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A FOCUS ON FOCAL SURFACES
E. Arrondo, M. Bertolini and C. Turrini

Many classical problems in algebraic geometry have regained interest when techniques

from differential geometry were introduced to study them. The modern foundations for

this approach has been given by Griffiths and Harris in [6], who obtained in this way

several classical and new results in algebraic geometry. More recently, this idea has been

successfully followed by McCrory, Shifrin and Varley in [12] and [13] to study differential

properties of hypersurfaces in P3 and P4. In fact these two papers have greatly influenced

the present work.

In this spirit, the subject of this paper is the systematic study of focal surfaces of

smooth congruences of lines in P3. This is indeed a clear example of a topic of differential

nature in algebraic geometry. The study of such congruences has been very popular among

classical algebraic geometers one century ago. Especially Fano has given many important

contributions to this field. An essential ingredient in his work has been the focal surface

of the congruence. This point of view has been retaken by modern algebraic geometers,

such as Verra and Goldstein, and also by Ciliberto and Sernesi in higher dimension.

What we find amazing in the papers by the classics is how much information they

were able to provide about the focal surface of the known examples of congruences, in

particular about its singular locus (and more especially about fundamental points). They

seemed to have in mind some numerical relations that they never formulated explicitly.

And even nowadays such kind of relations would require deep modern techniques, like

multiple-point theory, but also this powerful machinery is not a priori enough since some

generality conditions need to be satisfied.

As a sample of this, the degree and class of the focal surface –the only invariants easy

to compute– can be derived immediately from the Riemann-Hurwitz formula. However

these invariants, even in the easiest examples (see Example 2.4 or Remarks after Corollary

4.7) seem to be wrong at a first glance. This is due to the existence of extra components

of the focal surface or to the possibility that the focal surface counts with multiplicity,

although this was never mentioned explicitly by the classics. Even in [5], these possibilities

seem not to have been considered.

The starting point of this work was to understand how the classics predicted the

number of fundamental points of a congruence. We only know of one formula in the

literature involving this number, which is however wrong (see Example 1.15 and the remark

afterwards). So our first goal was to use modern techniques in order to rigorously obtain

some of the classical results on the topic. Specifically, by regarding the focal surface of a

congruence as a scheme, we reobtain its invariants (degree, class, class of its hyperplane
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section, sectional genus, and degrees of the nodal and cuspidal curves) and give them a

precise sense.

We also restrict our attention to congruences of bisecants to a curve, or flexes to a

surface (since they are special cases in the work by Goldstein), or bitangents to a surface

(since all the lines of a congruence are bitangent to the focal surface). In particular, we

prove that no congruence of flexes to a smooth surface is smooth, and that a congruence

of bitangents to a smooth surface is smooth if and only if the surface is a quartic not

containing any line. Another important reason to study these types of congruences is that

their focal surfaces have the unexpected or multiple components mentioned above. We

give a precise geometrical description of these components and also conjecture that these

congruences are the only ones for which the focal surface has such a behavior.

In order to obtain all the above results, we combine a local differential analysis with

global methods from intersection theory. In fact, we consider that many of the techniques

we develop are interesting by themselves.

In section §0, we give the basic definitions about congruences and their focal surfaces.

In section §1, we obtain the classical invariants of the focal surface. The key new technique

in this section is to use the construction given in [2] of varieties parametrizing infinitely

close points of a given variety.

In sections §2, §3 and §4 we obtain all the invariants of the congruences given by bise-

cants to a smooth curve or bitangents or flexes to a smooth surface in P3. In these sections

we again adapt some natural constructions to our setting. For instance the constructions

at the beginning of section §3 are clearly influenced by the ones in [12].

