h):

• m(h(0)) = L;

• L(0) =

{

2L−m+ 2 if π = 1 and e = d,

2L−m otherwise;

• α(h(0)) = α(h) + β(h);

• β(h(0)) = β(h).

Proof: The form of the striking sequence for h(0) follows because, for i > 1,
every scoring vertex in the ith line of h accounts for an extra non-scoring
vertex in that line. The same is true when i = 1, except in the case
(e(h) + d(h) + π(h)) ≡ 1 (throughout this paper, in proofs, we take all
equivalences, modulo 2.) when the length of the new 1st line becomes
a1 + 2b1 + 2π − 1. That there are b1 + π scoring vertices in this case,
follows from examining Table 2.

Let e = e(h), d = d(h), π = π(h) and π′ = π(h(0)). Then e(h(0)) = e
and d(h(0)) = d.

If (e + d + π) ≡ 0 then (e + d + π′) ≡ 0 by Note 3.2. Thereupon
m(0) =

∑l
i=1(ai + bi) = L. Additionally, L(0) =

∑l
i=1(ai + 2bi) = 2L −

∑l
i=1 ai = 2L −m. That β(h(0)) = β(h) and α(h(0)) = α(h) + β(h) both

follow immediately in this case.
On the other hand, if (e + d + π) 6≡ 0 then π = 0 ⇒ e 6= d and

π = 1 ⇒ e = d. In each instance, Note 3.2 implies that π′ = 0. Thereupon,
m(0) = (e + d + π′)mod 2 + π − 1 +

∑l
i=1(ai + bi) =

∑l
i=1(ai + bi) = L.

Additionally, L(0) = 2π − 1 +
∑l

i=1(ai + 2bi) = 2L− (1 +
∑l

i=1 ai) + 2π =
2L − m + 2π. This is the required value. Now in this case, β(h) =
(−1)d((b1 + b3 + · · ·) − (b2 + b4 + · · ·)) + (−1)e. When π = 0 so that
(e+d+π′) ≡ 1 then β(h(0)) = β(h) follows immediately. When π = 1, we
have β(h(0)) = (−1)d((b1 + 1 + b3 + · · ·)− (b2 + b4 + · · ·)). β(h(0)) = β(h)
now follows in this case because (e+d+π) 6≡ 0 implies that e = d. Finally,
α(h(0)) = α(h) + (−1)d((b1 + b3 + · · ·)− (b2 + b4 + · · ·)) + (−1)d(2π − 1).
Since (−1)d(2π− 1) = −(−1)d(−1)π = (−1)e, the lemma then follows. ✷

Corollary 3.4 Let h ∈ Pp,p′

a,b,e,f(L) and h(0) ∈ Pp,p′+p
a′,b′,e,f(L

(0)) be the path
obtained by the action of the B1-transform on h. Then a′ = a+⌊ap/p′⌋+e
and b′ = b+ ⌊bp/p′⌋+ f .

Proof: a′ = a + ⌊ap/p′⌋ + e is by definition. Lemma 3.3 gives α(h(0)) =

α(h) + β(h), whence Lemma 2.2 implies that αp,p′+p
a′,b′ = αp,p′

a,b + βp,p′

a,b,e,f .
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Expanding this gives b′ − a′ = b − a + ⌊bp/p′⌋ − ⌊ap/p′⌋ + f − e, whence
b′ = b+ ⌊bp/p′⌋ + f . ✷

The above result implies that the B1-transform maps Pp,p′

a,b,e,f(L) into a
set of paths that have the same startpoint as one another and the same
endpoint as one another. However, the lengths of these paths are not
necessarily equal. We also see that the transformation of the endpoint is
analogous to that which occurs at the startpoint. In particular, Lemma
3.1 implies that δp,p

′+p
b′,f = 0 so that the path post-segment of h(0) always

resides in an even band. For the four cases where hL = hL−1 − 1, the B1-
transform affects the endpoint as in Table 3 (the value π′(h) is the parity
of the band in which the Lth segment of h lies).

f(h)=0;
π′(h)=0:

f(h)=1;
π′(h)=0:

f(h)=0;
π′(h)=1:

f(h)=1;
π′(h)=1:

Table 3: B1-transforms at the endpoint.

Lemma 3.5 Let 1 ≤ p < p′, 1 ≤ a, b < p′, e, f ∈ {0, 1}, a′ = a +

⌊ap/p′⌋ + e, and b′ = b + ⌊bp/p′⌋ + f . Then αp,p′+p
a′,b′ = αp,p′

a,b + βp,p′

a,b,e,f and

βp,p′+p
a′,b′,e,f = βp,p′

a,b,e,f .

Proof: Lemma 3.1 implies that ⌊a′p/(p′ + p)⌋ = ⌊ap/p′⌋, ⌊b′p/(p′ + p)⌋ =
⌊bp/p′⌋. The results then follow immediately from the definitions. ✷

Lemma 3.6 Let h ∈ Pp,p′

a,b,e,f(L) and h(0) ∈ Pp,p′+p
a′,b′,e,f(L

(0)) be the path ob-
tained by the action of the B1-transform on h. Then

w̃t(h(0)) = w̃t(h) +
1

4

(

(L(0) −m(0))2 − β2
)

,

where m(0) = m(h(0)) and β = βp,p′

a,b,e,f .
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Proof: Let h have striking sequence
(

a1
b1

a2
b2

a3
b3

···
···

al
bl

)(e,f,d)
, and let π = π(h).

If (e+ d+ π) ≡ 0 (mod 2), then Lemmas 3.3 and 2.1 show that

w̃t(h(0))− w̃t(h) = (b1 + b3 + b5 + · · ·)(b2 + b4 + b6 + · · ·).

Via Lemma 3.3, we obtain L(0) − m(0) = L − m(h) = b1 + b2 + · · · + bl.
Then since β(h) = ±((b1 + b3 + b5 + · · ·)− (b2 + b4 + b6 + · · ·)), it follows
that

w̃t(h(0))− w̃t(h) =
1

4
((L(0) −m(0))2 − β(h)2).

If (e+ d+ π) 6≡ 0 (mod 2), then Lemmas 3.3 and 2.1 show that

w̃t(h(0))− w̃t(h) = (2π − 1 + b1 + b3 + b5 + · · ·)(b2 + b4 + b6 + · · ·)

=
1

4
((L(0) −m(0))2 − β(h)2),

the second equality resulting because L(0) − m(0) = L − m(h) + 2π =
b1 + b2 + · · ·+ bl + 2π − 1 and

β(h) = (−1)d((b1 + b3 + b5 + · · ·)− (b2 + b4 + b6 + · · ·)) + (−1)e

= ±((2π − 1 + b1 + b3 + b5 + · · ·)− (b2 + b4 + b6 + · · ·)),

on using (−1)e+d = −(−1)π = 2π − 1.

Finally, Lemma 2.2 gives β(h) = βp,p′

a,b,e,f = β. ✷

3.2. Particle insertion

Let p′ > 2p so that the (p, p′)-model has no two neighbouring odd

bands, and let δp,p
′

a′,e = 0. Then if h(0) ∈ Pp,p′

a′,b′,e,f(L
(0)), the pre-segment

of h(0) lies in an even band. By inserting a particle into h(0), we mean
displacing h(0) two positions to the right and inserting two segments: the
leftmost of these is in the NE (resp. SE) direction if e = 0 (resp. e = 1),
and the rightmost is in the opposite direction, which is thus the direction
of the pre-segment of h(0). In this way, we obtain a path h(1) of length
L(0)+2. We assign e(h(1)) = e and f(h(1)) = f . Note also that d(h(1)) = e
and π(h(1)) = 0.

Thereupon, we may repeat this process of particle insertion. After
inserting k particles into h(0), we obtain a path h(k) ∈ Pp,p′

a′,b′,e,f(L
(0) + 2k).

We say that h(k) has been obtained by the action of a B2(k)-transform on
h(0).

In the case of the element of P3,11
3,6,1,1(21) shown in Fig. 4, the insertion

of two particles produces the element of P3,11
3,6,1,1(25) shown in Fig. 5.
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Figure 5:

Lemma 3.7 Let h ∈ Pp,p′

a,b,e,f(L). Apply a B1-transform to h to obtain the

path h(0) ∈ Pp,p′+p
a′,b′,e,f(L

(0)). Then obtain h(k) ∈ Pp,p′+p
a′,b′,e,f(L

(k)) by applying

a B2(k)-transform to h(0). If m(k) = m(h(k)), then L(k) = L(0) + 2k,
m(k) = m(0) and

w̃t(h(k)) = w̃t(h) +
1

4
((L(k) −m(k))2 − β2), (12)

where β = βp,p′

a,b,e,f .

Proof: That L(k) = L(0) + 2k follows immediately from the definition of a
B2-transform. Lemma 3.6 yields:

w̃t(h(0)) = w̃t(h) +
1

4

(

(L(0) −m(h(0)))2 − β2
)

.

Let the striking sequence of h(0) be
(

a1
b1

a2
b2

···
···

al
bl

)(e,f,d)
, and let π = π(h(0)).

If e = d, we are restricted to the case π = 0, since δp,p
′+p

a′,e = 0 by

Lemma 3.1. The striking sequence of h(1) is then
(

0
1

0
1

a1
b1

a2
b2

···
···

al
bl

)(e,f,e)
.

Thereupon m(h(1)) =
∑l

i=1 ai = m(h(0)). In this case, Lemma 2.1 shows
that w̃t(h(1))− w̃t(h(0)) = 1 + b1 + b2 + · · ·+ bl = L(0) −m(0) + 1.

If e 6= d, the striking sequence of h(1) is
(

0
1

a1+1−π
b1+π

a2
b2

···
···

al
bl

)(e,f,e)
. Then

m(h(1)) = 1−π+
∑l

i=1 ai which equals m(h(0)) = (e+d+π)mod2+
∑l

i=1 ai
for both π = 0 and π = 1. Here, Lemma 2.1 shows that w̃t(h(1)) −
w̃t(h(0)) = π+ b1 + b2 + · · ·+ bl. Since L(0) −m(0) = −(e+ d+ π)mod 2+
b1 + b2 + · · ·+ bl, we once more have w̃t(h(1))− w̃t(h(0)) = L(0) −m(0) +1.

Repeated application of these results, yields m(h(k)) = m(h(0)) and

w̃t(h(k)) = w̃t(h(0)) + k
(

L(0) −m(h(0))
)

+ k2.
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Then, on using (12) and L(k) = L(0) + 2k, the lemma follows. ✷

3.3. Particle moves

In this section, we once more restrict to the case p′ > 2p so that the
(p, p′)-model has no two neighbouring odd bands, and consider only paths

h ∈ Pp,p′

a′,b′,e,f(L
′), where δp,p

′

a′,e = δp,p
′

b′,f = 0.
We specify six types of local deformations of a path. These deforma-

tions will be known as particle moves. In each of the six cases, a particular
sequence of four segments of a path is changed to a different sequence, the
remainder of the path being unchanged. The moves are as follows — the
path portion to the left of the arrow is changed to that on the right:

Move 1.

Move 2.

Move 3.

Move 4.

Move 5.

Move 6.

Since p′ > 2p, each odd band is straddled by a pair of even bands. Thus,
there is no impediment to enacting moves 2 and 5 for paths in Pp,p′

a,b,e,f(L).
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Note that moves 4–6 are inversions of moves 1–3. Also note that moves
2 and 3 (likewise moves 5 and 6) may be considered to be the same move
since in the two cases, the same sequence of three edges is changed.

In addition to the six moves described above, we permit certain defor-
mations of a path close to its left and right extremities in certain circum-
stances. Each of these moves will be referred to as an edge-move. They,
together with their validity, are as follows:

If e = 1:

Edge-move 1.

If e = 0:

Edge-move 2.

If f = 0:

Edge-move 3.

If f = 1:

Edge-move 4.

In fact, the above four edge-moves may be considered as instances of
moves 1 and 4 described beforehand, if for edge-moves 1 and 2, we append
the appropriate pre-segment to the path, and for edge-moves 3 and 4, we
append the appropriate post-segment to the path.

Lemma 3.8 Let the path ĥ differ from the path h in that four consecutive
segments have changed according to one of the six moves described above,
or in that three consecutive segments have changed according to one of the
four edge-moves described above (subject to their restrictions). Then

w̃t(ĥ) = w̃t(h) + 1.

Additionally, L(ĥ) = L(h) and m(ĥ) = m(h).
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Proof: For each of the six moves and four edge-moves, take the (x, y)-
coordinate of the leftmost point of the depicted portion of h to be (x0, y0).
Now consider the contribution to the weight of the three vertices in
question before and after the move (although the vertex at (x0, y0) may
change, its contribution doesn’t). In each of the ten cases, the contribu-
tion is x0 + y0 + 1 before the move and x0 + y0 + 2 afterwards. Thus
w̃t(ĥ) = w̃t(h) + 1. The other statements are immediate on inspecting all
ten moves. ✷

Now observe that for each of the ten moves specified above, the se-
quence of path segments before the move consists of an adjacent pair
of scoring vertices followed by a non-scoring vertex. The specified move
replaces this combination with a non-scoring vertex followed by two scor-
ing vertices. As anticipated above, the pair of adjacent scoring vertices is
viewed as a particle. Thus each of the above ten moves describes a particle
moving to the right by one step.

When p′ > 2p, so that there are no two adjacent odd bands in the
(p, p′)-model, and noting that δp,p

′

b′,f = 0, we see that each sequence com-
prising two scoring vertices followed by a non-scoring vertex is present
amongst the ten configurations prior to a move, except for the case de-
picted in Fig. 6 and its up-down reflection.

Figure 6: Not a particle

Only in these cases, where the 0th and 1st segments are scoring and the
first two segments are in the same direction, do we not refer to the adjacent
pair of scoring vertices as a particle.

Also note that when p′ > 2p and δp,p
′

a′,e = δp,p
′

b′,f = 0, each sequence of a
non-scoring vertex followed by two scoring vertices appears amongst the
ten configurations that result from a move. In such cases, the move may
thus be reversed.

