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ON THE EIGENSTATES OF THE ELLIPTIC CALOGERO-MOSER

MODEL

KOUICHI TAKEMURA

To the memory of Denis Uglov

Abstract. It is known that the trigonometric Calogero-Sutherland model is

obtained by the trigonometric limit (τ →
√
−1∞) of the elliptic Calogero-

Moser model, where (1, τ) is a basic period of the elliptic function.
We show that for all square-integrable eigenstates and eigenvalues of the

Hamiltonian of the Calogero-Sutherland model, if exp(2π
√
−1τ) is small enough

then there exist square-integrable eigenstates and eigenvalues of the Hamil-
tonian of the elliptic Calogero-Moser model which converge to the ones of the
Calogero-Sutherland model for the 2-particle and the coupling constant l is
positive integer cases and the 3-particle and l = 1 case.

In other words, we justify the regular perturbation with respect to the
parameter exp(2π

√
−1τ).

With some assumptions, we show analogous results for N-particle and l is
positive integer cases.

1. Introduction

The elliptic Calogero-Moser model (or elliptic Olshanetsky-Perelomov model) is
a quantum many body system whose Hamiltonian is given as follows,

H := −1

2

N
∑

i=1

∂2

∂x2i
+ l(l + 1)

∑

1≤i<j≤N

℘(xi − xj), (1.1)

where ℘(x) is the Weierstrass elliptic function. ([10])
This model is known to be integrable, i.e. there exists N -algebraically indepen-

dent commuting operators which commute with the Hamiltonian H . ([10])
In this article, we are going to investigate the eigenstates of the Hamiltonian H .
It is known that the Hamiltonian of the trigonometric Calogero-Sutherlandmodel

is obtained by the trigonometric limit (τ →
√
−1∞) of the elliptic Calogero-Moser

model, where (1, τ) is a basic period of the elliptic function.
For the trigonometric case, the eigenstates are known. They are described by

the Jack polynomial. The eigenvalues are also known.
The main idea of this article is to connect the elliptic model with the trigonomet-

ric model, and obtain some information about the eigenstates and the eigenvalues
of the elliptic model.

Since the first term in the expansion of the Hamiltonian of the elliptic model
as a power series in p = exp(2π

√
−1τ) is up to constant the Hamiltonian of the

trigonometric model, we can obtain the formal eigenstates of the elliptic model by
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the perturbation method, i.e. we obtain the formal eigenstates as the formal power
series of p. But the convergence is not guaranteed a priori. For example the formal

perturbation expansion of the eigenstates of H̃ = − d2

dx2 + x2 + αx4 with respect to
α does not convergent regularly.

The main result of this article gives a sufficient condition for the regular con-
vergence of the perturbation expansion. In particular, for the 2-particle and the
coupling constant l is positive integer cases and the 3-particle and l = 1 case, we
have the convergence for all eigenstates related to Jack polynomial. The theorem
guarantee sthe numerous square-integrable eigenstates and their eigenvalues. (see
Conjecture 1, Remark below Conjecture 1, and Theorem 3.6)

The main tool is the Bethe Ansatz method. The Bethe Ansatz method replaces
the problem of finding eigenfunction of the Hamiltonian by solving the transcen-
dental equation which is called the Bethe Ansatz equation. For the 2-particle and
l ∈ Z>0 cases, this reduces to the Bethe Ansatz for the Lamé equation and was
performed more than a century ago. ([15]) For the N -particle and l ∈ Z>0 cases,
Felder and Varchenko obtained the Bethe Ansatz equation by investigating the
asymptotic behavior of the integral representation of the solution of the Knizhnik-
Zamolodchikov-Bernard equation. ([4])

After obtaining the Bethe Ansatz equation, there are two things to be considered.
The first one is to find the condition when the eigenfunction obtained by the Bethe
Ansatz method is connected to the square-integrable eigenstate and the second one
is how the solution of the Bethe Ansatz equation behaves.

The first question is not so difficult. The condition is described as a certain
continuous parameter belonging to some lattice. For details see Lemma 3.4.

The second question is serious. We consider the solution at p = 0 (the trigono-
metric limit) and look into the behavior where p is near 0. In this step, the key
lemma is the implicit function theorem.

In this way, we construct the square-integrable eigenstates and obtain the main
result.