Finally, section §5 is devoted to relate the behavior of congruences of bitangents to

a smooth surface to the behavior of general congruences. We give there several examples

and conjectures of what we expect to happen in general.
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§0. Notations and definitions.
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We will work over an algebrically closed field of characteristic zero. We will denote

by G(1, 3) the Grassmann variety of lines in P3. If I ⊂ P3 × G(1, 3) is the incidence

variety of pairs (x, L) such that x is a point of the line L, then any of the projections p1
and p2 provides I with a structure of projective bundle. In fact, I = P(ΩP3(2)) (where

P will always mean for us the space of rank-one quotients), and the tautological quotient

line bundle is just the pull-back of the hyperplane line bundle on G(1, 3) (considered as a

smooth quadric in P5). On the other hand, if we consider the Euler sequence on P3

0 → ΩP3(1) → H0(P3,OP3(1))⊗OP3 → OP3(1) → 0

and pull it back to I via p1 and then push it down to G(1, 3) via p2 we get the universal

exact sequence on G(1, 3)

(0.1) 0 → S∗ → H0(P3,OP3(1))⊗OG(1,3) → Q→ 0.

Here S and Q are the rank-two universal vector bundles, and I can also be viewed as P(Q).

Given a point x ∈ P3, we define the alpha-plane associated to it as the set α(x) ⊂
G(1, 3) of all lines in P3 passing through it. Similarly, given a plane Π ⊂ P3, we define the

beta-plane associated to it as the set β(Π) of all lines in P3 contained in Π. If x ∈ Π, we

will write Ω(x,Π) for the pencil of lines contained in the plane Π and passing through the

point x.

By congruence we will mean a surface X ⊂ G(1, 3). Any congruence X has a bidegree

(a, b), where a (called the order of the congruence) is the intersection number of X with

an alpha-plane, and b (called the class of the congruence) is the intersection number with

a beta-plane. Equivalently, a = c2(Q|X), and b = c2(S|X) = c1(Q|X)2 − c2(Q|X).

A congruence can be regarded (under the Plücker embedding of G(1, 3)) as a surface

contained in a smooth quadric of P5. In particular, we can define the sectional genus of a

congruence as the genus of the curve obtained by intersecting the surface with a hyperplane

of P5. We will usually denote it with g.

A line in P3 can also be viewed as a line in the dual P3∗, so that a congruence

X ⊂ G(1, 3) induces another congruence X∗ ⊂ G(1,P3∗), which we will call the dual

congruence of X . It is clear that, if X has degree (a, b) then X∗ has bidegree (b, a). A

congruence and its dual have the same sectional genus (in fact both Plücker embeddings

are naturally isomorphic).

If we restrict the above projections p1 and p2 to IX := p−1
2 (X) then we get a map

qX : IX → P3 which is generically a : 1 and a map pX : IX → X . We have the following

definitions:

Definitions: A point x ∈ P3 is a fundamental point of X if q−1
X (x) is not a finite set.

Dually, a fundamental plane of X is a fundamental point of X∗, i.e. a plane containing
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infinitely many lines of the congruence. The focal locus of X is the branch locus (typically

a surface) of qX . The elements of the focal locus are called focal points of X . Dually, a

focal plane of X is a focal point of X∗. Equivalently ([5] Lemma 4.4), a focal point x ∈ P3

is characterized by the fact that there exists a line L of the congruence such that the

embedded tangent plane of X at the point represented by L meets the alpha plane α(x)

in at least a line of P5 (i.e. a pencil of lines of P3). This is in fact the definition of focal

point given by Goldstein.

If we write H and K respectively for the classes of the hyperplane section and the

canonical divisor of X , and h for the class of the hyperplane section of P3, it is not difficult

to see that c1(TIX ) = 2h − K − H, so that the class of the ramification locus of qX is

2h+K +H. In particular, we obtain from here the very well-known result that a general

line L of a congruence contains two focal points x1, x2 (counted with multiplicity) such

that (x1, L) and (x2, L) lie in the ramification locus of qX .

Definition: We will call a focal line L of a congruence to a line of a congruence such

that all of its points are focal. Again from [5] Lemma 4.4, this means that the embedded

tangent plane of X at the point represented by L meets in a pencil all the alpha planes

α(x) for which x ∈ L. Then, a line L is focal if and only if its embedded tangent plane is

a beta-plane.

Let X0 be the open set of non-focal lines of a congruence X . Then the restriction of

the map p−1
X (X0) → X0 to the ramification locus of qX is finite (typically of degree two,

but it could happen a priori that any line contains only one focal point counted twice).