3.4. The B3-transform

Since in each of the moves described in Section 3.3, a pair of scoring
vertices shifts to the right by one step, we see that a succession of such
moves is possible until the pair is followed by another scoring vertex. If this
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itself is followed by yet another scoring vertex, we forbid further movement.
However, if it is followed by a non-scoring vertex, further movement is
allowed after considering the latter two of the three consecutive scoring
vertices to be the particle (instead of the first two).

As in Section 3.2, let h(k) be a path resulting from a B2(k)-transform
acting on a path that itself is the image of a B1 transform. We now
consider moving the k particles that have been inserted.

Lemma 3.9 Let δp,p
′

b′,f = 0. There is a bijection between the set of paths

obtained by moving the particles in h(k) and Y(k,m), where m = m(h(k)).
This bijection is such that if λ ∈ Y(k,m) is the bijective image of a par-
ticular h then

w̃t(h) = w̃t(h(k)) + wt (λ).

Additionally, L(h) = L(h(k)) and m(h) = m(h(k)).

Proof: Since each particle moves by traversing a non-scoring vertex, and
there are m of these to the right of the rightmost particle in h(k), and
there are no consecutive scoring vertices to its right, this particle can make
λ1 moves to the right, with 0 ≤ λ1 ≤ m. Similarly, the next rightmost
particle can make λ2 moves to the right with 0 ≤ λ2 ≤ λ1. Here, the upper
restriction arises because the two scoring vertices would then be adjacent
to those of the first particle. Continuing in this way, we obtain that all
possible final positions of the particles are indexed by λ = (λ1, λ2, . . . , λk)
with m ≥ λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0, that is, by partitions of at most k
parts with no part exceeding m. Moreover, since by Lemma 3.8 the weight
increases by one for each move, the weight increase after the sequence of
moves specified by a particular λ is equal to wt (λ). The final statement
also follows from Lemma 3.8. ✷

We say that a path obtained by moving the particles in h(k) according to
the partition λ has been obtained by the action of a B3(λ)-transform.

Having defined B1, B2(k) for k ≥ 0 and B3(λ) for λ a partition with
at most k parts, we now define a B(k, λ)-transform as the composition
B(k, λ) = B3(λ) ◦ B2(k) ◦ B1.

Lemma 3.10 Let h′ ∈ Pp,p′+p
a′,b′,e,f(L

′) be obtained from h ∈ Pp,p′

a,b,e,f(L) by the
action of the B(k, λ)-transform. If π = π(h) and m = m(h) then:

• L′ =

{

2L−m+ 2k + 2 if π = 1 and e = d,

2L−m+ 2k otherwise;
• m(h′) = L;

• w̃t(h′) = w̃t(h) + 1
4
((L′ − L)2 − β2) + wt (λ),
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where β = βp,p′

a,b,e,f .

Proof: These results follow immediately from Lemmas 3.3, 3.7 and 3.9. ✷

Note 3.11 Since particle insertion and the particle moves don’t change
the startpoint, endpoint or value e(h) or f(h) of a path h, then in view of
Lemma 3.1 and Corollary 3.4, we see that the action of a B-transform on
h ∈ Pp,p′

a,b,e,f(L) yields a path h′ ∈ Pp,p′+p
a′,b′,e,f(L

′), where a′ = a + ⌊ap/p′⌋ + e,

b′ = b+ ⌊bp/p′⌋ + f , and δp,p
′+p

a′,e = δp,p
′+p

b′,f = 0.

3.5. Particle content of a path

Again restrict to the case p′ > 2p so that the (p, p′)-model has no two

neighbouring odd bands, and let h′ ∈ Pp,p′

a′,b′,e,f(L
′). In the following lemma,

we once more restrict to the cases for which δp,p
′

a,e = δp,p
′

b,f = 0, and thus
only consider the cases for which the pre-segment and the post-segment
of h′ lie in even bands.

Lemma 3.12 For 1 ≤ p < p′ with p′ > 2p, let 1 ≤ a′, b′ < p′ and
e, f ∈ {0, 1}, with δp,p

′

a′,e = δp,p
′

b′,f = 0. If h′ ∈ Pp,p′

a′,b′,e,f(L
′), then there is a

unique triple (h, k, λ) where h ∈ Pp,p′−p
a,b,e,f (L) for some a, b, L, such that the

action of a B(k, λ)-transform on h results in h′.

Proof: This is proved by reversing the constructions described in the previ-
ous sections. Locate the leftmost pair of consecutive scoring vertices in h′,
and move them leftward by reversing the particle moves, until they occupy
the 0th and 1st positions. This is possible in all cases when δp,p

′

a′,e = δp,p
′

b′,f = 0.
Now ignoring these two vertices, do the same with the next leftmost pair
of consecutive scoring vertices, moving them leftward until they occupy
the third and fourth positions. Continue in this way until all consecutive
scoring vertices occupy the leftmost positions of the path. Denote this
path by h(·). At the leftmost end of h(·), there will be a number of even
segments (possibly zero) alternating in direction. Let this number be 2k
or 2k + 1 according to whether is it even or odd. Clearly h′ results from
h(·) by a B3(λ)-transform for a particular λ with at most k parts.

Removing the first 2k segments of h(·) yields a path h(0) ∈ Pp,p′

a′,b′,e,f .
This path thus has no two consecutive scoring vertices, except possibly at
the 0th and 1st positions, and then only if the first vertex is a straight
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vertex (as in Fig. 6). Moreover, h(k) arises by the action of a B2(k)-
transform on h(0).

Ignoring for the moment the case where there are scoring vertices at
the 0th and 1st positions, h(0) has by construction no pair of consecutive
scoring vertices. Therefore, beyond the 0th vertex, we may remove a non-
scoring vertex before every scoring vertex to obtain a path h ∈ Pp,p′−p

a,b,e,f (L)

for some a, b, L, from which h(0) arises by the action of a B1-transform.
On examining the third case depicted in Table 2, we see that the case

where h(0) has a pair of scoring vertices at the 0th and 1st positions, arises
similarly from a particular h ∈ Pp,p′−p

a,b,e,f (L) for some a, b, L. The lemma is
then proved. ✷

The value of k obtained above will be referred to as the particle content
of h′.

Lemma 3.13 For 1 ≤ p < p′, let 1 ≤ a, b < p′ and e, f ∈ {0, 1}, with
δp,p

′

a,e = 0. Set a′ = a+e+⌊ap/p′⌋ and b′ = b+f+⌊bp/p′⌋. Fix m0, m1 ≥ 0.
Then the map (h, k, λ) 7→ h′ effected by the action of a B(k, λ)-transform

on h, is a bijection between
⋃

k P
p,p′

a,b,e,f(m1, 2k+2m1−m0)×Y(k,m1) and

Pp,p′+p
a′,b′,e,f(m0, m1). Moreover,

w̃t(h′) = w̃t(h) +
1

4

(

(m0 −m1)
2 − β2

)

+ wt (λ),

where β = βp,p′

a,b,e,f .

Proof: Given h ∈ Pp,p′

a,b,e,f(m1, m), let h′ be the result of a B(k, λ)-transform
on h.

Since δp,p
′

a,e = 0 so that ⌊(a + (−1)e)p/p′)⌋ = ⌊ap/p′⌋, it follows that if
π(h) = 1 then e(h) 6= d(h). Then, with m = 2m1 + 2k − m0, we obtain

h′ ∈ Pp,p′+p
a′,b′,e,f(m0, m1) via Lemma 3.10.

Lemma 3.1 shows that δp,p
′+p

a′,e = δp,p
′+p

b′,f = 0. Thereupon, Lemma 3.12

shows that each h′ ∈ Pp,p′+p
a′,b′,e,f(m0, m1) arises from a unique triple (h, k, λ),

with h ∈ Pp,p′

a,b,e,f(m1, m) for some m. The bijection then follows.

The expression for w̃t(h′) also results from Lemma 3.10. ✷

Note that the above lemma excludes consideration of the case for which
δp,p

′

a,e = 1. In fact, similar results fail in that case. Nonetheless, it is

necessary to tackle the δp,p
′

a,e = 1 case for a restricted set of paths in the
more general analysis of [13].
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Corollary 3.14 For 1 ≤ p < p′, let 1 ≤ a, b < p′ and e, f ∈ {0, 1}, with
δp,p

′

a,e = 0. Set a′ = a+e+⌊ap/p′⌋ and b′ = b+f+⌊bp/p′⌋. Fix m0, m1 ≥ 0.
Then

χ̃p,p′+p
a′,b′,e,f(m0, m1) = q

1
4((m0−m1)2−β2) ∑

m≡m0

(mod 2)

[

1
2
(m0 +m)

m1

]

q

χ̃p,p′

a,b,e,f(m1, m),

where β = βp,p′

a,b,e,f .

Proof: Apart from the case where m1 = 0 and e 6= f , this follows imme-
diately from Lemma 3.13 on setting m = 2m1 +2k−m0, once it is noted,
via Lemma 2.6, that

[

k+m1

m1

]

q
is the generating function for Y(k,m1).

For the case m1 = 0 and e 6= f , both sides are zero unless a = b and
m0 is odd. In this case, Pp,p′+p

a′,b′,e,f(m0, 0) has precisely one element h for

which (via the same calculation as in the proof of 2.5) w̃t(h) = 1
4
(m2

0−1).
Thus the two sides are also equal in this case. ✷

4. The D-transform

The D-transform is defined to act on each h ∈ Pp,p′

a,b,e,f(L) to yield a

path ĥ ∈ Pp′−p,p′

a,b,1−e,1−f(L) with exactly the same sequence of integer heights,

i.e., ĥi = hi for 0 ≤ i ≤ L. Note that, by definition, e(ĥ) = 1 − e(h) and
f(ĥ) = 1− f(h).

Since the band structure of the (p′−p, p′)-model is obtained from that
of the (p, p′)-model simply by replacing odd bands by even bands and
vice-versa, then, ignoring the vertex at i = 0, each scoring vertex maps
to a non-scoring vertex and vice-versa. That e(h) and e(ĥ) differ implies
that the vertex at i = 0 is both scoring or both non-scoring in h and ĥ.

Lemma 4.1 Let ĥ ∈ Pp′−p,p′

a,b,1−e,1−f(L) be obtained from h ∈ Pp,p′

a,b,e,f(L) by the

action of the D-transform. Then π(ĥ) = 1−π(h). Moreover, if m = m(h)
then:

• L(ĥ) = L;

• m(ĥ) =

{

L−m if e+ d+ π(h) ≡ 0 (mod 2),

L−m+ 2 if e+ d+ π(h) 6≡ 0 (mod 2);

• w̃t(ĥ) = 1
4
(L2 − α(h)2)− w̃t(h).
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Proof: Let h have striking sequence
(

a1
b1

a2
b2

a3
b3

···
···

al
bl

)(e,f,d)
. Since, beyond

the zeroth vertex, the D-transform exchanges scoring vertices for non-
scoring vertices and vice-versa, it follows that the striking sequence for ĥ

is
(

b1
a1

b2
a2

b3
a3

···
···

bl
al

)(1−e,f,d)
. It is immediate that L(ĥ) = L, π(ĥ) = 1− π(h),

e(ĥ) = 1−e(h) and d(ĥ) = d(h). Thenm(ĥ) = (e(ĥ)+d(ĥ)+π(ĥ))mod 2+
∑l

i=1 bi = (e+ d+ π(h))mod 2 + L−
∑l

i=1 ai = 2((e+ d+ π(h))mod 2) +
L−m(h).

Now let wi = ai + bi for 1 ≤ i ≤ l. Then, using Lemma 2.1, we obtain

w̃t(h) + w̃t(ĥ) =
l
∑

i=1

bi(wi−1 + wi−3 + · · ·+ w1+i mod 2)

+
l
∑

i=1

ai(wi−1 + wi−3 + · · ·+ w1+i mod 2)

=
l
∑

i=1

wi(wi−1 + wi−3 + · · ·+ w1+i mod 2)

= (w1 + w3 + w5 + · · ·)(w2 + w4 + w6 + · · ·).

The lemma then follows because (w1+w3+w5+· · ·)+(w2+w4+w6+· · ·) =
L and (w1 + w3 + w5 + · · ·)− (w2 + w4 + w6 + · · ·) = ±α(h). ✷

Lemma 4.2 Let 1 ≤ p < p′ with p co-prime to p′ and 1 ≤ a < p′. Then
⌊a(p′ − p)/p′⌋ = a− 1− ⌊ap/p′⌋.

If, in addition, a is interfacial in the (p, p′)-model and δp,p
′

a,e = 0 then a

is interfacial in the (p′ − p, p′)-model and δp
′−p,p′

a,1−e = 0.

Proof: Since p and p′ are co-prime, ⌊ap/p′⌋ < ap/p′. Hence ⌊ap/p′⌋ +
⌊a(p′ − p)/p′⌋ = a− 1.

Since the (p, p′)-model differs from the (p′ − p, p′)-model only in that
corresponding bands are of the opposite parity, a being interfacial in one
model implies that it also is in the other. The final part then follows
immediately. ✷

Corollary 4.3 If 1 ≤ p < p′ with p co-prime to p′, 1 ≤ a, b < p′ and
e, f ∈ {0, 1} then αp′−p,p′

a,b = αp,p′

a,b and βp′−p,p′

a,b,1−e,1−f + βp,p′

a,b,e,f = αp,p′

a,b .

Proof: Lemma 4.2 gives ⌊ap/p′⌋ + ⌊a(p′ − p)/p′⌋ = a − 1 and likewise,
⌊bp/p′⌋+ ⌊b(p′ − p)/p′⌋ = b− 1. The required results then follow immedi-
ately. ✷
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4.1. The BD-pair

It will often be convenient to consider the combined action of a D-
transform followed immediately by a B-transform. Such a pair will natu-
rally be referred to as a BD-transform and maps a path h ∈ Pp′−p,p′

a,b,e,f (L) to

a path h′ ∈ Pp,p′+p
a′,b′,1−e,1−f(L

′), where a′, b′, L′ are determined by our previous
results.