Let us comment on the relationship between the eigenstate obtained by the
Bethe Ansatz method and the finite dimensional invariant subspace preserved by
the Hamiltonian of the elliptic Calogero-Moser model.

For the case l ∈ Z>0/N , the Ruijsenaars operators (a q-analogue of the operators
of the Calogero-Moser model) preserve the finite dimensional subspace of theta-type
function, which depends on l. By considering the limit q → 1, we recognize that
the commuting operators of the elliptic Calogero-Moser model preserve the finite
dimensional subspace of periodic functions, which depends on l. (See [2, 3, 7, 8]
etc.)

The space spanned by the square-integrable eigenstate obtained by the Bethe
Ansatz method is different from the the finite dimensional space of doubly periodic
functions. If a function obtained by the Bethe Ansatz method belong to the finite
dimensional space of doubly periodic functions, the function has poles and is not
square-integrable. To obtain the square-integrable eigenstates, we will consider the
(anti-)symmetrization in section 3.2. In the procedure of (anti-)symmetrization,
the function vanishes.

Since the eigenstate obtained by the Bethe Ansatz method is directly connected
to the Jack (or Macdonald) polynomial, we can conclude that the diagonalization
of the finite dimensional space of the theta-type function is not directly connected
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to the Jack (or Macdonald) polynomial with a “physical” parameter but with a
“non-physical” parameter.

This article is organized as follows.
In section 2, we review the properties of the Jack polynomial. In section 3, we

discuss the Bethe Ansatz method of the elliptic Calogero-Moser model, trigono-
metric limit and corresponding results. In section 4, we solve the Bethe Ansatz
equation, which is necessary to establish the main theorem. In section 5, we give
some comments.

2. Jack polynomial

2.1. Calogero-Sutherland model and Jack polynomial. The Calogero Suther-
land model is a model of a 1-dimensional quantum many body system.([13]) The
Hamiltonian is given by

HCS := −1

2

N
∑

i=1

∂2

∂x2i
+ π2l(l + 1)

∑

1≤i<j≤N

1

sin2(π(xi − xj))
. (2.1)

We set Xi := exp
(

2π
√
−1xi

)

and MN := {λ = (λ1 , λ2 , . . . , λN )|i > j ⇒
λi − λj ∈ Z≥0}.

The eigenstates of the Calogero-Sutherland model are described by the Jack

polynomial J
( 1
l+1 )

λ (X) ([12, 9]), i.e.

HCS(J
( 1
l+1 )

λ (X)∆(X)l+1) = (e0 + 2π2E
[ 1
l+1 ]

λ )J
( 1
l+1 )

λ (X)∆(X)l+1,
(2.2)

where e0 := 1
6π

2(l + 1)2N(N2 − 1), ∆(X) := (X1X2 . . . XN )
1−N

2

∏

i<j(Xi − Xj)

and E
[α]
λ :=

∑N
i=1 λ

2
i +

∑N
i=1

N+1−2i
α

λi. In particular, the ground-state is given by

∆(X)l+1.

We set |λ| := ∑N
i=1 λi and define a partial ordering in MN by λ � µ ⇔ |λ| =

|µ|, ∑i
j=1 λj ≥

∑i
j=1 µj (i = 1, . . . , N).

Let mλ be a monomial symmetric function associated with λ, i.e. mλ :=
∑

µ∈Sm·λX
µ1

1 . . . XµN

N . The function mλ is a polynomial up to the multiplication

of (X1 . . . XN )a for some a.

We summarize the property of the polynomial J
(α)
λ .

J
(α)
λ (X) = mλ +

∑

µ≺λ

c̃
(α)
λ,µm

µ, (2.3)

〈J (α)
λ (X), J (α)

µ (X)〉 = δλ,µcλ, (2.4)

where the inner product 〈·, ·〉 is given by

〈f, g〉 := 1

N !

(

N
∏

i=1

∮

|Xi|=1

dXi

2π
√
−1Xi

)

∆(X)
1
α f(X1, . . . , XN )∆(X)

1
α g(X1, . . . , XN ),

(2.5)

, Xi = X−1
i and c̃

(α)
λ,µ, cλ are some constants.