Hence, the branch locus of this restriction has at most two components.

Definition: We will call the strict focal surface of a congruence X to the closure F0 of

the reduced structure of the branch locus of p−1
X (X0) → P3. To distinguish from this, we

usually refer to the focal locus F (as a scheme) as the total focal surface.

Remarks: 1) We abused the notation in the above definition. First of all, X0 could be

empty. As observed in the definition of focal line, this would imply that the embedded

tangent plane ofX at any point is a beta-plane. In this case, the congruence itself is a beta-

plane (see for instance [5], Corollary 4.5.1). On the other hand, F0 could be either a point

(and then X is an alpha-plane) or a curve, which would mean that X is the congruence of

bisecants to that curve. As we will observe later, such a congruence is only smooth when

the curve is a twisted cubic or an elliptic quartic.

2) It is not superfluous to take the reduced structure in the above definition. As we

will see in section 3, the focal locus can appear with high multiplicity for congruences of

bitangents or flexes to a surface in P3.

3) The total focal surface could have more components different from F0 when X \X0

is a curve. Such a curve will have the property that its embedded tangent line at each point

is contained in G(1, 3), so that the corresponding extra components of the focal surface
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will be developable ruled surfaces or cones. The existence of these ruled surfaces seems not

to have considered by Goldstein. In fact, the number of components of the focal surface

can be bigger than two, as will be shown in Example 5.3.

We end this section of background definitions and results by recalling a classical in-

variant for surfaces in P3 that we will use frequently:

Definition: If Σ ⊂ P3 is a surface, we will write µ1 for the class of its hyperplane section.

It is clear that a surface and its dual have the same invariant µ1.

§1. Numerical invariants of the focal surface of a smooth congru-

ence.

Along this section, X ⊂ G(1, 3) will be a smooth congruence of lines in P3, H and

K will be the hyperplane and canonical classes respectively, and F will be the total focal

surface of X .

In order to better understand the geometry and the numerical invariants of F (in

particular µ1), it is convenient to work in the complete flag variety of points, lines and

planes rather than only in the incidence variety of points and lines. We consider then

AX := {(x, L,Π) ∈ P3 ×X × P3∗ | x ∈ L ⊂ Π}.

Let q13 : AX → J ⊂ P3 × P3∗ and q2 : AX → X be the obvious projections, J being

the incidence variety of points and planes. Our goal is to directly obtain the focal variety

in J , so that we construct simultaneously its dual. For this purpose, we analyze the

ramification locus of q13. First, we observe that the map q2 factors AX → IX
pX−→X . The

second morphism is the restriction of the projective bundle p2 : I → G(1, 3), so that

IX ∼= P(Q|X), and the tautological line bundle is the pullback of the hyperplane section h

of P3. Similarly, the first morphism is a projective bundle and AX
∼= P(p∗XS|X), and its

tautological line bundle is the pullback of the hyperplane section h∗ of P3∗. From this, it

is not difficult to compute the Chern classes of TAX
:

(1.1) c1(TAX
) = 2h+ 2h∗ − 2H −K

c2(TAX
) = h2 + 4hh∗ + h∗2 − 3hH − 3h∗H − 2hK − 2h∗K + 2H2 + 2HK + c2(TX)

On the other hand, the Chern classes of the incidence variety J are:

c1(TJ) = 3h+ 3h∗

c2(TJ ) = 3h2 + 10hh∗ + 3h∗2
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Hence the class in AX of the ramification locus R of q13 will be, using Porteous formula

(R will be a surface, since AX has dimension four, and J has dimension five),

(1.2) [R] = 2hh∗ + hH + h∗H + hK + h∗K + 2H2 + 2HK +K2 − c2(TX).

Then, for a general line L in the congruence, one expects to find two elements (x1, L,Π1),

(x2, L,Π2) in R, and it seems reasonable to think that x1, x2 are focal points for X , that

Π1, Π2 are focal planes and that each Πi is the tangent plane of the focal surface at xi
(it is a very well-known result that the set of focal planes is the dual of the focal surface).