In what follows, the BD-transform will always follow a B-transform.
Thus we restrict consideration to where 2(p′ − p) < p′.

Lemma 4.4 With p′ < 2p, let h ∈ Pp′−p,p′

a,b,e,f (L). Let h′ ∈ Pp,p′+p
a′,b′,1−e,1−f(L

′)
result from the action of a D-transform on h, followed by a B(k, λ)-
transform. Then:

• L′ =

{

L+m(h) + 2k − 2 if π(h) = 1 and e = d(h),

L+m(h) + 2k otherwise;
• m(h′) = L;

• w̃t(h′) = 1
4
(L2 + (L′ − L)2 − α2 − β2) + wt (λ)− w̃t(h),

where α = αp,p′

a,b and β = βp,p′

a,b,1−e,1−f .

Proof: Let ĥ result from the action of the D-transform on h, and let
d = d(h), π = π(h), ê = e(ĥ) d̂ = d(ĥ), π̂ = π(ĥ). Then we immediately
have d̂ = d, ê = 1− e, and π̂ = 1− π.

In the case where π = 0 and e 6= d, we then have, using Lemmas 3.10
and 4.1, L′ = 2L(ĥ)−m(ĥ) + 2k + 2 = 2L − (L −m(h) + 2) + 2k + 2 =
L+m(h) + 2k.

In the case where π = 1 and e = d, we then have, using Lemmas
3.10 and 4.1, L′ = 2L(ĥ) − m(ĥ) + 2k = 2L − (L − m(h) + 2) + 2k =
L+m(h) + 2k − 2.

In the other cases, e+ d+ π ≡ 0 (mod 2) and so ê+ d̂+ π̂ ≡ 0 (mod 2).
Lemmas 3.10 and 4.1 yield L′ = 2L(ĥ)−m(ĥ)+2k = 2L−(L−m(h))+2k =
L+m(h) + 2k.

The expressions for m(h′) and w̃t(h′) also follow immediately from
Lemmas 3.10 and 4.1. ✷

We now obtain analogues of Lemma 3.13 and Corollary 3.14 which
combine the D-transform with the B-transform. As above, we restrict to
where p′ < 2p.

Lemma 4.5 For 1 ≤ p < p′ < 2p, let 1 ≤ a, b < p′ and e, f ∈ {0, 1},
with δp

′−p,p′

a,e = 0. Set a′ = a + 1 − e + ⌊ap/p′⌋ and b′ = b + 1 − f +
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⌊bp/p′⌋. Fix m0, m1 ≥ 0. Then the map (h, k, λ) 7→ h′ effected by the
action of a D-transform on h followed by a B(k, λ)-transform, is a bijection

between
⋃

k P
p′−p,p′

a,b,e,f (m1, m0−m1−2k)×Y(k,m1) and Pp,p′+p
a′,b′,1−e,1−f(m0, m1).

Moreover,

w̃t(h′) =
1

4

(

m2
1 + (m0 −m1)

2 − α2 − β2
)

+ wt (λ)− w̃t(h),

where α = αp,p′

a,b and β = βp,p′

a,b,1−e,1−f .

Proof: Given h ∈ Pp′−p,p′

a,b,e,f (m1, m), let ĥ result from the action of a D-

transform on h, and let h′ be the result of a B(k, λ)-transform on ĥ.
Since δp

′−p,p′

a,e = 0 so that ⌊(a + (−1)e)(p′ − p)/p′)⌋ = ⌊a(p′ − p)/p′⌋, it
follows that if π(h) = 1 then e(h) 6= d(h). Then, for m = m0 −m1 − 2k,

we obtain h′ ∈ Pp,p′+p
a′,b′,1−e,1−f(m0, m1) via Lemma 4.4.

Lemma 3.1 gives δp,p
′+p

a′,1−e = δp,p
′+p

b′,1−f = 0. Lemma 3.12 then shows that for

arbitrary h′ ∈ Pp,p′+p
a′,b′,1−e,1−f(m0, m1), there is a unique triple (ĥ, k, λ), with

ĥ ∈ Pp,p′

a,b,1−e,1−f (m1, m
′) for some m′, such that the action of the B(k, λ)-

transform on ĥ yields h′. Then, via the D-transform, we obtain a unique
h ∈ Pp′−p,p′

a,b,e,f (m1, m
′′), for some m′′. The bijection then follows.

The expression for w̃t(h) also results from Lemma 4.4. ✷

Note that the above lemma excludes the case for which δp
′−p,p′

a,e = 1.
Once more, similar results fail in that case.

Corollary 4.6 For 1 ≤ p < p′ < 2p, let 1 ≤ a, b < p′ and e, f ∈ {0, 1},
with δp

′−p,p′

a,e = 0. Set a′ = a+1− e+ ⌊ap/p′⌋ and b′ = b+1− f + ⌊bp/p′⌋.
Fix m0, m1 ≥ 0. Then

χ̃p,p′+p
a′,b′,1−e,1−f(m0, m1; q) =

q
1
4(m

2
1+(m0−m1)2−α2−β2) ∑

m≡m0−m1

(mod 2)

[

1
2
(m0 +m1 −m)

m1

]

q

χ̃p′−p,p′

a,b,e,f (m1, m; q−1),

where α = αp,p′

a,b and β = βp,p′

a,b,1−e,1−f .

Proof: Apart from the case where m1 = 0 and e 6= f , this follows imme-
diately from Lemma 4.5 on setting m = m0 −m1 − 2k, once it is noted,
via Lemma 2.6, that

[

k+m1

m1

]

q
is the generating function for Y(k,m1).

The case m1 = 0 and e 6= f is dealt with exactly as in the proof of
Corollary 3.14. ✷
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Lemma 4.7 Let 1 ≤ p < p′ < 2p with p co-prime to p′, 1 ≤ a, b < p′ and
e, f ∈ {0, 1} and set a′ = a+1−e+⌊ap/p′⌋ and b′ = b+1−f+⌊bp/p′⌋. Then
⌊a′p/(p′+p)⌋ = a−1−⌊a(p′−p)/p′⌋ and ⌊b′p/(p′+p)⌋ = b−1−⌊b(p′−p)/p′⌋.

In addition, αp,p′+p
a′,b′ = 2αp′−p,p′

a,b − βp′−p,p′

a,b,e,f and βp,p′+p
a′,b′,1−e,1−f = αp′−p,p′

a,b −

βp′−p,p′

a,b,e,f .

Proof: By Lemma 4.2 and Corollary 4.3, ⌊ap/p′⌋ = a− 1−⌊a(p′ − p)/p′⌋,

⌊bp/p′⌋ = b−1−⌊b(p′−p)/p′⌋, αp,p′

a,b = αp′−p,p′

a,b and βp,p′

a,b,1−e,1−f = αp′−p,p′

a,b −

βp′−p,p′

a,b,e,f . The current lemma then follows immediately from Lemma 3.5. ✷

5. The structure of the (p, p′)-model

5.1. Continued fractions

If p′ and p are positive co-prime integers and

p′

p
= c0 +

1

c1 +
1

c2 +
1
...

cn−1 +
1

cn

with c0 ≥ 0, ci ≥ 1 for 0 < i < n, and cn ≥ 2, then (c0, c1, c2, . . . , cn) is
said to be the continued fraction for p′/p.

We refer to n as the height of p′/p. We set t = c0 + c1 + · · ·+ cn − 2

and refer to it as the rank of p′/p. The height and rank of Pp,p′

a,b,c(L) are
then defined to be equal to those of p′/p.

For 0 ≤ k ≤ n+ 1, we also define

tk = −1 +
k−1
∑

i=0

ci. (13)

Then tn+1 = t+1 and tn ≤ t−1. We say that the index j with 0 ≤ j ≤ tn+1

is in zone k if tk < j ≤ tk+1. We then write k = ζ(j). Note that there are
n+ 1 zones and that for 0 ≤ k ≤ n, zone k contains ck indices.
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5.2. The Takahashi and string lengths

Given positive co-prime integers p and p′ with p′/p having rank t,
define the set {κi}

t
i=0 of Takahashi lengths, the set {κ̃i}

t
i=0 of truncated

Takahashi lengths, and the set {li}
t
i=0 of string lengths as follows. First

define yk and zk for −1 ≤ k ≤ n+ 1 by:

y−1 = 0; z−1 = 1;
y0 = 1; z0 = 0;
yk = ck−1yk−1 + yk−2; zk = ck−1zk−1 + zk−2, (1 ≤ k ≤ n+ 1).

Now for tk < j ≤ tk+1 and 0 ≤ k ≤ n, set

κj = yk−1 + (j − tk)yk;

κ̃j = zk−1 + (j − tk)zk;

lj = yk−1 + (j − tk − 1)yk.

Note that κj = lj+1 unless j = tk for some k, in which case κtk = yk and
ltk+1 = yk−1. We define T = {κi}

t−1
i=0 and T ′ = {p′ − κi}

t−1
i=0. (We don’t

include κt in the former since it is present in the latter.) Then, for n > 0,
T ∩ T ′ = ∅.11

For example, in the case p′ = 38, p = 11, for which the continued
fraction is (3, 2, 5), so that n = 2, (t1, t2, t3) = (2, 4, 9) and t = 8. We then
obtain:

(y−1, y0, y1, y2, y3) = (0, 1, 3, 7, 38),
(z−1, z0, z1, z2, z3) = (1, 0, 1, 2, 11),
(κ0, κ1, κ2, κ3, κ4, κ5, κ6, κ7) = (1, 2, 3, 4, 7, 10, 17, 24),
(l1, l2, l3, l4, l5, l6, l7, l8) = (1, 2, 1, 4, 3, 10, 17, 24),
(κ̃0, κ̃1, κ̃2, κ̃3, κ̃4, κ̃5, κ̃6, κ̃7) = (1, 1, 1, 1, 2, 3, 5, 7).

An induction argument readily establishes that if 1 ≤ k ≤ n+ 1, then
ykzk−1 − yk−1zk = (−1)k, that yk is co-prime to zk, and that yk/zk has
continued fraction (c0, c1, . . . , ck−1). Thus, in particular, yn+1 = p′ and
zn+1 = p.

11In fact, when n = 0, T ∩ T ′ = {2, 3, . . . , p′ − 2}. Then, if 2 ≤ a ≤ p′ − 2, different

fermionic expressions for Pp,p′

a,b,c(L) arise by considering either a ∈ T or a ∈ T ′. The
same holds for 2 ≤ b ≤ p′ − 2. This n = 0 case was fully examined in [12].
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6. Segmenting the model

6.1. Model comparisons

Here, we relate the parameters associated with the (p, p′)-model for
which the continued fraction is (c0, c1, . . . , cn) to those associated with
certain ‘simpler’ models. In particular, if c0 > 1, we compare them with
those associated with the (p, p′ − p)-model and, if c0 = 1, we compare
them with those associated with the (p′ − p, p′)-model.

In the following two lemmas, the parameters associated with those
simpler models will be primed to distinguish them from those associated
with the (p, p′)-model. In particular if c0 > 1, (p′ − p)/p has continued
fraction (c0 − 1, c1, . . . , cn), so that in this case, t′ = t − 1, n′ = n and
t′k = tk − 1 for 1 ≤ k ≤ n. If c0 = 1, p′/(p′ − p) has continued fraction
(c1 +1, c2, . . . , cn), so that in this case, t′ = t, n′ = n− 1 and t′k = tk+1 for
1 ≤ k ≤ n′.

Lemma 6.1 Let c0 > 1. For 1 ≤ k ≤ n and 0 ≤ j ≤ t, let yk, zk, κj

and κ̃j be the parameters associated with the (p, p′)-model as defined in
Section 5.2. For 1 ≤ k ≤ n and 0 ≤ j ≤ t′, let y′k, z

′
k, κ

′
j and κ̃′

j be the
corresponding parameters for the (p, p′ − p)-model. Then:

• yk = y′k + z′k (0 ≤ k ≤ n);

• zk = z′k (0 ≤ k ≤ n);

• κj = κ′
j−1 + κ̃′

j−1 (1 ≤ j ≤ t);

• κ̃j = κ̃′
j−1 (1 ≤ j ≤ t).

Proof: This result is a straightforward consequence of the definitions. ✷

Lemma 6.2 Let c0 = 1. For 1 ≤ k ≤ n and 0 ≤ j ≤ t, let yk, zk, κj

and κ̃j be the parameters associated with the (p, p′)-model as defined in
Section 5.2. For 1 ≤ k ≤ n′ and 0 ≤ j ≤ t, let y′k, z

′
k, κ

′
j and κ̃′

j be the
corresponding parameters for the (p′ − p, p′)-model. Then:

• yk = y′k−1 (1 ≤ k ≤ n);

• zk = y′k−1 − z′k−1 (1 ≤ k ≤ n);

• κj = κ′
j (1 ≤ j ≤ t);
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• κ̃j = κ′
j − κ̃′

j (1 ≤ j ≤ t).

Proof: Again, this result is a straightforward consequence of the defini-
tions. ✷

Lemma 6.3 If t1 ≤ j ≤ t then12

⌊

κ̃jp
′

p

⌋

= κj − δ
(2)
ζ(j),1,

and if 0 ≤ j ≤ t then
⌊

κjp

p′

⌋

= κ̃j − δ
(2)
ζ(j),0.

Proof: We prove the first of these two results by induction on the sum of
the height and rank of p′/p. Since κt1 = c0 and κ̃t1 = 1 and ζ(t1) = 0, the
required result always holds for the case j = t1. In particular, it certainly
holds in the case where the sum of the height and rank of p′/p is at most
2.