We will define the Jack polynomial associated with the weight ξ ∈ P+. We put

ξ =
∑N

i=1 ξiǫi then ξi−ξj ∈ Z>0 (i > j), and we set J
(α)
ξ (X) := J

(α)
(ξ1,...,ξN )(X). The
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eigenvalue E
[α]
λ is written as (λ+ 1

α
ρ, λ+ 1

α
ρ)− 1

α2 (ρ, ρ), where ρ :=
∑N

i=1
2N+1−2i

2 ǫi
is the half sum of positive roots.

3. Bethe Ansatz for the elliptic Calogero-Moser model

3.1. Bethe Ansatz. In this section, we introduce the Bethe Ansatz method for
the N -particle elliptic Calogero-Moser model with the coupling constant l posi-
tive integer. Most of the results mentioned in this section are due to Felder and
Varchenko.([4, 5])

From this section we adopt the Hamiltonian shifted by some constant, i.e.

Hτ,(l) := −1

2

N
∑

i=1

∂2

∂x2i
+ l(l+ 1)

∑

1≤i<j≤N

(℘(xi − xj) + 2η), (3.1)

where η := π2(16 − 4
∑∞

n=1
pn

1−pn ) and p = exp(2π
√
−1τ).

First we fix the parameters N and l. We set m := lN(N − 1)/2. Let c :
{1, . . . ,m} → {1, . . . , N} be the unique non-decreasing function such that c−1(j)
has (N − j)l elements.

Let ǫi (1 ≤ i ≤ N) be an orthonormal basis of RN . We realize the simple roots
of AN−1 type as αi = ǫi − ǫi+1. We also realize the set of roots R, the root lattice
Q, the weight lattice P , and the set of the dominant weights P+ in the space

h∗ = {∑N
i=1 xiǫi|

∑N
i=1 xi = 0}

We set pi := i(2N − i− 1)l/2 and define

Vi := {pi−1 + 1, pi−1 + 2, . . . , pi} (1 ≤ i ≤ N − 1).

Let W be the set of maps w = (w1, . . . , wN ) (wi : Vi → {i, i+ 1, . . . , N − 1}) such
that #{w−1

i (j)} = l for 1 ≤ i ≤ j ≤ N − 1. For w = (w1, . . . , wN−1) ∈ W , let Fw

be the set of maps f = (f1, . . . , fN−2) (fi : Vi+1 → Vi) such that (i) fi is injective
(ii) If fi(x) = y then wi+1(x) = wi(y).

We set

θ1(x) := 2
∞
∑

n=1

(−1)n−1 exp(τπ
√
−1(n− 1/2)2) sin(2n− 1)πx, (3.2)

θ(x) :=
θ1(x)

θ′1(0)
, σλ(x) :=

θ′(0)θ(x − λ)

θ(x)θ(λ)
. (3.3)

We introduce the functions Φτ (t1, . . . , tm) and ω(t;x) as follows

Φτ (t1, . . . , tm) := e2π
√
−1(ξ,

∑

i tjαc(j)) (3.4)
∏

1≤j≤(N−1)l

θ(tj)
−lN

∏

c(i)=c(j)
i<j

θ(ti − tj)
2

∏

|c(i)−c(j)|=1
i<j

θ(ti − tj)
−1, (3.5)

ω(t;x) = e2π
√
−1(ξ,

∑

i xiǫi)
∑

w∈W

∑

f∈Fw

N−1
∏

i=1

pi
∏

k=pi−1+1

σxi−xwi(k)+1
(tk − tfi(k))

(3.6)

where t0 = 0, f0(k) = 0.
Then we have
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Proposition 3.1. ([4, 5]) If (t01, . . . , t
0
m) satisfy the following Bethe Ansatz equa-

tions,

∂Φτ

∂ti
|(t01,...,t0m) = 0 (1 ≤ i ≤ m). (3.7)

the function ω(t0;x) is an eigenfunction of the Hamiltonian Hτ,(l) with the eigen-
value

2π2(ξ, ξ)− 2π
√
−1

∂

∂τ
S(t0τ,1, . . . , t

0
τ,N ; τ), (3.8)

where S(t1, . . . , tN ; τ) =
∑

i<j(αc(i), αc(j)) log θ(ti − tj)−
∑

c(i)=1 lN log θ(ti).