However, the last of the statements is not true, but Π1 is the tangent plane of the focal

surface at x2 and reciprocally Π2 is the tangent plane at x1. Let us check this in local

coordinates.

Fix an element (x, L,Π) in R and choose coordinates z0, z1, z2, z3 in P3 so that x is

the point of coordinates (1 : 0 : 0 : 0), L is the line z2 = z3 = 0 and Π is the plane z3 = 0.

We can take u, v to be a system of parameters of X at L and assume that near L the lines

of the congruence are given by the span of the rows of the matrix
(

1 0 f g
0 1 h k

)

where f, g, h, k are regular functions in a neighborhood of L. We can take then a system

of coordinates λ, u, v, µ for AX near (x, L,Π) to represent the point x(λ, u, v) = (1 : λ :

f + λh : g + λk) inside the above line L(u, v) and the plane Π(u, v, µ) containing them

of equation z3 + µz2 = (g + µf)z0 + (k + µh)z1. On the other hand, we can take affine

coordinates a1, a2, a3 to represent the points (1 : a1 : a2 : a3) ∈ P3 and affine coordinates

u0, u1, u2 to represent the plane z3 −u2z2 = u0z0 +u1z1. We could remove one coordinate

to work in J , locally defined as a3−u2a2 = u0+u1a1, but we prefer to keep the symmetry.

Therefore a local expression for q13 is given by

(λ, u, v, µ) 7→ (λ, f + λh, g + λk, g + µf, k + µh, µ).

Its Jacobian matrix is then






1 h k 0 0 0
0 fu + λhu gu + λku gu + µfu ku + µhu 0
0 fv + λhv gv + λkv gv + µfv kv + µhv 0
0 0 0 f u 1







We immediately see that this matrix has not maximal rank if and only if the two mid-

dle rows are linearly dependent. Since the four columns of this submatrix are linearly

dependent, the local equations of R are:

(1.3)

∣

∣

∣

∣

fu + λhu gu + λku
fv + λhv gv + λkv

∣

∣

∣

∣

= 0
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(1.4)

∣

∣

∣

∣

gu + µfu ku + µhu
gv + µfv kv + µhv

∣

∣

∣

∣

= 0

(1.5)

∣

∣

∣

∣

fu + λhu ku + µhu
fv + λhv kv + µhv

∣

∣

∣

∣

= 0

Equation (1.3) means that the value of λ is so that x(λ, u, v) is a focal point in L(u, v),

while (1.4) means that Π(u, v, µ) is a focal plane. For a “general” value of u, v there would

be two possible values of λ and µ, and (1.5) should be interpreted as a way of assigning to

each of the two focal points in the line one of the two focal planes. The key observation is

that, substracting (1.3) multiplied by
∣

∣

∣

hu

hv

ku

kv

∣

∣

∣
and (1.4) multiplied by

∣

∣

∣

fu
fv

hu

hv

∣

∣

∣
one gets (1.5)

multiplied by:

(1.6)

∣

∣

∣

∣

fu + λhu ku − µhu
fv + λhv kv − µhv

∣

∣

∣

∣

= 0.

This means that (1.6) is the other way of assigning to each focal point a focal plane (and

we want to prove that this is the “right” one).

Assume now for simplicity that we chose L containing exactly two focal points x, x′

and contained in two focal planes Π,Π′. Then there are two corresponding local expressions

λ, λ′ in terms of u, v verifying (1.3) and two local expressions µ, µ′ verifying (1.4), and such

that each of the pairs (λ, µ) and (λ′, µ′) verify (1.5), while the pairs (λ, µ′) and (λ′, µ) verify

(1.6). In particular, the assignement

(u, v) 7→ (λ, f + λh, g + λk)

is a local parametrization of the focal surface near x. However, the tangent plane at it

is not Π, but Π′. Indeed, let µ′
0 the nonzero solution of (1.4) for u = v = 0. Then