Now assume that the first part holds in the case that sum of height
and rank is n + t− 1, and consider the case where p′/p has height n and
rank t. First assume that p′ > 2p. For j ≥ t1, the induction hypothesis
implies that κ′

j−1− δ
(2)
ζ′(j−1),1 < κ̃′

j−1(p
′ − p)/p < κ′

j−1− δ
(2)
ζ′(j−1),1+1, where

the primed quantities pertain to the continued fraction of (p′−p)/p. Using

Lemma 6.1 and noting that ζ ′(j − 1) = ζ(j), readily yields κj − δ
(2)
ζ(j),1 <

κ̃jp
′/p < κj − δ

(2)
ζ(j),1 + 1. This immediately gives the required result.

In the case p′ < 2p, first let j ≥ t2. The induction hypothesis implies
that κ′

j − δ
(2)
ζ′(j),1 < κ̃′

jp
′/(p′ − p) < κ′

j − δ
(2)
ζ′(j),1 + 1, where the primed

quantities pertain to the continued fraction of p′/(p′ − p). Using Lemma

6.2 and noting that ζ ′(j) = ζ(j)− 1, readily yields κj − δ
(2)
ζ(j),1(p

′ − p)/p <

κ̃jp
′/p < κj + (1− δ

(2)
ζ(j),1)(p

′ − p)/p. Since (p′ − p)/p < 1, this implies the
required result.

When p′ < 2p, we have c0 = 1 so that t1 = 0 and t2 = c1. Then κ̃j = j
for t1 < j ≤ t2, whereupon in view of the continued fraction expression
for p′/p, we immediately obtain ⌊κ̃jp

′/p⌋ = j = κj − 1, as required.
The first part of the lemma then follows by induction. For t1 ≤ j ≤ t,

the second part readily follows from the first. For 0 ≤ j ≤ t1 ≤ t, both
sides are clearly equal to 0. ✷

12We use the notation δ
(2)
i,j = 1 if i ≡ j (mod 2) and δ

(2)
i,j = 0 if i 6≡ j (mod 2).
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If t1 ≤ j ≤ t, it follows from this result that, with k such that tk < j ≤
tk+1, the κ̃jth odd band in the (p, p′)-model lies between heights κj − 1
and κj when k is odd, and between heights κj and κj + 1 when k is even.
Since there are no adjacent odd bands when p′ > 2p, it follows that κj is
interfacial when j ≥ t1. On switching the parity of each band, we then
obtain in the case p′ < 2p that κj is interfacial when j ≥ t2.

Lemma 6.4 If 1 ≤ p < p′ and p is co-prime to p′, then for 1 ≤ s ≤ yn−2,
the sth band of the (p, p′)-model is of the same parity as the sth band of
the (zn, yn)-model.

Proof: We must establish that ⌊szn/yn⌋ = ⌊szn+1/yn+1⌋ for 1 ≤ s ≤ yn−1.
With s such that 1 ≤ s < yn, let r = ⌊szn+1/yn+1⌋. Using ynzn+1 =

yn+1zn + (−1)n then yields:

ryn − (−1)n
s

yn+1
≤ szn < (r + 1)yn − (−1)n

s

yn+1
.

Since 1 ≤ s < yn < yn+1, the first inequality here implies that szn/yn ≥ r.
For the same reasons, and noting that szn/yn is not integral, the second
inequality here implies that szn/yn < r + 1. The lemma then follows. ✷

This lemma shows that the (zn, yn)-model resides within the (p, p′)-model,
between heights 1 and yn−1. The up-down symmetry of the (p, p′)-model
then also implies that the (zn, yn)-model also resides within the (p, p′)-
model, between heights p′ − yn + 1 and p′ − 1.

6.2. Interfacial retention

We now show that if h attains an interfacial height, then the path
resulting from the action of a B-transform on h attains the corresponding
interfacial height.

Lemma 6.5 Let h ∈ Pp,p′

a,b,e,f(L), and let h ∈ Pp,p′+p
a′,b′,e,f(L

′) result from the
action of a B(k, λ)-transform on h. Let s be interfacial in the (p, p′)-model
with a 6= s 6= b, and set r = ⌊(s+ 1)p/p′⌋. Then s+ r is interfacial in the
(p, p′ + p)-model.

If hi = s for 0 ≤ i ≤ L then h′
j = s + r for some j with 0 ≤ j ≤ L′.

On the other hand, if h′
j = s + r for 0 ≤ j ≤ L′ then hi = s for some i

with 0 ≤ i ≤ L.

Proof: First note that s borders the rth odd band in the (p, p′)-model. If s
is at the lower (resp. upper) edge of the rth odd band in the (p, p′)-model
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then s + r is at the lower (resp. upper) edge of the rth odd band in the
(p, p′ + p)-model. In particular, this implies that s+ r is interfacial in the
(p, p′ + p)-model. Then note that in the (p, p′)-model, there is at least
one even band between the two odd bands on either side of s (assume
that there is an odd band immediately above and immediately below the
(p, p′)-model grid if necessary). Thus there are at least two even bands
between the two odd bands on either side of s+ r in the (p, p′+ p)-model.

Let h(0) result from the action of the B1-transform on h. The definition
of this transform implies that if hi = s for some i then h

(0)
j = s + r for

some j and vice-versa (when δp,p
′

a,e = 1 or δp,p
′

b,f = 1, this statement relies on
a 6= s 6= b).

If h(k) results from the action of the B2(k)-transform on h(0), then if

h
(0)
j = s + r for some j then h

(k)
j′ = s + r for some j′ and vice-versa (this

statement relies on the two odd bands either side of s+ r having at least
two even bands between them).

If h′ results from the action of the B3(λ)-transform on h(k), then if

h
(0)
j = s + r for some j, examination of the ten particle moves and edge-

moves described in Section 3.3, shows that h
(k)
j′ = s + r for some j′ and

vice-versa (this statement also relies on the two odd bands either side of
s + r having at least two even bands between them). Combining these
results proves the lemma. ✷

We also need the analogue of this result for the BD-transform.

Lemma 6.6 Let h ∈ Pp′−p,p′

a,b,e,f (L) and let h′ ∈ Pp,p′+p
a′,b′,1−e,1−f(L

′) result from
the action of a D-transform on h followed by a B(k, λ)-transform. Let s be
interfacial in the (p, p′)-model with a 6= s 6= b, and set r = ⌊(s + 1)p/p′⌋.
Then s+ r is interfacial in the (p, p′ + p)-model.

If hi = s for 0 ≤ i ≤ L then h′
j = s + r for some j with 0 ≤ j ≤ L′.

On the other hand, if h′
j = s + r for 0 ≤ j ≤ L′ then hi = s for some i

with 0 ≤ i ≤ L.

Proof: This follows immediately from the above result after noting that if
s is interfacial in the (p′ − p, p′)-model then it is also in the (p, p′)-model.
✷

A set S is said to be interfacial in the (p, p′)-model if each s ∈ S is

interfacial in the (p, p′)-model. We now define Pp,p′

a,b,e,f(L,m){S} to be the

subset of Pp,p′

a,b,e,f(L,m) comprising those paths h for which for each s ∈ S,
there exists i with 0 ≤ i ≤ L such that hi = s. The generating function
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for this set is
χ̃p,p′

a,b,e,f(L; q){S} =
∑

h∈Pp,p′

a,b,e,f
(L){S}

qw̃t(h).

Of course, Pp,p′

a,b,e,f(L,m){∅} = Pp,p′

a,b,e,f(L,m).
Given S as above, we now define S ′ = {s+ ⌊(s + 1)p/p′⌋ : s ∈ S}.

Corollary 6.7 For 1 ≤ p < p′, let 1 ≤ a, b < p′ and e, f ∈ {0, 1}, with
δp,p

′

a,e = 0. Let S be interfacial in the (p, p′)-model with a 6= s 6= b for all
s ∈ S. Set a′ = a+ e+ ⌊ap/p′⌋ and b′ = b+ f + ⌊bp/p′⌋. Fix m0, m1 ≥ 0.
Then

χ̃p,p′+p
a′,b′,e,f(m0, m1){S

′}

= q
1
4((m0−m1)2−β2) ∑

m≡m0

(mod 2)

[

1
2
(m0 +m)

m1

]

q

χ̃p,p′

a,b,e,f(m1, m){S},

where β = βp,p′

a,b,e,f .

Proof: Combining Lemmas 3.13 and 6.5 implies that the map (h, k, λ) 7→
h′ effected by the action of a B(k, λ)-transform on h, is a bijection between
⋃

k P
p,p′

a,b,e,f(m1, 2k + 2m1 − m0){S} × Y(k,m1) and Pp,p′+p
a′,b′,e,f(m0, m1){S

′}.
The result then follows as in the proof of Corollary 3.14. ✷

Corollary 6.8 For 1 ≤ p < p′ < 2p, let 1 ≤ a, b < p′ and e, f ∈ {0, 1},
with δp

′−p,p′

a,e = 0. Let S be interfacial in the (p, p′)-model with a 6= s 6= b
for all s ∈ S. Set a′ = a + 1 − e + ⌊ap/p′⌋ and b′ = b + 1 − f + ⌊bp/p′⌋.
Fix m0, m1 ≥ 0. Then

χ̃p,p′+p
a′,b′,1−e,1−f(m0, m1; q){S

′}

= q
1
4(m2

1+(m0−m1)2−α2−β2)

×
∑

m≡m0−m1

(mod 2)

[

1
2
(m0 +m1 −m)

m1

]

q

χ̃p′−p,p′

a,b,e,f (m1, m; q−1){S},

where α = αp,p′

a,b and β = βp,p′

a,b,1−e,1−f .

Proof: Combining Lemmas 4.5 and 6.6 implies that the map (h, k, λ) 7→ h′

effected by the action of a D-transform on h immediately followed by
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a B(k, λ)-transform, is a bijection between
⋃

k P
p′−p,p′

a,b,e,f (m1, m0 − m1 −

2k){S} × Y(k,m1) and Pp,p′+p
a′,b′,1−e,1−f(m0, m1){S

′}. The result then fol-
lows as in the proof of Corollary 4.6. ✷

7. Extending and truncating paths

7.1. Extending paths

In this section, we specify a process by which a path h ∈ Pp,p′

a,b,e,f(L)
may be extended by a single unit to its left, or by a single unit to its right.
One extension may follow the other to yield a path of length L+ 2.

Path extension on the left is restricted to where δp,p
′

a,e = 0 so that the
pre-segment of h lies in the even band.

We obtain h′ by defining h′
0 = a′ = a + (−1)e and h′

i = hi−1 for
1 ≤ i ≤ L+ 1. In particular, π(h′) = 0. We also define e(h′) = e′ = 1− e,

so that then h′ ∈ Pp,p′

a′,b,e′,f(L+ 1).
This extending process is depicted in Fig. 7.

a

a’

a

a’

Figure 7: Extending on the left.

Lemma 7.1 Let h ∈ Pp,p′

a,b,e,f(L), where δp,p
′

a,e = 0. Let h′ ∈ Pp,p′

a′,b,e′,f(L
′) be

obtained from h by the above process of path extension. If ∆ = a′− a then
∆ = (−1)e = −(−1)e

′

, and

• L′ = L+ 1;

• m(h′) = m(h);

• w̃t(h′) = w̃t(h) + 1
2
(L−m(h) + ∆β(h)).

Furthermore, αp,p′

a′,b = αp,p′

a,b −∆ and βp,p′

a′,b,e′,f = βp,p′

a,b,e,f −∆.

Proof: That ∆ = (−1)e = −(−1)e
′

is immediate from the definition. Let

h have striking sequence
(

a1
b1

a2
b2

a3
b3

···
···

al
bl

)(e,f,d)
.
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If e = d, we are restricted to the case π(h) = 0, since δp,p
′

a,e = 0.

The striking sequence of h′ is then
(

0
1

a1
b1

a2
b2

···
···

al
bl

)(e′,f,e′)
. Thereupon, since

π(h′) = 0, we obtain m(h′) = m(h). In this case we immediately obtain,
via Lemma 2.1, that w̃t(h′) = w̃t(h) + (b1 + b3 + · · ·). Thereupon, since
∆ = (−1)e = (−1)d, β(h) = (−1)d((b1 + b3 + · · ·) − (b2 + b4 + · · ·)) and
m(h) = (a1 + a2 + a3 + · · ·), we obtain w̃t(h′) = w̃t(h) + (L − m(h) +
∆β(h))/2.

If e 6= d, the striking sequence of h′ is
(

a1+1−π
b1+π

a2
b2

···
···

al
bl

)(e′,f,e′)
. Then

m(h′) = 1− π +
∑l

i=1 ai which equals m(h) = (e+ d+ π)mod 2 +
∑l

i=1 ai
for both π = 0 and π = 1. Here Lemma 2.1 implies that w̃t(h′) = w̃t(h)+
(b2+b4+· · ·). Thereupon, since ∆ = (−1)e = −(−1)d, β(h) = (−1)d((b1+
b3 + · · ·)− (1− π+ b2 + b4 + · · ·)) and m(h) = (1− π+ a1 + a2 + a3 + · · ·),
we also obtain w̃t(h′) = w̃t(h) + (L−m(h) + ∆β(h))/2.

That αp,p′

a′,b = αp,p′

a,b −∆ is immediate. Since π(h′) = 0 then ⌊a′p/p′⌋ =

⌊ap/p′⌋. That βp,p′

a′,b,e′,f = βp,p′

a,b,e,f −∆ now follows. ✷

In the following lemma, we consider the special case when 2p < p′ < 3p
so that the first and second bands of the (p, p′)-model are even and odd
respectively. We then only consider path extension into the first or the
(p′ − 2)th band of the (p, p′)-model.

Lemma 7.2 Let 2 < 2p < p′ < 3p and either a = 2 and e = 1, or
a = p′ − 2 and e = 0. Then a is interfacial in the (p, p′)-model. Let S
be interfacial in the (p, p′)-model, and set ∆ = (−1)e, a′ = a + ∆ and
e′ = 1− e. Then:

χ̃p,p′

a′,b,e′,f(L,m){S ∪ {a}} = q
1
2
(L−1−m+∆β)χ̃p,p′

a,b,e,f(L− 1, m){S},

where β = βp,p′

a,b,e,f .