Remark At a glance, the expression of ω(t0;x) is different from Felder and Varchenkos’
one, but the two are the same in fact. Our expression is indicated by the limit
(q → 1) of the expression of the Bethe vector of the Ruijsenaars model, which is
obtained by Billey.([1]) ✷

Therefore if we find the solution of the Bethe Ansatz equation, we can investigate
the Calogero-Moser model more effectively. For this purpose, we will consider the
trigonometric limit and investigate the solutions of the Bethe Ansatz equations for
both the elliptic and the trigonometric model.

3.2. Trigonometric limit and the main theorem. We investigate the trigono-
metric limit to have a link to the Calogero-Sutherland model.

We set Ti := e−2π
√
−1ti andXi := e2π

√
−1xi . As p→ 0, we have the limits θ(x) →

sinπx, Φτ (t1, . . . , tm) → const.Φtri(T1, . . . , Tm), and ω(t, x) → const.ωtri(T,X),
where

Φtri(T1, . . . , Tm) :=
m
∏

j=1

T
−(ξ−ρ,αc(j)))

j

∏

c(j)=1

(1− Tj)
−lN (3.9)

∏

c(i)=c(j)
i<j

(Ti − Tj)
2

∏

|c(i)−c(j)|=1
i<j

(Ti − Tj)
−1,

ωtri(T,X) =

∏N
i=1X

(ξ,ǫi)
i

∏

i<j(Xi −Xj)l

∑

w∈W

∑

f∈Fw

N−1
∏

i=1

pi
∏

k=pi−1+1

XiTk −Xwi(k)+1Tf(k)

Tk − Tf(k)
,

(3.10)

where T0 = 1 and f0(k) = 0.
Let F τ

N,l (resp. FN,l) be a complement set of the set of zeros and poles of the

function of the function Φτ (t1, . . . , tm) (resp. Φtri(T1, . . . , Tm)).
We set

Sym(l)f(x1, . . . , xN ) :=

{ ∑

σ∈SN
f(xσ(1), . . . , xσ(N)) l is odd,

∑

σ∈SN
sgn(σ)f(xσ(1), . . . , xσ(N)) l is even.

The following conjecture describes the behavior of the solution of the trigono-
metric Bethe Ansatz equation. For some special cases, the conjecture is true.

Conjecture 1. Let ξ̃ =
∑N−1

i=1 miΛi =
∑N

i=1m
′
iǫi be an element of P+. If (

∑N−1
i=1 miΛi, α) 6∈

{0,±1, . . . ,±l} for all α ∈ R, there exists σ ∈ SN such that there is a non-
degenerate critical point (T 0

1 , . . . , T
0
m) ∈ FN,l of Φtri(T1, . . . , Tm) with the parameter

ξ =
∑N

i=1m
′
σ(i)ǫi such that Sym(l)ωtri(T

0, X) is non–zero. Here the non-degenerate

critical point means the critical point (T 0
1 , . . . , T

0
m)(i.e. ∂Φ

∂Ti
|(T 0

1 ,...,T
0
m) = 0) such that

the Hessian at the critical point is non-zero.
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Remark For each N ∈ Z≥2 and l ∈ Z>0, there exists infinite ξ̃ ∈ P+ such that
Conjecture 1 is proved. ✷

Proposition 3.2. Conjecture 1 is proved for the N = 2 and l ∈ Z>0 cases, and
the N = 3 and l = 1 case.

We will discuss this in detail for the N = 2 and l ∈ Z>0 cases in section 4.1 and
he N = 3 and l = 1 case in section 4.2

The following lemma is the key point to connect the trigonometric solutions and
the elliptic ones.

Lemma 3.3. Let ξ be an element of h∗. Let (T 0
1 , T

0
2 , . . . , T

0
m)= (e−2π

√
−1t01 , e−2π

√
−1t02 ,

. . . , e−2π
√
−1t0m) ∈ FN,l be a non-degenerate critical point of Φtri (3.9). Then there

exists some ǫ ∈ R>0 such that if |p| < ǫ then there is a non-degenerate critical
point (t0τ,1, t

0
τ,2, . . . , t

0
τ,m) of Φτ (i.e. a non-degenerate solution of the elliptic Bethe

Ansatz equation) for the same ξ and (t0τ,1, t
0
τ,2, . . . , t

0
τ,m) → (t01, t

0
2, . . . , t

0
m) as p→ 0.