Π′ = Π(0, 0, µ′
0) has equation z3 + µ′

0z2 = 0. To check that Π′ is tangent we need to show

that, substituting the above parametrization in the equation of Π′ we do not get linear

terms. The substitution becomes z3 + µ′
0z2 = g + λk + µ′

0(f + λh), and we need to check

that the partial derivatives vanish at u = v = 0 (and hence also λ = 0). These partial

derivatives are:

gu(0, 0) + µ′
0fu(0, 0) and gv(0, 0) + µ′

0fv(0, 0)

To check this vanishing we first observe that (1.3) for u = v = 0 implies that each vanishing

implies the other. On the other hand, (1.6) implies that
∣

∣

∣

∣

fu(0, 0) hu(0, 0)
fv(0, 0) hv(0, 0)

∣

∣

∣

∣

µ′
0 =

∣

∣

∣

∣

hu(0, 0) gu(0, 0)
hv(0, 0) gv(0, 0)

∣

∣

∣

∣

.

From this it is easy to conclude that Π′ is indeed the tangent plane.

We can now use the above calculations to prove the following:
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Proposition 1.7. Let X be a smooth congruence, let F be its total focal surface and

consider F̃ ⊂ AX to be the closure of the set of elements (x, L,Π) such that (x, L) is a

ramification point of qX and Π is the tangent plane to F at a smooth point x. Then:

1) F̃ is linked to R in the complete intersection of the pullbacks to AX of the ramification

loci of qX and qX∗ . In particular, the cycle class of F̃ in AX is

[F̃ ] = 2hh∗ + hH + h∗H + hK + h∗K −H2 + c2(TX).

2) The focal surface F has degree 2a+2g− 2 and, if it is reduced, has class 2b+ 2g− 2,

µ1 = a + b + 4g − 4 −K2
X + 12χ(OX), sectional (geometric) genus 9g − 8 − b +K2

X

and χ(OF̃ ) = 6g − 6− a− b+K2
X + 2χ(OX).

Proof: The fact that F̃ and R are linked is just the geometrical translation of the

computations before the statement. In the previous section we proved that the class of the

ramification locus of qX was 2h +H + K. By duality, the ramification locus of qX∗ will

be 2h∗ +H +K. Multiplying these two classes and substracting the cycle class of R we

complete the proof of 1).

The degree, µ1 and class of the focal surface are easy to obtain, by just multiplying the

cycle class of F̃ respectively by h2, hh∗ and h∗2 (we are also using the adjunction identity

KH +H2 = 2g − 2 and the Noether formula c2(TX) = 12χ(OX) −K2). To compute the

other invariants we need to know the Hilbert polynomial of F̃ . For this purpose, it is not

enough to know the cycle class of F̃ , but to use the fact that it is obtained by linkage

inside a complete intersection M of divisors of classes 2h+H +K and 2h∗ +H +K. This

fact implies (see [14], Prop. 1.1) that there is an exact sequence

0 → IM → IR → HomOAX
(OF̃ ,OM ) → 0.

Now the wanted invariants can be directly obtained from the coefficients of the polynomial

χ(ωF̃ (Th)) ∈ Q[T ]. We will compute it from the above exact sequence. We first observe

that, by adjunction and(1.1), ωM
∼= ωAX |M (2h + 2h∗ + 2H + 2K) ∼= OM (4H + 3K), so

that

HomOAX
(OF̃ ,OM ) ∼= HomOAX

(OF̃ , ωM )(−4H − 3K) ∼= ωF̃ (−4H − 3K).

We then need to compute χ(IM (Th+4H+3K)), which is very easy since M is a complete

intersection. On the other hand, from the construction of R, there is an exact sequence

0 → TAX
→ q∗13TJ → IR(h+ h∗ + 2H +K) → 0

from where we can compute χ(IR(Th + 4H + 3K)). With the Maple package Schubert

one performs the computations and arrives to the wanted result.
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Remarks: 1) The degree and class of the focal surface are very well-known and there are

much simpler ways to compute them. In fact, all the other numerical invariants of the

focal surface, except µ1, can be computed by just using the incidence variety point-line.