In addition, αp,p′

a′,b = αp,p′

a,b −∆, βp,p′

a′,b,e′,f = βp,p′

a,b,e,f −∆.

Proof: Since 2p < p′ < 3p, it follows that 0 = ⌊2p/p′⌋ 6= ⌊3p/p′⌋ wherepon
2 and p′ − 2 are both interfacial in the (p, p′)-model, and δp,p

′

a,e = 0.

Let h ∈ Pp,p′

a,b,e,f(L − 1, m){S}. Extend h on the left to obtain h′ with
h′
0 = a′ = a + ∆. Clearly, h′ attains a. Then, Lemma 7.1 implies that

h′ ∈ Pp,p′

a′,b,e′,f(L,m){S ∪ {a}}.

Conversely, any such h′ arises from some h ∈ Pp,p′

a,b,e,f(L − 1, m){S} in
this way since either h′

0 = 1 and e′ = 0, or h′
0 = p′ − 1 and e′ = 1. The

result then follows from the expression for w̃t(h′) given in Lemma 7.1, and

β(h) = βp,p′

a,b,e,f from Lemma 2.2.
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The final statement also follows from Lemma 7.1. ✷

For h ∈ Pp,p′

a,b,e,f(L), we now define path extension to the right in a

similar way. Here we restrict path extension to the cases where δp,p
′

b,f = 0
so that the post-segment of h lies in the even band.

We obtain h′ by defining h′
i = hi for 0 ≤ i ≤ L and h′

L+1 = b′ =
b + (−1)f and We also define f(h′) = f ′ = 1 − f , so that then h′ ∈

Pp,p′

a,b′,e,f ′(L+ 1).
This extending process is depicted in Fig. 8.

b’

b

b’

b

Figure 8: Extending on the right.

Lemma 7.3 Let h ∈ Pp,p′

a,b,e,f(L), where δp,p
′

b,f = 0. Let h′ ∈ Pp,p′

a,b′,e,f ′(L′) be
obtained from h by the above process of path extension. If ∆ = b′ − b then
∆ = (−1)f = −(−1)f

′

, and

• L′ = L+ 1;

• m(h′) = m(h);

• w̃t(h′) = w̃t(h) + 1
2
(L−∆α(h)).

Furthermore, αp,p′

a,b′ = αp,p′

a,b +∆ and βp,p′

a,b′,e,f ′ = βp,p′

a,b,e,f +∆.

Proof: That ∆ = (−1)f = −(−1)f
′

is immediate from the definition. Let

h have striking sequence
(

a1
b1

a2
b2

a3
b3

···
···

al
bl

)(e,f,d)
. It is easily checked that the

Lth vertex of h′ is scoring if and only if the Lth vertex of h is scoring.
Then, if the extending segment is in the same direction as the Lth seg-

ment, h′ has striking sequence
(

a1
b1

a2
b2

a3
b3

···
···

al
bl+1

)(e,f ′,d)
and ∆ = −(−1)d+l.

That m(h′) = m(h) is immediate.
When the extending segment is in the direction opposite to that of

the Lth segment, h′ has striking sequence
(

a1
b1

a2
b2

···
···

al
bl

0
1

)(e,f ′,d)
and ∆ =

(−1)d+l. We immediately obtain m(h′) = m(h) in this case.
For 1 ≤ i ≤ l, let wi = ai + bi. We find α(h) = −(−1)d+l((wl +

wl−2 · · ·)− (wl−1 + wl−3 + · · ·)). In the first case above, Lemma 2.1 gives
w̃t(h′) = w̃t(h)+(wl−1+wl−3+wl−5+ · · ·), whereupon we obtain w̃t(h′) =
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w̃t(h) + 1
2
(L(h) − ∆α(h)). In the second case above, Lemma 2.1 gives

w̃t(h′) = w̃t(h) + (wl + wl−2 + wl−4 + · · ·), and we again obtain w̃t(h′) =
w̃t(h) + 1

2
(L(h)−∆α(h)).

That αp,p′

a,b′ = αp,p′

a,b +∆ is immediate. That βp,p′

a,b′,e,f ′ = βp,p′

a,b,e,f + ∆ now
follows because ⌊bp/p′⌋ = ⌊b′p/p′⌋. ✷

Lemma 7.4 Let 2 < 2p < p′ < 3p and either b = 2 and f = 1, or
b = p′ − 2 and f = 0. Then b is interfacial in the (p, p′)-model. Let S
be interfacial in the (p, p′)-model, and set ∆ = (−1)f , b′ = b + ∆ and
f ′ = 1− f . Then:

χ̃p,p′

a,b′,e,f ′(L,m){S ∪ {b}} = q
1
2
(L−1−∆α)χ̃p,p′

a,b,e,f(L− 1, m){S},

where α = αp,p′

a,b .

In addition, αp,p′

a,b′ = αp,p′

a,b +∆ and βp,p′

a,b′,e,f ′ = βp,p′

a,b,e,f +∆.

Proof: Proof: Since 2p < p′ < 3p, it follows that 0 = ⌊2p/p′⌋ 6= ⌊3p/p′⌋

wherepon 2 and p′−2 are both interfacial in the (p, p′)-model, and δp,p
′

b,f = 0.

Let h ∈ Pp,p′

a,b,e,f(L− 1, m){S}. Extend this path on the right to obtain
h′ with h′

L = b′ = b + ∆. Clearly, h′ attains height b. Then, via Lemma

7.3, h′ ∈ Pp,p′

a,b′,e,f ′(L,m){S ∪ {b}}. Conversely, any such h′ arises in this

way from some h ∈ Pp,p′

a,b,e,f(L− 1, m){S}, since either h′
L = 1 and f ′ = 1,

or h′
L = p′ − 1 and f ′ = 0. The required result then follows from the

expression for w̃t(h′) given in Lemma 7.3, and α(h) = αp,p′

a,b from Lemma
2.2.

The final statement follows from Lemma 7.3. ✷

7.2. Truncating paths

In this section, we specify a process by which a path h ∈ Pp,p′

a,b,e,f(L),
for L > 0 may be shortened by removing just the leftmost (first) segment,
or by removing just the rightmost (Lth) segment. Consequently, the new
path h′ is of length L′ = L − 1. One shortening may follow the other to
yield a path of length L− 2.

In fact, we will only use these shortening processes when p′ > 2p, so
that in particular, the 1st and the (p′−2)th bands of the (p, p′)-model are
even.

Shortening on the left side will occur only when a = 1 or a = p′ − 1
so that the removed segment is in an even band, and will occur when the
0th vertex is scoring.
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Lemma 7.5 Let p′ > 2p and either a = 1 and e = 0, or a = p′ − 1
and e = 1. Let S be interfacial in the (p, p′)-model, with a /∈ S. Define
∆ = −(−1)e, e′ = 1− e and a′ = a−∆. Then

χ̃p,p′

a′,b,e′,f(L,m){S} = q−
1
2
(L+1−m+∆β)χ̃p,p′

a,b,e,f(L+ 1, m){S},

where β = βp,p′

a,b,e,f .

In addition, αp,p′

a′,b = αp,p′

a,b +∆, and βp,p′

a′,b,e′,f = βp,p′

a,b,e,f +∆.

Proof: Let h ∈ Pp,p′

a,b,e,f(L + 1, m){S}, and note that necessarily h1 = a′.

Let h′ ∈ Pp,p′

a′,b,e′,f(L,m){S} be defined by h′
i = hi+1 for 0 ≤ i ≤ L. The

lemma then follows on noting that δp,p
′

a′,e′ = 0 and using Lemma 7.1 after
switching the roles of h and h′ there. ✷

Shortening on the right side will occur only when b = 1 or b = p′ − 1
so that the removed segment is in an even band, and will occur when the
Lth vertex is scoring.

Lemma 7.6 Let p′ > 2p and either b = 1 and f = 0, or b = p′ − 1
and f = 1. Let S be interfacial in the (p, p′)-model, with b /∈ S. Define
∆ = −(−1)f , f ′ = 1− f and b′ = b−∆. Then

χ̃p,p′

a,b′,e,f ′(L,m){S} = q−
1
2
(L+1−∆α)χ̃p,p′

a,b,e,f(L+ 1, m){S},

where α = αp,p′

a,b .

In addition, αp,p′

a,b′ = αp,p′

a,b −∆, and βp,p′

a,b′,e,f ′ = βp,p′

a,b,e,f −∆.

Proof: Let h ∈ Pp,p′

a,b,e,f(L + 1, m){S}, and note that necessarily hL = b′.

Let h′ ∈ Pp,p′

a,b′,e,f ′(L,m){S} be defined by h′
i = hi for 0 ≤ i ≤ L. The

lemma then follows on noting that δp,p
′

b′,f ′ = 0 and using Lemma 7.3 after
switching the roles of h and h′ there. ✷

8. Fermionic expressions

8.1. Results

In this section, we fix co-prime p and p′, and fix a, b ∈ T ∪ T ′, with
1 ≤ a, b < p′. We make use of the definitions of 5.1 and 5.2. For certain c,
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we present two fermionic expressions for Pp,p′

a,b,c(L). The value of c depends
on b and, for p′ > 2p, is given by:

c =











































2 if b = 1;

b− 1 if 1 < b ≤ t1;

p′ − 2 if b = p′ − 1;

b+ 1 if p′ − t1 ≤ b < p′ − 1;

b± 1 otherwise.

(14)

For p′ < 2p, change t1 to t2 in this definition.
The statement of these fermionic expressions requires the following

notation. For convenience, set aL = a and aR = b. Now, for A ∈ {L,R},
define σA such that:

κσA =

{

aA if aA ∈ T ;

p′ − aA if aA ∈ T ′.
(15)

For 0 ≤ j ≤ t, define13 ej = (e1, e2, . . . , et) with ei = δij . Then define

uA = eσA −
∑

k:σA≤tk<t

etk +

{

0 if aA ∈ T ;

et if aA ∈ T ′,
(16)

and

∆A =



















−eσA +
∑

k:σA≤tk<t

etk if aA ∈ T ;

−et + eσA −
∑

k:σA≤tk<t

etk if aA ∈ T ′.
(17)

We define the matrix C to be the t× t tri-diagonal matrix with entries
Cij for 0 ≤ i, j ≤ t− 1 where, when the indices are in this range,

Cj,j−1 = −1, Cj,j = 1, Cj,j+1 = 1, if j = tk, k = 1, 2, . . . , n;
Cj,j−1 = −1, Cj,j = 2, Cj,j+1 = −1, 0 ≤ j < t otherwise.

(18)
It is also useful to define Ĉ to be the t × t upper-triangular matrix

with entries Ĉ ij = Cij, as above, with 1 ≤ i ≤ t and 0 ≤ j ≤ t− 1.
For example, in the case p = 9 and p′ = 31, where the continued

fraction of p′/p is (3, 2, 4) and t1 = 2, t2 = 4 and t3 = 8, we have:

13In this paper, all vectors Q, m, m̂, n, u, ∆ and e should be considered as column
vectors. However, for typographical convenience, we shall express their components in
row vector form.
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C =























2 −1 . . . . .

−1 2 −1 . . . .

. −1 1 1 . . .

. . −1 2 −1 . .

. . . −1 1 1 .

. . . . −1 2 −1

. . . . . −1 2























, Ĉ =























−1 2 −1 . . . .

. −1 1 1 . . .

. . −1 2 −1 . .

. . . −1 1 1 .

. . . . −1 2 −1

. . . . . −1 2

. . . . . . −1























.

Since Ĉ is upper-triangular, its inverse is readily obtained. Given a
t-dimensional vector u, we then define Qi ∈ {0, 1} for 0 ≤ i < t, by14

(Q0, Q1, Q2, . . . , Qt−1)
T = Ĉ−1u mod 2. (19)

We thus define the parity vector Q(u) = (Q1, Q2, . . . , Qt−1).
Now, given a t-dimensional vector u = (u1, u2, . . . , ut), define the (t−

1)-dimensional vector u♭ = (u♭
1, u

♭
2, . . . , u

♭
t−1) by:

u♭
j =

{

0 if tk < j ≤ tk+1, k ≡ 0 (mod 2);

uj if tk < j ≤ tk+1, k 6≡ 0 (mod 2),
(20)

and the (t− 1)-dimensional vector u♯ = (u♯
1, u

♯
2, . . . , u

♯
t−1) by:

u♯
j =

{

uj if tk < j ≤ tk+1, k ≡ 0 (mod 2);

0 if tk < j ≤ tk+1, k 6≡ 0 (mod 2).
(21)

Then, of course, (u)j = (u♭ + u♯)j for 1 ≤ j < t. For convenience, we
sometimes write u♭ and u♯ for u

♭ and u♯ respectively.
Finally, we define a value γ that depends on ∆L and ∆R. This

value is obtained by iteratively generating the sequences (βt, βt−1, . . . , β0),
(αt, αt−1, . . . , α0), and (γt, γt−1, . . . , γ0) as follows. Let αt = βt = γt = 0.
Now, for j = t, t − 1, . . . , 1, obtain αj−1, βj−1, and γj−1 from αj , βj, and
γj in the following three stages. Firstly, obtain:

(β ′
j−1, γ

′
j−1) = (βj + (∆L)j − (∆R)j, γj + 2αj(∆

R)j). (22)

Then obtain:

(α′′
j−1, γ

′′
j−1) = (αj + β ′

j−1, γ
′
j−1 − (β ′

j−1)
2). (23)

Finally, set

(αj−1, βj−1, γj−1)

=

{

(α′′
j−1, α

′′
j−1 − β ′

j−1,−(α′′
j−1)

2 − γ′′
j−1) if j = tk + 1, 1 ≤ k ≤ n;

(α′′
j−1, β

′
j−1, γ

′′
j−1) otherwise.

(24)
We then set γ = γ0.