This lemma follows from the implicit function theorem. The condition (T 0
1 , T

0
2 , . . . , T

0
m) ∈

FN,l is necessary to apply the implicit function theorem.
We introduce lemmas which are needed to obtain the main theorem.

Lemma 3.4. Let ξ =
∑N

i=1miΛi be an element of the weight lattice P . Assume

(
∑N−1

i=1 miΛi, α) 6∈ {0,±1, . . . ,±l} for all α ∈ R. Let (t0τ,1, t
0
τ,2, . . . , t

0
τ,m) ∈ F τ

N,l

be a solution of the Bethe Ansatz equation for Φτ and ω(t0τ ;x) be the Bethe vector

(3.6). Then Sym(l)ω(t0τ ;x) is square-integrable on [0, 1]N and also the eigenfunction
of the operator Hτ,(l).

Remark Lemma 3.4 determines the condition for the existence of the square-

integrable eigenstates for Hτ,(l). If ξ =
∑N

i=1miΛi ∈ (h∗ \ P ) then Sym(l)ω(t0τ ;x)
is not square-integrable. ✷

Lemma 3.5. Let ξ =
∑N

i=1miΛi be an element of P . Assume (
∑N−1

i=1 miΛi, α) 6∈
{0,±1, . . . ,±l} for all α ∈ R. Choose ξ′ ∈ P+ and σ ∈ SN such that ξ′ = σ(ξ).
Let (T 0

1 , T
0
2 , . . . , T

0
m) be a solution of the Bethe Ansatz equation associated with

ξ and ωtri(T
0;X) be the corresponding eigenfunction. Then Sym(l)ωtri(T

0;X) =

const.J
( 1
l+1 )

ξ′−(l+1)ρ(X) ·∆(X)l+1.

By applying the Lemmas 3.3, 3.4, 3.5, we have

Theorem 3.6. Let λ be an element of P+. We set p = e2π
√
−1τ . Assuming

Conjecture 1 for the weight λ + (l + 1)ρ, then there exists ǫ ∈ R>0 such that if
|p| < ǫ then for each p there exist eigenvalues Eτ

λ and eigenfunctions F τ
λ (x1, . . . , xN )

of the Hamiltonian of the elliptic Calogero-Moser model Hτ,(l) such that Eτ
λ →

2π2E
[ 1
l+1 ]

λ +e0+
π2

6 N(N−1)l(l+1), F τ
λ (x1, . . . xN ) → ∆(X)l+1J

( 1
l+1 )

λ (X1, . . . , XN )
as p→ 0 and F τ

λ (x1, . . . , xN ) is square-integrable, i.e.
∫ 1

0

· · ·
∫ 1

0

|F τ
λ (x1, . . . xN )|2dx1 . . . dxN <∞.

Here the function J
( 1
l+1 )

λ (X1, . . . , XN ) is the Jack polynomial associated to the

weight λ and Xi = exp(2π
√
−1xi).

As a corollary, we have
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Corollary 3.7. For the N = 2 and l ∈ Z>0 cases, and the N = 3 and l = 1 case,
Theorem 3.6 is proved for all λ ∈ P+ without assumption.

From the uniqueness of the perturbation expansion up to constant, we have

Theorem 3.8. Let λ be an element of P+. If the condition of Theorem 3.6 holds

for λ, the perturbation expansion related to the eigenstate J
( 1
l+1 )

λ (X1, . . . , XN ) con-
verges regularly.

In particular, for the N = 2 and l ∈ Z>0 cases, and the N = 3 and l = 1 case,

the perturbation expansion related to the eigenstate J
( 1
l+1 )

λ (X1, . . . , XN ) converges
regularly for all λ ∈ P+

4. Solutions of the Bethe Ansatz equation

4.1. 2-particle case. In this section we will consider the N = 2 case.
The Bethe Ansatz equation is given by ∂Φτ

∂ti
= 0 (1 ≤ i ≤ l), where

Φτ = eπ
√
−1

∑

l
j=1 m1tl

∏

1≤j≤l

θ(tj)
−2l

∏

1≤i<j≤l

θ(ti − tj)
2.