In fact, µ1 can also be computed by using that it is the class of X considered as a surface

in P5 (see [15]). Then µ1 is nothing but the degree of c2(P
1(OX(1)), which is easily seen

to be the value just computed.

2) The computations previous to the proof of the above proposition show that, for a

general line L of a congruence X , there are exactly two pencils Ω(x1,Π1) and Ω(x2,Π2)

(given by the two branch points of q13 on L) that are tangent to X at the point represented

by L. Hence the embedded tangent plane ofX (as a surface in P5) at L is the one generated

by these two pencils. However, the tangent plane at x1 of the focal surface F is Π2 and

reciprocally.

Proposition 1.8. Let X be a smooth congruence, and let F be its total focal surface.

Assuming that the only one-dimensional singular locus of F consists of a nodal curve D

and a cuspidal curve C, then

deg(D) = 2a2 − 10a+ 4b+ 4ag + 2g2 − 34g + 32− 4K2
X + 12χ(OX)

deg(C) = 3a− 3b+ 18g − 18 + 3K2
X − 12χ(OX).

Proof: The underlying idea is quite simple, although it requires a precise construction

of some technical complexity. We just want to study when the fibers of the map qX : IX →
P3 contain three infinitely close points (to find the cusps) or two pairs of infinitely close

points (to find the nodes). We will consider more generally the projection π : P3×X → P3

and apply to it a theory of infinitely close points of its fibers (which will be just infinitely

closed points in X). To avoid some technical difficulties, we will reduce to the case of

cuspidal points. Note that, since we know from Prop. 1.7 the geometric genus of the

hyperplane section of F , the degree of the nodal curve can be computed at once if we

know the degree of the cupidal curve (just apply the Plücker formula to a hyperplane

section of F ).

So we want to find a variety parametrizing sets of three infinitely close points in the

fibers of π, to find their the subset C̃ of those who are in fact on X . We will follow the

construction of [2]. Clearly, the variety parametrizing pairs of infinitely close points in the

fibers of π is nothing but P(ΩP3×X/P3) = P3 × P(ΩX) =: P3 × D1
X . Let f1 : D1X → X

the structure projection and write L1 for the tautological line bundle of D1X . Now the

variety parametrizing sets of three infinitely closed points in the fiber of π is given by

P3 ×D2X , where D2X := P(G), G being the rank-two vector bundle on D1X defined as

9



a push-forward in the following commutative diagram of exact sequences:

(1.9)

0 0
↓ ↓

0 → ΩD1X/X ⊗ L1 → f∗
1ΩX → L1 → 0

|| ↓ ↓
0 → ΩD1X/X ⊗ L1 → ΩD1X → G → 0

↓ ↓
ΩD1X/X = ΩD1X/X

↓ ↓
0 0

(see [2] for more details). Let f2 : D2X → D1X denote the structure projection and let

L2 be the tautological line bundle on D2X . We are now going to try to restrict the above

construction to X , having in mind that we are not only looking for infinitely close points

whose support is in the fiber of qX : we need the infinitesimal information defined by these

points to be also in the fiber of qX .

The first step is conceptually easy. Since we want the infinitely close points to be

supported on the fiber of qX , it suffices to restrict the above construction to IX rather

than working on the whole P3 ×X . Observe that the inclusion IX ⊂ P3 ×X is induced by

projectivizing the quotient of bundles in the restriction toX of the universal sequence (0.1).

Hence, IX is defined in P3 ×X as the zero locus of the natural section of π∗S|X ⊗OP3(1).

In particular, the class of IX inside P3 ×X is given (we will omit to write pullbacks when

they are clear) by

(1.10) [IX ] = h2 + hH + c2(π
∗S|X).

Keep the same notations for the above construction restricted to IX and let us see now

when an element of (1 × f1)
−1(IX) ⊂ P3 ×D1X corresponds to a pair of infinitely close

points contained as a scheme in the fiber of qX . Those elements will be characterized by

the fact that the universal quotient (1×f1)∗ΩP3×X/P3 → L1 factors through (1×f1)∗ΩIX .

This means that the composed map N∗
IX/P3×X → (1× f1)

∗ΩP3×X/P3 → L1 is zero.