14For v = (v1, v2, . . . , vt), we define vmod 2 = (v1 mod 2, v2 mod 2, . . . , vt mod 2, ).
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Theorem 8.1 If a, b ∈ T ∪ T ′, define everything as above. Then:

χp,p′

a,b,c(L) =

∑

m≡Q(uL+uR)

q
1
4
m̂TCm̂− 1

4
L2− 1

2
(uL

♭
+uR

♯
)·m+ 1

4
γ
t−1
∏

j=1

[

mj −
1
2
(Ĉm̂−uL−uR)j

mj

]

q

+















χzn,yn
a,b,c (L) if a < yn and b < yn;

χzn,yn
p′−a,p′−b,p′−c(L) if a > p′ − yn and b > p′ − yn;

0, otherwise.

With Q(uL + uR) = (Q1, Q2, . . . , Qt−1), the summation here is over all
vectors m = (m1, m2, . . . , mt−1) such that mj ∈ Z≥0 and mj ≡ Qj (mod 2)
for 1 ≤ j < t. Then m̂ = (L,m1, m2, . . . , mt−1).

The second fermionic expression for χp,p′

a,b,c(L) that we present, involves

the modified form
[

A
B

]′

q
of the Gaussian polynomial defined in (2).

Theorem 8.2 If a, b ∈ T ∪T ′, define everything as above. Then, if L ≥ 0:

χp,p′

a,b,c(L) =

∑

m≡Q(uL+uR)

q
1
4
m̂TCm̂− 1

4
L2− 1

2
(uL

♭
+uR

♯ )·m+ 1
4
γ
t−1
∏

j=1

[

mj −
1
2
(Ĉm̂−uL−uR)j

mj

]′

q

.

With Q(uL + uR) = (Q1, Q2, . . . , Qt−1), the summation here is over all
vectors m = (m1, m2, . . . , mt−1) such that mj ∈ Z≥0 and mj ≡ Qj (mod 2)
for 1 ≤ j < t. Then m̂ = (L,m1, m2, . . . , mt−1).

8.2. Carrying out the induction

With p and p′ fixed, employ the definitions of Section 5.1. Then, for
0 ≤ i ≤ t, let k(i) be such that tk(i) ≤ i < tk(i)+1 (i.e. k(i) = ζ(i+1)), and
define pi and p′i to be the positive co-prime integers for which p′i/pi has
continued fraction (tk(i)+1+1− i, ck(i)+1, . . . , cn). Thus p

′
i/pi has rank t− i.

As in Section 5.2, we obtain Takahashi lengths {κ
(i)
j }t−i

j=0 and truncated

Takahashi lengths {κ̃
(i)
j }t−i

j=0 for p′i/pi.

Lemma 8.3 Let 1 ≤ i ≤ t. If i 6= tk(i) then:

p(i−1)′ = p(i)′ + p(i);

p(i−1) = p(i);

κ
(i−1)
j = κ

(i)
j−1 + κ̃

(i)
j−1 (1 ≤ j ≤ t(i−1));

κ̃
(i−1)
j = κ̃

(i)
j−1 (1 ≤ j ≤ t(i−1)).
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If i = tk(i) then:

p(i−1)′ = 2p(i)′ − p(i);

p(i−1) = p(i)′ − p(i);

κ
(i−1)
j = 2κ

(i)
j−1 − κ̃

(i)
j−1 (2 ≤ j ≤ t(i−1));

κ̃
(i−1)
j = κ̃

(i)
j−1 − κ̃

(i)
j−1 (2 ≤ j ≤ t(i−1)).

Proof: If i 6= tk(i) then k(i − 1) = k(i). Then p(i)′/p(i) and p(i−1)′/p(i−1)

have continued fractions (tk(i) + 1 − i, ck(i)+1, . . . , cn) and (tk(i) + 2 −
i, ck(i)+1, . . . , cn) respectively. That p(i−1)′ = p(i)′ + p(i) and p(i−1) = p(i)

follows immediately. The expressions for κ
(i−1)
j and κ̃

(i−1)
j then follow from

Lemma 6.1.
If i = tk(i) then k(i − 1) = k(i) − 1. Then p(i)′/p(i) and p(i−1)′/p(i−1)

have continued fractions (ck(i), ck(i)+1, . . . , cn) and (2, ck(i), ck(i)+1, . . . , cn)
respectively. That p(i−1)′ = 2p(i)′ − p(i) and p(i−1) = p(i)′ − p(i) follows
immediately. The expressions for κ

(i−1)
j and κ̃

(i−1)
j then follow from com-

bining Lemma 6.2 with Lemma 6.1. ✷

As above, take A ∈ {R,L}. If aA ∈ T , set

aAi =

{

1 if σA ≤ i < t;

κ
(i)
σA−i if 0 ≤ i ≤ σA,

aA′
i =

{

1 + δi,tk(i) if σA ≤ i < t;

κ
(i−1)
σA−i+1 if 0 ≤ i < σA,

and if aA ∈ T ′, set

aAi =

{

p′i − 1 if σA ≤ i < t;

p′i − κ
(i)
σA−i if 0 ≤ i ≤ σA.

aA′
i =

{

p′i − 1− δi,tk(i) if σA ≤ i < t;

p′i − κ
(i−1)
σA−i+1 if 0 ≤ i < σA.

In addition, define kA to be such that tkA < σA ≤ tkA+1. Then, if
aA ∈ T , set

eAi =

{

0 if σA ≤ i < t;

δ
(2)
k,kA if 0 ≤ i < σA,

and if aA ∈ T ′, set

eAi =

{

1 if σA ≤ i < t;

1− δ
(2)
k,kA if 0 ≤ i < σA.
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Lemma 8.4 Let 1 ≤ i < t. Then for A ∈ {L,R}:

aA′
i =























aAi +

⌊

aAi pi
p′i

⌋

+ eAi if i 6= tk(i);

2aAi −

⌊

aAi pi
p′i

⌋

− eAi if i = tk(i).

Proof: For p′i/pi, in view of the continued fraction specified above, the
analogues of the quantities defined in (13) are t′j = tk(i)+j − i for 1 ≤ j ≤
n− k(j) + 1. For i < σA, the various cases are then readily proved using
Lemmas 6.3 and 8.3. For i ≥ σA, the results follow immediately. ✷

For each t-dimensional vector u = (u1, u2, . . . , ut), define the (t − 1)-

dimensional vector u(♭,k) = (u
(♭,k)
1 , u

(♭,k)
2 , . . . , u

(♭,k)
t−1 ) by

u
(♭,k)
j =

{

0 if tk′ < j ≤ tk′+1, k
′ ≡ k (mod 2);

uj if tk′ < j ≤ tk′+1, k
′ 6≡ k (mod 2),

(25)

and the (t− 1)-dimensional vector u(♯,k) = (u
(♯,k)
1 , u

(♯,k)
2 , . . . , u

(♯,k)
t−1 ) by

u
(♯,k)
j =

{

uj if tk′ < j ≤ tk′+1, k
′ ≡ k (mod 2);

0 if tk′ < j ≤ tk′+1, k
′ 6≡ k (mod 2),

(26)

For convenience, we sometimes write u(♭,k) instead of u(♭,k), and u(♯,k)

instead of u(♯,k).
Now for 0 ≤ i ≤ t− 2, define:

F
(i)
a,b(u

L,uR, mi, mi+1; q) =

∑



q
1
4
m̂(i+1)TCm̂(i+1)+ 1

4
m2

i−
1
2
mimi+1−

1
2
(uL

(♭,k(i))
+uR

(♯,k(i))
)·m(i)+ 1

4
γ′′

i

t−1
∏

j=i+1

[

mj −
1
2
(Ĉm̂(i)−uL−uR)j

mj

]

q



 ,

(27)

where the sum here is taken over all vectors (mi+2, mi+3, . . . , mt−1) ≡
(Qi+2, Qi+3, . . . , Qt−1), where (Q1, Q2, . . . , Qt−1) = Q(uL +uR). The (t−
1)-dimensional vector m(i) = (0, 0, . . . , 0, mi+1, mi+2, mi+3, . . . , mt−1) has
its first i components equal to zero. The t-dimensional vector m̂(i) =
(0, 0, . . . , 0, mi, mi+1, mi+2, . . . , mt−1) has its first i components equal to
zero.

We also define:

F
(t−1)
a,b (uL,uR, mt−1, mt; q) = q

1
4
m2

t−1+
1
4
γ′′

i δmt,0. (28)
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For convenience, we set Qt = 0.
Since

[

m+n
m

]

q−1
= q−mn

[

m+n
m

]

q
, it follows that for 0 ≤ i ≤ t− 2:

F
(i)
a,b(u

L,uR, mi, mi+1; q
−1) =

∑



q
1
4
m̂(i+1)TCm̂(i+1)− 1

4
m2

i−
1
2
(uL

(♭,k(i)−1)
+uR

(♯,k(i)−1)
)·m(i)− 1

4
γ′′

i

t−1
∏

j=i+1

[

mj −
1
2
(Ĉm̂(i)−uL−uR)j

mj

]

q



 ,

(29)

where the sum here is taken over all vectors (mi+2, mi+3, . . . , mt−1) ≡
(Qi+2, Qi+3, . . . , Qt−1), as above. Of course, we also have:

F
(t−1)
a,b (uL,uR, mt−1, mt; q

−1) = q−
1
4
m2

t−1−
1
4
γ′′

i δmt,0. (30)

Lemma 8.5 Let 0 ≤ i < t, mi ≡ Qi and mi+1 ≡ Qi+1. If

S(i) =



















{

κ
(i)
tn−i

}

if i < tn, σ
L < tn, σ

R < tn and a, b ∈ T ;
{

p′i − κ
(i)
tn−i

}

if i < tn, σ
L < tn, σ

R < tn and a, b ∈ T ′;

∅ otherwise,

then:
χ̃
pi,p

′

i

aLi ,a
R
i ,eLi ,e

R
i
(mi, mi+1)

{

S(i)
}

= F
(i)
a,b(u

L,uR, mi, mi+1). (31)

In addition, α
pi,p

′

i

aLi ,a
R
i
= α′′

i and β
pi,p

′

i

aLi ,a
R
i ,eLi ,e

R
i
= β ′

i.

Proof: For i = t − 1, we have p′i = 3, pi = 1, and if aA ∈ T then
aAi = 1, eAi = 0, (∆A)t = 0; and if aA ∈ T ′ then aAi = 2, eAi = 1,
(∆A)t = −1. Furthermore, we have i ≥ tn. Via (22) and (23), we obtain
α′′
t−1 = β ′

t−1 = (∆L)t−(∆R)t and γ′′
t−1 = −((∆L)t−(∆R)t)

2. For i = t−1,
the first statement of our induction proposition is now seen to hold via

Lemma 2.5. The definitions of α
pi,p

′

i

aLi ,a
R
i
and β

pi,p
′

i

aLi ,a
R
i ,eLi ,e

R
i
then yield the two

final statements.
Now assume the result holds for a particular i with 1 ≤ i ≤ t − 1.

As above, let k(i) be such that tk(i) ≤ i < tk(i)+1. First consider the case
tk(i) < i < tk(i)+1. Equation (24) gives αi = α′′

i , βi = β ′
i and γi = γ′′

i .
Let mi−1 ≡ Qi−1. On setting M = mi−1 + uL

i + uR
i , equation (19) implies
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that M ≡ Qi+1. Then, use of the induction hypothesis, Lemmas 3.14 or
Lemma 6.7 as appropriate, and Lemmas 8.3 and 8.4 yields:

χ̃
pi−1,p

′

i−1

aL′

i ,aR′

i ,eLi ,e
R
i
(M,mi)

{

S(i−1)
}

=
∑

mi+1≡Qi+1

q
1
4
(M−mi)2−

1
4
β2
i

[

1
2
(M +mi+1)

mi

]

q

F
(i)
a,b(u

L,uR, mi, mi+1).

(32)

Here, Lemma 3.5 also gives α
pi−1,p

′

i−1

aL′

i ,aR′

i
= αi + βi, and β

pi−1,p
′

i−1

aL′

i ,aR′

i ,eLi ,e
R
i
= βi.

That
{

S(i−1)
}

appears on the leftside here is because, via Lemma 6.3,

if i < tn then κ
(i)
tn−i is interfacial in the (pi, p

′
i)-model, and borders the

κ̃
(i)
tn−ith odd band, and then κ

(i)
tn−i + κ̃

(i)
tn−i = κ

(i−1)
tn−i+1, by Lemma 8.3, and

finally noting that i 6= tn so that if i ≥ tn then i− 1 ≥ tn. (The up-down

symmetry of the (p, p′)-model implies that if i < tn then p′i − κ
(i)
tn−i is

interfacial in the (pi, p
′
i)-model, and borders the (pi − κ̃

(i)
tn−i)th odd band.

Then we use (p′i−κ
(i)
tn−i)+ (pi− κ̃

(i)
tn−i) = p′i−1−κ

(i−1)
tn−i+1, from Lemma 8.3.)

Since M = mi−1 + uL
i + uR

i , on noting that tk < i < tk+1, we have:

M +mi+1 = 2mi − (Ĉm̂(i−1) − uL − uR)i,

and

m̂(i+1)TCm̂(i+1) +m2
i − 2mimi+1 + (M −mi)

2

= m̂(i)TCm̂(i) +M2 − 2Mmi

= m̂(i)TCm̂(i) +m2
i−1 − 2mimi−1

+2(mi−1 −mi)(u
L
i + uR

i ) + (uL
i + uR

i )
2.