We set s := x1 − x2. The operator Hτ is replaced by

Hτ = − d2

ds2
+ l(l+ 1)(℘(s) + 2η). (4.1)

We calculate the l.h.s. of the equation (3.6). We find that the eigenfunction (Bethe
vector) is equal to

eπ
√
−1m1s

θ(s− t1) . . . θ(s− tl)

θ(s)l
, (4.2)

up to constant.
We will confirm Conjecture 1 for the N = 2 and l ∈ Z>0 case. For this

purpose, we will investigate the trigonometric case. In this case the condition

(
∑N−1

i=1 miΛi, α) 6∈ {0,±1, . . . ,±l} for ∀α ∈ R is equivalent to the condition m1 6∈
{0,±1, . . . ,±l}.

The function Φtri for the N = 2 case is

Φtri =
l
∏

j=1

T
(−m1+1)
j (1− Tj)

−2l
∏

1≤i<j≤l

(Ti − Tj)
2.

The critical points of the function Φtri and the Hessian at the critical points
were calculated by Varchenko to calculate the norms of the Bethe vector which is
obtained by the asymptotic behavior of the integral representation of the solution
of the KZ equation.

Let (T 0
1 , . . . , T

0
l ) be a critical point of Φ. Set

σi :=
∑

j1<···<ji

T 0
j1
. . . T 0

ji
, σi :=

∑

j1<···<ji

(1 − T 0
j1
) . . . (1− T 0

ji
).

Then we have

Proposition 4.1. ([14])

σi =

(

l
i

) i
∏

j=1

−m1 + 1 + l − j

−m1 − j
, σi =

(

l
i

) i
∏

j=1

l + j

m1 + j
.
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Moreover the critical point exists uniquely if the numerators and the denominators
are non-zero for all i ∈ {1, . . . , l}.

We set

δ :=
∏

1≤i<j≤l

(T 0
i − T 0

j )
2, Hess := det

(

(

∂2

∂Ti∂Tj
(−κ logΦ)

)

i,j

)∣

∣

∣

∣

∣

T=T 0

Proposition 4.2. ([14])

δ =

l−1
∏

j=0

(j + 1)j+1(−m1 + 1 + j)j(−2l+ j)j

(−m1 − j − 1)2l−j−2
,

Hess = l!

l−1
∏

j=0

(−m1 − j − 1)3

(−m1 + 1 + j)(−2l+ j)
.

If m1 6∈ {0,±1, . . . ,±l} then σi, σi(i = 1, . . . , l), δ,Hess are finite and non-zero.
Hence the solutions of the Bethe Ansatz equation belong to F2,l and are non-
degenerate.

The function ωtri(T,X) is given by

ωtri(T,X) = const.
X

1
2m1

1 X
− 1

2m1

2

(X1 −X2)l

l
∏

k=1

(X1Tk −X2). (4.3)

We can check that if m1 6∈ {0,±1, . . . ,±l} then Sym(l)ωtri(T,X) is non-zero.
Therefore we have proved Conjecture 1 for the N = 2 and l ∈ Z>0 case and

obtain Corollary 3.7.

4.2. 3-particle and l = 1 case. We will consider the N = 3 and l = 1 case.
The Bethe Ansatz equation is given by ∂Φτ

∂ti
= 0 (1 ≤ i ≤ 3), where

Φτ = e2π
√
−1(m1t1+m1t2+m2t3)((θ(t1)θ(t2))

−3θ(t1 − t2)
2(θ(t1 − t3)θ(t2 − t3))

−1.

The eigenstate (the Bethe vector) of the operator Hτ,(l) with N = 2 and l = 1
is equal to

e2π
√
−1(

m1
3 (2x1−x2−x3)+

m2
3 (x1+x2−2x3))

{

θ(x1 − x2 − t1)

θ(t1)

θ(x1 − x3 − t2)

θ(t2)

θ(x2 − x3 − t3 + t2)

θ(t3 − t2)
+

θ(x1 − x3 − t1)

θ(t1)

θ(x1 − x2 − t2)

θ(t2)

θ(x2 − x3 − t3 + t1)

θ(t3 − t1)

}

,

up to constant.
We will confirm Conjecture 1 for the N = 3 and l = 1 case. For this purpose, we

will investigate the trigonometric case. In this case the condition (
∑N−1

i=1 miΛi, α) 6∈
{0,±1, . . . ,±l} for ∀α ∈ R is equivalent to the conditionm1,m2,m1+m2 6∈ {0,±1}.