Since IX was defined as the zero locus of a section of π∗S|X ⊗OP3(1), then its normal

bundle NIX/P3×X is isomorphic to q∗XS|X ⊗ OP3(1). Hence, the wanted subset X ′ ⊂
(1× f1)

−1(IX) ⊂ P3 ×D1X is defined as the zero locus of a section of (1× f1)
∗(p∗XS|X ⊗

OP3(1))⊗ L1, and its class inside (1× f1)
−1(IX) is then:

(1.11) [X ′] = c1(L1)
2 + 2c1(L1)h+ c1(L1)H + h2 + hH + c2(S).

We restrict to that subset and again abuse the notation by not changing it after the

restriction. Our final step is to identify inside (1× f2)
−1(X ′) ⊂ P3 ×D2X the subset X ′′
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of those infinitely closed points in the fiber of qX . The apparently new problem is that

now D2X is not the projectivization of a cotangent bundle, but of its quotient G defined

in (1.9). However this is not a problem, since the reasoning is exactly as above. Indeed,

we have now a universal epimorphism (1× f2)
∗G → L2 on (1× f2)

−1(X ′), and again X ′′

is the locus for which the natural composition

N∗
X′/(1×f1)−1(IX ) → Ω(1×f2)−1(X′) → (1× f2)

∗G→ L2

is zero. Hence X ′′ is the zero locus of a section of (1× f2)
∗((1× f1)

∗(q∗XS|X ⊗OP3(1))⊗
L1)⊗ L2, and its class in (1× f2)

−1(X ′) is then

(1.12) [X ′′] = c1(L2)
2 + 2c1(L1)c1(L2) + 2c1(L2)h+ c1(L2)H

+c1(L1)
2 + 2c1(L1)h+ c1(L1)H + h2 + hH + c2(S|X).

We finally observe that the expressions (1.10), (1.11) and (1.12) can be lifted to classes in

P3 ×D2X , so that the degree of the cuspidal curve can be computed by intersecting there

these three classes and the class h of a hyperplane in P3. Now to finish the proof we use

Schubert once more.

Remarks: 1) If at the end of the above proof we multiply by H instead of h, we would

get the degree of the ruled surface consisting of those lines such that one of its two focal

points is a cusp in the focal surface. This number turns out to be 4a+ 4b+ 12g− 12, and

was already known by the classics (see [18] §13 or [16] page 197). In fact, they also knew

how to compute the degree invariants of the nodal and cuspidal curves. Of course, they

computed all these invariants in terms of other invariants, as for instance µ1, instead of

the “modern” invariants that we use.

2) The above proposition is valid if X has not a curve of fundamental points. This

hypothesis is hidden in the statement, since a fundamental point produces a singular point

on the focal surface whose singularity is neither a node nor a cusp. In fact, a fundamental

curve produces in the set X ′′ defined in the above proof a component of dimension two.

However, smooth congruences with a fundamental curve are classified (see [1]).

3) The same kind of observation can be made when we have a finite number of fun-

damental points. The set X ′′ contains the cones formed by the lines of the congruence

through any fundamental point. These cones do not count when intersecting with the class

h, so they do not affect to the formula of degC. However, the formula in part 1) of the

remark takes also account of the sum of the degrees of these cones.

Let us now apply these remarks to some examples.

11



Example 1.13: (See also Example 5.5 below). The complete intersection of G(1, 3)

with a general hyperplane and a general quadric produces a congruence of bidegree (2, 2)

and g = 1, in particular without cuspidal curve. As a surface in P5,it is the surface

given by the polarized pair (Blp1,..p5P
2, 3L − E1 − ... − E5), i.e. by the linear system of

plane cubics through five points. Therefore, the congruence contains sixteen lines of P5,

which correspond to sixteen pencils of lines of P2. Hence the congruence contains sixteen

fundamental points (and sixteen fundamental planes) and the degree of the corresponding

cone at each of them is one. In fact, the formula in 1) yields 16, and hence Remark 3)

proves that there are no more fundamental points (or fundamental planes).