(In the case i = t−1, we require this expression after substituting mt = 0.)
Thence,

χ̃
pi−1,p

′

i−1

aL′

i ,aR′

i ,eLi ,e
R
i
(mi−1 + uL

i + uR
i , mi)

{

S(i−1)
}

=
∑



q
1
4
m̂(i)TCm̂(i)− 1

2
mimi−1+

1
2
(mi−1−mi)(uL

i +uR
i )− 1

2
(uL

(♭,k(i))
+uR

(♯,k(i))
)·m(i)

q
1
4
m2

i−1+
1
4
(uL

i +uR
i )2+ 1

4
γi−

1
4
β2
i

t−1
∏

j=i

[

mj −
1
2
(Ĉm̂(i−1)−uL−uR)j

mj

]

q



 ,

where the sum is over all (mi+1, mi+2, . . . , mt−1) ≡ (Qi+1, Qi+2, . . . , Qt−1).
If i = σR then uR

i = 1. In this case, by definition, we have either
aR′
i = 1, eRi = 0, aRi−1 = 2 and eRi−1 = 1, or aR′

i = p′i−1 − 1, eRi = 1,
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aRi−1 = p′i−1 − 2 and eRi−1 = 0. It is easily checked that aR′
i /∈ S(i−1). Then,

use of Lemma 7.6 yields:

χ̃
pi−1,p

′

i−1

aL′

i ,aR′

i−1,e
L
i ,e

R
i−1

(mi−1 + uL
i , mi)

{

S(i−1)
}

= q−
1
2
uR
i (mi−1+uL

i +uR
i )+ 1

2
(∆R)i(αi+βi)

χ̃
pi−1,p

′

i−1

aL′

i ,aR′

i ,eLi ,e
R
i
(mi−1 + uL

i + uR
i , mi)

{

S(i−1)
}

.

(33)

If i 6= σR then (noting that i 6= tk) uR
i = (∆R)i = 0, eRi−1 = eRi and

aRi−1 = aR′
i . The preceding expression thus also holds in this case.

We also immediately obtain

α
pi−1,p

′

i−1

aL′

i ,aRi−1
= αi + βi − (∆R)i;

β
pi−1,p

′

i−1

aL′

i ,aRi−1,e
L
i ,e

R
i−1

= βi − (∆R)i.

If i = σL then uL
i = 1. In this case, by definition, we have either

aL′i = 1, eLi = 0, aLi−1 = 2 and eLi−1 = 1, or aL′i = p′i−1 − 1, eLi = 1,
aLi−1 = p′i−1 − 2 and eLi−1 = 0. It is easily checked that aL′i /∈ S(i−1). Then,
use of Lemma 7.5 yields:

χ̃
pi−1,p

′

i−1

aLi−1,a
R
i−1,e

L
i−1,e

R
i−1

(mi−1, mi)
{

S(i−1)
}

= q−
1
2
uL
i (mi−1−mi+uL

i )−
1
2
(∆L)i(βi−(∆R)i)

χ̃
pi−1,p

′

i−1

aL′

i ,aRi−1,e
L
i ,e

R
i−1

(mi−1 + uL
i , mi)

{

S(i−1)
}

.

(34)

If i 6= σR then (noting that i 6= tk) uL
i = (∆L)i = 0, eLi−1 = eLi and

aLi−1 = aL′i . The preceding expression thus also holds in this case.
We also obtain:

α
pi−1,p

′

i−1

aLi−1,a
R
i−1

= αi + βi − (∆R)i + (∆L)i;

β
pi−1,p

′

i−1

aLi−1,a
R
i−1,e

L
i−1,e

R
i−1

= βi − (∆R)i + (∆L)i.

Combining all the above, and using the expression for γ′′
i−1 given by

(22) and (23), yields:
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χ̃
pi−1,p

′

i−1

aLi−1,a
R
i−1,e

L
i−1,e

R
i−1

(mi−1, mi)
{

S(i−1)
}

=
∑



q
1
4
m̂(i)TCm̂(i)+ 1

4
m2

i−1−
1
2
mi−1mi−

1
2
(uL

(♭,k(i))
+uR

(♯,k(i))
)·m(i−1)+ 1

4
γ′′

i−1

t−1
∏

j=i

[

mj −
1
2
(Ĉm̂

(i−1)−uL−uR)j
mj

]

q





= F
(i−1)
a,b (uL,uR, mi−1, mi),

which is the required result when i 6= tk, since k(i) = k(i− 1).
In this i 6= tk case, making use of (22), (23), we also immediately

obtain:
α
pi−1,p

′

i−1

aLi−1,a
R
i−1

= α′′
i−1;

β
pi−1,p

′

i−1

aLi−1,a
R
i−1,e

L
i−1,e

R
i−1

= β ′
i−1.

Now consider the case for which i = tk. Equation (24) gives αi = α′′
i ,

βi = α′′
i − β ′

i and γi = −α2
i − γ′′

i . Corollary 4.2 gives α
p′i−pi,p

′

i

aLi ,a
R
i

= αi and

β
p′i−pi,p

′

i

aLi ,a
R
i ,1−eLi ,1−eRi

= βi. Let mi−1 ≡ Qi−1. On setting M = mi−1 + uL
i +

uR
i , equation (19) implies that M ≡ Qi+1. Then, use of the induction

hypothesis, Lemmas 4.6 or Lemma 6.8 as appropriate, and Lemmas 8.3
and 8.4 yields:

χ̃
pi,p

′

i

aL′

i ,aR′

i ,1−eLi ,1−eRi
(M,mi; q)

{

S(i)′
}

=
∑

mi+1≡Qi+1



q
1
4
(m2

i+(M−mi)
2−α2

i−β2
i )

[

1
2
(M +mi −mi+1)

mi

]

q

F
(i)
a,b(u

L,uR, mi, mi+1; q
−1)



 ,

(35)

where

S(i)′ =



















{

κ
(i−1)
tn−i+1

}

if i < tn, σ
L < tn, σ

R < tn and a, b ∈ T ;
{

p′i − κ
(i−1)
tn−i+1

}

if i < tn, σ
L < tn, σ

R < tn and a, b ∈ T ′;

∅ otherwise,

using a similar argument to that in the i 6= tk(i) case. Here, Lemma 3.5

also gives α
pi−1,p

′

i−1

aL′

i ,aR′

i
= αi + βi, and β

pi−1,p
′

i−1

aL′

i ,aR′

i ,1−eLi ,1−eRi
= βi.

Now set M = mi−1 + uL
i + uR

i , whence on noting that i = tk,

M +mi −mi+1 = 2mi − (Ĉm̂(i−1) − uL − uR)i
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(in the case i = t−1, we require this expression after substituting mt = 0),
and

m̂(i+1)TCm̂(i+1) −m2
i +m2

i + (M −mi)
2

= m̂(i)TCm̂(i) +M2 − 2Mmi

= m̂(i)TCm̂(i) +m2
i−1 − 2mimi−1

+2(mi−1 −mi)(u
L
i + uR

i ) + (uL
i + uR

i )
2.

Use of (29) or (30) then gives:

χ̃
pi−1,p

′

i−1

aL′

i ,aR′

i ,1−eLi ,1−eRi
(mi−1 + uL

i + uR
i , mi)

{

S(i)′
}

=
∑



q
1
4
m̂(i)TCm̂(i)− 1

2
mimi−1+

1
2
(mi−1−mi)(uL

i +uR
i )− 1

2
(uL

(♭,k(i)−1)
+uR

(♯,k(i)−1)
)·m(i)

q
1
4
m2

i−1+
1
4
(uL

i +uR
i )2+ 1

4
γi−

1
4
β2
i

t−1
∏

j=i

[

mj −
1
2
(Ĉm̂(i−1)−uL−uR)j

mj

]

q



,

where the sum is over all (mi+1, mi+2, . . . , mt−1) ≡ (Qi+1, Qi+2, . . . , Qt−1).
Now set S(i)R = S(i)′ ∪ aR′

i if i > σR and S(i)R = S(i)′ otherwise.
Since i = tk, it follows that uR

i = −1 if i > σR. In this case, by
definition, we have either aR′

i = 2, 1 − eRi = 1, aRi−1 = 1 and eRi−1 = 0, or
aR′
i = p′i−1 − 2, 1 − eRi = 0, aRi−1 = p′i−1 − 1 and eRi−1 = 1. Then Lemma

7.4 yields:

χ̃
pi−1,p

′

i−1

aL′

i ,aRi−1,1−eLi ,e
R
i−1

(mi−1 + uL
i , mi)

{

S(i)R
}

= q−
1
2
uR
i (mi−1+uL

i +uR
i )+ 1

2
(∆R)i(αi+βi)

χ̃
pi−1,p

′

i−1

aL′

i ,aR′

i ,1−eLi ,1−eRi
(mi−1 + uL

i + uR
i , mi)

{

S(i)′
}

.

(36)

In addition, the same expression clearly also holds in the case i ≤ σR,
for which uR

i = (∆R)i = 0, eRi−1 = 1 − eRi and aRi−1 = aR′
i . (In the i = σR

case, note that k(i− 1) = k(i)− 1 = kR(i).)
Lemma 7.4 also implies that:

α
pi−1,p

′

i−1

aL′

i ,aRi−1
= αi + βi − (∆R)i;

β
pi−1,p

′

i−1

aL′

i ,aRi−1,e
L
i ,e

R
i−1

= βi − (∆R)i.

Now set S(i)L = S(i)R ∪ aL′i if i > σL and S(i)L = S(i)R otherwise.
Since i = tk, it follows that uL

i = −1 if i > σL. In this case, by
definition, we have either aL′i = 2, 1 − eLi = 1, aLi−1 = 1 and eLi−1 = 0, or



55

aL′i = p′i−1 − 2, 1− eLi = 0, aLi−1 = p′i−1 − 1 and eRi−1 = 1. Then Lemma 7.2
yields:

χ̃
pi−1,p

′

i−1

aLi−1,a
R
i−1,e

L
i−1,e

R
i−1

(mi−1, mi)
{

S(i)L
}

= q−
1
2
uL
i (mi−1−mi+uL

i )−
1
2
(∆L)i(βi−(∆R)i)

χ̃
pi−1,p

′

i−1

aL′

i ,aRi ,1−eLi ,e
R
i−1

(mi−1 + uL
i , mi)

{

S(i)R
}

.

(37)

In addition, the same expression clearly also holds in the case i ≤ σL,
for which uL

i = (∆L)i = 0, eLi−1 = 1 − eLi and aLi−1 = aL′i . (In the i = σL

case, note that k(i− 1) = k(i)− 1 = kL(i).)
Lemma 7.2 also implies that:

α
pi−1,p

′

i−1

aLi−1,a
R
i−1

= αi + βi − (∆R)i + (∆L)i;

β
pi−1,p

′

i−1

aLi−1,a
R
i−1,e

L
i−1,e

R
i−1

= βi − (∆R)i + (∆L)i.

Combining all the above cases for i = tk yields:

χ̃
pi−1,p

′

i−1

aLi−1,a
R
i−1,e

L
i−1,e

R
i−1

(mi−1, mi)
{

S(i)L
}

.

=
∑



q
1
4
m̂(i)TCm̂(i)+ 1

4
m2

i−1−
1
2
mi−1mi−

1
2
(uL

(♭,k(i)−1)
+uR

(♯,k(i)−1)
)·m(i−1)+ 1

4
γ′′

i−1

t−1
∏

j=i

[

mj −
1
2
(Ĉm̂(i−1)−uL−uR)j

mj

]

q





= F
(i−1)
a,b (uL,uR, mi−1, mi).

Once it is established that

P
pi−1,p

′

i−1

aLi−1,a
R
i−1,e

L
i−1,e

R
i−1
(mi−1, mi)

{

S(i)L
}

= P
pi−1,p

′

i−1

aLi−1,a
R
i−1,e

L
i−1,e

R
i−1
(mi−1, mi)

{

S(i−1)
}

.

we obtain the required result when i = tk, since k(i) = k(i− 1) + 1.
If i = tn then {S(i)L} = {S(i−1)} immediately. Now let i < tn. For

A ∈ {L,R}, if σA
i = −1 then necessarily σA

tn = −1. In the case that

aA ∈ T , this implies that {2, κ
(i)
tn−i} ⊂ S(i)L and κ

(i)
tn−i ∈ S(i−1). Since

aAi−1 = 1, we may drop the element 2 from S(i)L with no effect. Similar
reasoning holds for aA ∈ T ′ whereupon the claim is established.

In this i = tk case, making use of (22), (23), we also immediately
obtain:

α
pi−1,p

′

i−1

aLi−1,a
R
i−1

= α′′
i−1;

β
pi−1,p

′

i−1

aLi−1,a
R
i−1,e

L
i−1,e

R
i−1

= β ′
i−1.
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The lemma then follows by induction. ✷

Before performing a sum over m1, we require the following result.

Lemma 8.6 For 0 ≤ j ≤ t,

α′′
j ≡ Qj (mod 2);

β ′
j ≡ Qj −Qj+1 (mod 2).

Proof: Since α′′
t = 0, β ′

t = 0 and Qt = Qt+1 = 0, this result is manifest for
j = t.

We now proceed by downward induction. Thus assume the result
holds for a particular j > 0. When j 6= tk(j), equations (24) and (22)
imply that β ′

j−1 = β ′
j + (uL)j − (uR)j. Equation (19) implies that Qj−1 ≡

Qj+1 − (uL)j − (uR)j. Thus the induction hypothesis immediately gives
β ′
j−1 ≡ Qj−1 −Qj in this case.
When j = tk(j), equations (24) and (22) imply that β ′

j−1 = α′′
j − β ′

j +
(uL)j − (uR)j. Equation (19) implies that Qj−1 ≡ Qj + Qj+1 − (uL)j −
(uR)j. Thus the induction hypothesis also gives β ′

j−1 ≡ Qj−1 −Qj in this
case.

In both cases, equations (24), (22) and (23) give α′′
j−1 = α′′

j + β ′′
j−1,

whence the induction hypothesis immediately gives α′′
j ≡ Qj−1 as required.

✷

Define:

Fa,b(u
L,uR, L; q)

=
∑

m≡Q(uL+uR)

q
1
4
m̂TCm̂− 1

4
L2− 1

2
(uL

♭
+uR

♯ )·m+ 1
4
γ
t−1
∏

j=1

[

mj −
1
2
(Ĉm̂−uL−uR)j

mj

]

q

.

The summation here is over all vectors m = (m1, m2, . . . , mt−1) such
that mj ∈ Z≥0 and mj ≡ Qj (mod 2) for 1 ≤ j < t. Then, m̂ =
(m0, m1, m2, . . . , mt−1).