The function Φtri is

Φtri = (T1T2)
(−m1+1)(T3)

(−m2+1)((1−T1)(1−T2))−3(T1−T2)2(T1−T3)−1(T2−T3)−1

The critical point of Φtri is

T 0
3 =

(m1 +m2 − 1)(m2 − 1)

(m1 +m2 + 1)(m2 + 1)
,
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and (T 0
1 , T

0
2 ) are the solution of the following equation,

(m1 +m2 + 1)(m1 + 1)X2 + 2(−m2
1 −m1m2 + 2)X + (m1 +m2 − 1)(m1 − 1) = 0.

Therefore we have

T 0
1 T

0
2 =

(m1 +m2 − 1)(m1 − 1)

(m1 +m2 + 1)(m1 + 1)
,

(1− T 0
1 )(1 − T 0

2 ) =
6

(m1 +m2 + 1)(m1 + 1)
,

∏

1≤i<j≤3

(T 0
i − T 0

j )
2 =

2(m1 +m2 − 1)2(2m2
1 + 2m1m2 −m2

2 − 3)3

(m1 + 1)4(m2 + 1)4(m1 +m2 + 1)6
.

The value of the Hessian at the critical point is

1

6

(m1 + 1)3(m2 + 1)3(m1 +m2 + 1)5

(m1 − 1)(m2 − 1)(m1 +m2 − 1)3
,

Hence if m1,m2,m1 + m2 6∈ {0,±1}, then the solutions of the Bethe Ansatz
equation with the parameter (m1,m2) = (m̃1, m̃2) or (m1,m2) = (−m̃2,−m̃1)
belong to F3,1 and are non-degenerate.

The function ωtri(T,X) is given by

ωtri(T,X) = const.
X

2m̃1
3 +

m̃2
3

1 X
−m̃1

3 +
m̃2
3

2 X
−m̃1

3 − 2m̃2
3

3

(X1 −X2)(X2 −X3)(X2 −X3)
{

(X1T1 −X2)

T1

(X1T2 −X3)

T2

(X1T3 −X2T2)

T3 − T2

+
(X1T1 −X3)

T1

(X1T2 −X2)

T2

(X1T3 −X2T1)

T3 − T1

}

.

We can also check that if m1,m2,m1 +m2 6∈ {0,±1} and (m1,m2) ∈ F3,1 then

Sym(l)ωtri(T,X) is non-zero.
Therefore we have proved Conjecture 1 for the N = 3 and l = 1 case and obtain

Corollary 3.7.

5. Concluding remarks

5.1. In this article we have explained how to obtain the square-integrable eigen-
states based on the Bethe Ansatz method and have shown the convergence of the
perturbation series.

We will comment on some features of the perturbation expansion.
The elliptic Hamiltonian admits the expansion H = H0+

∑∞
i=1 p

iVi, where H0 is
the trigonometric Hamiltonian up to constant. To get the perturbation expansion,

we must calculate Viψλ =
∑

c
(i)
λ,µψµ, where ψλ are the eigenstates of H0. In our

cases, this process is reduced to the calculation of the Pieri formula of the Jack

polynomial, i.e. Jλej =
∑

d
(i)
λ,µJµ, where ej is the j-th elementary symmetric

polynomial. The Pieri formula is written explicitly in [9].
There are merits for the perturbation method. The calculation of the perturba-

tion does not essentially depend on the coupling constant l although the calculation
of the Bethe Ansatz method strongly depends on l. The Bethe Ansatz method is
valid for l ∈ Z>0 but the perturbation method is valid for all cases if we ignore the
convergence. We hope that the “eigenstates” obtained by the perturbation method
converge for all cases.
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5.2. The q-deformation of the elliptic Calogero Moser model is known. It is called
the elliptic Ruijsenaars model. For the elliptic Ruijsenaars model, the Bethe Ansatz
method is also known. ([6, 1])

Based on the Bethe Ansatz method, we can obtain similar results on the elliptic
Ruijsenaars model.

Acknowledgment The author would like to thank Professors M. Kashiwara
and T. Miwa for discussions and support. Thanks are also due to Dr. Tim Baker.
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