On defining

S =















{κi} if σL < tn, σ
R < tn and a, b ∈ T ;

{p′i − κi} if σL < tn, σ
R < tn and a, b ∈ T ′;

∅ otherwise,

we then obtain:
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Lemma 8.7 Let p′ > 2p. If L ≡ αp,p′

a,b then

χ̃p,p′

a,b,eL0 ,e
R
0
(L) {S} = Fa,b(u

L,uR, L).

In addition, δp,p
′

b,eR0
= 0.

Proof: Lemma 8.6 implies that L ≡ Q0. Lemma 2.3 requires the sum over
all m1 ≡ L + βp,p′

a,b,e,f of the i = 0 case of Lemma 8.5. This is applicable
since for such m1, Lemma 8.6 implies that m1 ≡ Q1.

The lemma follows after noting that in the p′ > 2p case, m̂(1)TCm̂(1)+
L2 − 2Lm1 = m̂TCm̂− L2 and γ′′

0 = γ. ✷

We now transfer this result to the original weighting function of (3). To

do this we require the value of c given by (14). Then, defining χp,p′

a,b,c(L) {S}

in the way analogous to χ̃p,p′

a,b,e,f(L) {S}, we obtain:

Lemma 8.8 If L ≡ αp,p′

a,b (mod 2) then

χp,p′

a,b,c(L) {S} = Fa,b(u
L,uR, L).

Proof: For the moment, assume that p′ > 2p. Consider h ∈ Pp,p′

a,b,e,f(L)

and h′ ∈ Pp,p′

a,b,c′(L) given by h′
i = hi for 0 ≤ i ≤ L. If δp,p

′

b,f = 0 and

c′ = b+ (−1)f then, as noted in Section 2, w̃t(h) = wt(h′). Consequently,

χ̃p,p′

a,b,e,f(L) {S} = χp,p′

a,b,c′(L) {S}. However, if b is interfacial then the same
is true for c′ = b± 1. As noted at the end of Section 6.1, b is interfacial if
σR ≥ t1. Otherwise, the current lemma follows from noting that for the c
defined above, c = b+ (−1)e

R
0 .

Now given h ∈ Pp,p′

a,b,c(L), define ĥ ∈ Pp′−p,p′

a,b,c (L) by by ĥi = hi for

0 ≤ i ≤ L. As in Lemma 4.1, wt (ĥ) = 1
4
(L2−α2)−wt (h), where α = αp,p′

a,b .

Therefore χp,p′

a,b,c(L) {S} = q
1
4
(L2−α2)χp,p′

a,b,c(L; q
−1) {S}. Since αp,p′

a,b = α′′
0 by

Lemma 8.5, and γ0 = −(α′′
0)

2 − γ′′
0 by (24), the p′ < 2p case follows from

the p′ > 2p case obtained above after using
[

m+n
m

]

q−1
= q−mn

[

m+n
m

]

q
, and

noting the change in the definition of C. ✷

Proof of Theorem 8.1: First consider the case where a < yn and b < yn.
Then necessarily a, b ∈ T . Since yn = κtn , we have σL < tn and σR < tn.

Thereupon, S = {yn}. Let h ∈ Pp,p′

a,b,c(L)\P
p,p′

a,b,c(L){yn}. Then 1 ≤ hi < yn
for 0 ≤ i ≤ L. Since, by Lemma 6.4, the lowermost yn − 2 bands of the
(p, p′)-model have exactly the same parities as the corresponding bands of
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the (zn, yn)-model, we see that if h′ ∈ Pzn,yn
a,b,c (L) is defined by h′

i = hi for
0 ≤ i ≤ L then wt(h′) = wt(h). Since all of Pzn,yn

a,b,c (L) arises in this way,

we have χp,p′

a,b,c(L) = χp,p′

a,b,c(L){yn}+ χzn,yn
a,b,c (L). This proves the first case of

Theorem 8.1.
The second case arises if a > p′ − yn and b > p′ − yn. Here, necessarily

a, b ∈ T ′, whence again σL < tn and σR < tn. The argument proceeds
as above, noting that both the (p, p′)- and (zn, yn)-models are up-down
symmetric.

The other cases are immediate since S = ∅. ✷

8.3. The mn-system

Each term in the fermionic expressions given by Theorem 8.1 or
Theorem 8.2 corresponds to a vector m = (m1, m2, . . . , mt−1) where
m ≡ Q(uL +uR). As usual, we set m̂ = (L,m1, m2, . . . , mt−1). Now, for
each m, define a vector n = (n1, n2, . . . , nt) by

n =
1

2
(−Ĉm̂+ u). (38)

In view of (19), we see that nj ∈ Z for 1 ≤ j ≤ t. Then since

1

2
(Cm̂−uL−uR)j = −nj , (39)

in those terms that provide a non-zero contribution to the fermionic ex-
pression of Theorem 8.1, nj ≥ 0 for 1 ≤ j ≤ t.

On examining the proof of Lemma 8.5, we see that ni is the
number of particles added at the ith induction step to pass from

P
pi,p

′

i

aLi ,a
R
i ,eLi ,e

R
i
(mi, mi+1)

{

S(i)
}

to P
pi−1,p

′

i−1

aLi−1,a
R
i−1,e

L
i−1,e

R
i−1

(mi−1, mi)
{

S(i−1)
}

.

The set of equations that link the two vectors m̂ and n is known as
the mn-system. On account of (18), the equations are more explicitly
given by, for 1 ≤ j ≤ t:

mj−1 −mj+1 = mj + 2nj − uj if j = tk, k = 1, 2, . . . , n; (40)

mj−1 +mj+1 = 2mj + 2nj − uj otherwise, (41)

where we set mt = mt+1 = 0.
Using these two expressions, and setting m0 = L, it may be readily

shown that:
t
∑

i=1

lini =
1

2

(

L+
t
∑

i=1

liui

)

. (42)
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Thereupon, the summands in the expression for Fa,b(u
L,uR, L) given in

Theorem 8.1 correspond to solutions of (42) with each ni a non-negative
integer.

8.4. The second fermionic form

The proof of Theorem 8.2 follows the same lines as that of Theorem
8.1. We will not give the full description, but indicate how the proof
of Lemma 8.5 is affected by the use of the modified Gaussians. We
first define F

(i)′
a,b (u

L,uR, mi, mi+1; q) for 0 ≤ i < t in the same way as

F
(i)
a,b(u

L,uR, mi, mi+1; q) in (27) and (28), except employing the modified
Gaussians instead of the classical Gaussians. Note that this modified form
of the Gaussian differs from the form defined in (1) if and only if A < 0 and

B ≥ 0. In this case,
[

A
B

]

= 0. In addition, since
[

m+n
m

]′

q−1
= q−mn

[

m+n
m

]′

q
,

it follows that the analogues of (29) and (30) hold.

Lemma 8.9 Let 0 ≤ i < t, mi ≡ Qi and mi+1 ≡ Qi+1. If mi ≥ 0 then:

χ̃
pi,p

′

i

aLi ,a
R
i ,eLi ,e

R
i
(mi, mi+1) = F

(i)
a,b(u

L,uR, mi, mi+1). (43)

In addition, α
pi,p

′

i

aLi ,a
R
i
= α′′

i and β
pi,p

′

i

aLi ,a
R
i ,eLi ,e

R
i
= β ′

i.

Proof: The proof proceeds much as in the proof of 8.5. However, we
must certainly check that using the modified Gaussians does not introduce
unwanted terms.

Consider the i 6= tk(i) case. Combining the analogues of (32), (33) and
(34) yields:

χ̃
pi−1,p

′

i−1

aLi−1,a
R
i−1,e

L
i−1,e

R
i−1

(mi−1, mi)

=
∑

mi+1≡Qi+1
0≤mi+1≤mi+1

q
1
2(miu

L
i −mi−1(u

L
i +uR

i )−uL
i u

R
i −2+βi((∆

R)i−(∆L)i)+αi(∆
R)i+(∆L)i(∆

R)i)

× q
1
4
(M−mi)

2− 1
4
β2
i

[

1
2
(M +mi+1)

mi

]

q

F
(i)′
a,b (u

L,uR, mi, mi+1),

whereM = mi−1+uL
i +uR

i . Sincemi−1, mi+1 ≥ 0, and uL
i , u

R
i ≥ 0 (because

i 6= tk(i)), we have

[

1
2
(mi−1 +mi+1 + uL

i + uR
i )

mi

]′

q

=

[

1
2
(mi−1 +mi+1 + uL

i + uR
i )

mi

]

q

. (44)
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The induction step for i 6= tk(i) then proceeds exactly as in the proof of
Lemma 8.5.

For the i = tk(i) case, combining the analogues of (35), (36) and (37)
yields:

χ̃
pi−1,p

′

i−1

aLi−1,a
R
i−1,e

L
i−1,e

R
i−1

(mi−1, mi)
{

S̃
}

=
∑

mi+1≡Qi+1
0≤mi+1≤mi+1

q
1
2(miu

L
i −mi−1(uL

i +uR
i )−uL

i u
R
i +(∆L)i(∆

R)i)−1

× q
1
2(βi((∆

R)i−(∆L)i)+αi(∆
R)i)+ 1

4(m2
i+(M−mi)2−α2

i−β2
i )

×

[

1
2
(M+mi−mi+1)

mi

]

q

F
(i)′
a,b (u

L,uR, mi, mi+1; q
−1),

(45)
where M = mi−1 + uL

i + uR
i , and 2 ∈ S̃ if and only if either aLi = 1 or

aRi = 1; p′ − 2 ∈ S̃ if and only if either aLi = p′ − 1 or aRi = p′ − 1; and S̃
contains no other values.

We must check that (45) holds if the Gaussian is replaced by its mod-
ified form, and the ‘{S̃}’ is removed.

If uL
i = uR

i = 0 then S̃ = ∅. In addition mi+1 ≤ mi + 1 implies that:
[

1
2
(mi−1+mi−mi+1+uL

i +uR
i )

mi

]′

q

=

[

1
2
(mi−1+mi−mi+1+uL

i +uR
i )

mi

]

q

.

(46)
Thereupon, the induction step for this subcase of i = tk(i) follows as in
the proof of Lemma 8.5.

Now consider uL
i 6= uR

i . We tackle the case uL
i = 0 and uR

i = −1 (the
case uL

i = −1 and uR
i = 0 is similar). This implies that σL ≥ tk(i) and

σR < tk(i). Then either aRi−1 = 1 and S̃ = {2}, or aRi−1 = p′ − 1 and

S̃ = {p′ − 2}. In addition, 2 ≤ aLi−1 ≤ p′ − 2. We immediately see that

χ̃
pi−1,p

′

i−1

aLi−1,a
R
i−1,e

L
i−1,e

R
i−1

(mi−1, mi)
{

S̃
}

= χ̃
pi−1,p

′

i−1

aLi−1,a
R
i−1,e

L
i−1,e

R
i−1

(mi−1, mi). (47)

On the other hand, since mi+1 ≤ mi + 1, (46) is valid here unless mi−1 =
mi = 0 and mi+1 = 1. Now σL ≥ tk(i) implies that if aLi = aRi then

σL = tk(i) and eLi = eRi whereupon F
(i)′
a,b (u

L,uR, 0, 1; q−1) = 0. In this

case, since aLi−1 6= aRi−1, then χ̃
pi−1,p

′

i−1

aLi−1,a
R
i−1,e

L
i−1,e

R
i−1

(0, 0) = 0. Therefore, the

induction step holds in this uL
i 6= uR

i case.
Now consider uL

i = uR
i = −1, so that σL < tk(i) and σR < tk(i). If

aA ∈ T then aAi−1 = 1, and if aA ∈ T ′ then aAi−1 = p′ − 1. Thereupon, (47)
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holds unless mi−1 = mi = 0 and either both a, b ∈ T or both a, b ∈ T ′. In
these cases,

χ̃
pi−1,p

′

i−1

aLi−1,a
R
i−1,e

L
i−1,e

R
i−1

(0, 0)
{

S̃
}

= 0;

χ̃
pi−1,p

′

i−1

aLi−1,a
R
i−1,e

L
i−1,e

R
i−1

(0, 0) = 1,
(48)

by direct enumeration. On the other hand, (46) is valid here unless mi−1+

mi −mi+1 = 0, and mi = 0. If mi−1 = mi = 0 then since
[

−1
0

]′
= 1, and

αi = βi = 0, the required analogue of (45) holds in this case. If mi−1 = 1
and mi = 0 then both sides of the analogue of (45) are easily seen to be
zero.

The induction step is now complete, whence the lemma follows. ✷

Note that, at the ith step in the induction, an extra term arises
due to the modified Gaussian only if i = tk(i), σL < i, σR < i
and either both a, b ∈ T or both a, b ∈ T ′. In this case, consider
the term F

(i)′
a,b (u

L,uR, mi, mi+1; q
−1), in (45) which enumerates the ele-

ments of P
pi,p

′

i

aLi ,a
R
i ,eLi ,e

R
i
(mi, mi+1). In the case where the extra term arises,

mi = mi+1 = 0 and either both aLi = aRi = 1 and eLi = eRi = 0, or both
aLi = aRi = p′ − 1 and eLi = eRi = 1. Thus there is precisely one path h̃ of
zero length.

Equation (45) encapsulates the action of a D-transform followed by
a B(k, λ)-transform on h̃, followed by extending the result on both sides
(since uL

i = uR
i = −1). We thus obtain a path of length mi−1 = 2k + 2 in

the (pi−1, p
′
i−1)-model. This path has the form given in Fig. 9. That this

2k +2

Figure 9:

path contains ni = k particles, is also encoded in (40).
When the classical Gaussians are employed, equation (45) thus fails to

account for the case of a zero length path. Use of the modified Gaussian
remedies this, by permitting the case ni = −1. This may be viewed as
an annihilation of the k = 0 case of Fig. 9, which although appearing to
be a particle (c.f. Lemma 3.12), arises through solely the action of the
B1-transform followed by path extension.
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