Example 1.14: As a second example, we can consider the congruence X of bidegree (2, 3)

which is the Del Pezzo surface (i.e. g = 1) given by the polarized pair (Blp1,..p4P
2, 3L −

E1−...−E4), i.e. by the linear system of plane cubics through four points. It is known, and

easy to verify, that such a Del Pezzo surface contains exactly ten lines (the four exceptional

lines and the six lines joining the four base points) and five pencil of conics (the four pencils

given by the lines in P3 through one base point and the pencil given by the conics through

the base points). This implies that the congruence has 15 fundamental points and 10

fundamental planes in P3. Indeed the ten lines give rise to ten fundamental points and ten

fundamental planes. Moreover each pencil of conics contains at least one conic which is

contained in an alpha-plane. Let us prove this fact for instance for the pencil |L−E1| (for
the others the proof is the same). Since the image of E1 in G(1, 3) is a line, in particular

it is contained in an alpha-plane, so that there is a section of S|X vanishing on E1, i.e.

a section of S|X(−E1). Since c2(S|X(−E1)) = 0, it follows easily that there is an exact

sequence

0 → OX(E1) → S|X → OX(3L− 2E1 − E2 − E3 − E4) → 0.

From this it follows that h0(S|X(−L + E1)) = 1, and hence any conic in |L − E1| is

contained in the zero locus of a section of S|X . But observe that h0(S|X) = 5, so that

exactly a hyperplane inside H0(S|X) corresponds to alpha-planes. This means that at

least one section corresponding to an alpha-plane vanishes on a a conic of the pencil, as

wanted. Applying now Remark 3) we see that the degree of the ruled surface generated

by the lines throught the fundamental points is 20 (since the bidegree is (2, 3) there is no

cuspidal curve). Since we have found ten cones of degree one and five cones of degree two,

there are no more fundamental points in the congruence.

Example 1.15 In this last example, we consider the congruence of bidegree (3, 3) and

g = 2 which is the rational surface given by the polarized pair (Blp1,..p7P
2, 4L − 2E1 −

E2 − ... − E7), i.e. by the linear system of plane quartics with a fixed double point

and through other six points. Such a Castelnuovo surface contains twelve lines (the six

exceptional lines corresponding to simple points, and the six lines joining the double point

with the other six ones) and 32 conics (the one corresponding to the double base point,
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the 15 corresponding to the lines joining two simple base points, the 15 corresponding to

conics through the double point and other four simple points, and the one corresponding

to the cubic with a double point in the double base point and passing through the other

base points). Fano shows ([4], pages 154-155) that besides the twelve fundamental points

coming from the twelve lines of the congruence, there can be other fundamental points

(vertex of cones corresponding to conics lying in alpha-planes) or not, depending on the

projective embedding. Specifically the Castelnuovo surface is the complete intersection of

the cubic Segre threefold and a smooth hyperquadric in P5. It is hence contained in a

three-dimensional linear system of hyperquadrics. Each smooth quadric in the system can

be viewed as a Grassmannian. While for a general quadric we do not get extra fundamental

points, for particular ones we can get one, two or three new fundamental points.

Remark: As shown in the previous example, the number of the fundamental points of a

congruence does not depend only on its invariants, in particular it is meaningless to look for

a formula giving the contribution of the fundamental points only in terms of the bidegree,

of the sectional genus and of other usual invariants of the surface. This fact seems not to

be considered by Roth who gives a formula ([16], page 198) to compute the degree ρ2 of

the scroll of lines of P3 consisting of those lines such that one of its two focal points is a

node in the focal surface. Such a formula, when applied to a congruence of bidegree (a, b)

with a ≤ 3, hence without nodal curve, should give the number of fundamental points.

However the formula for ρ2 given by Roth fails for several congruences (and not only for

the above example).

§2. Congruence of the bisecants to a space curve.

In this section we describe the congruences of the chords of a smooth irreducible skew

curve Γ in P3.

Let Γ be a curve in P3 and denote by X ⊂ G(1, 3) the congruence of the bisecants to

Γ. Throughout this section Γ will be assumed to be smooth, irreducible and not contained

in a plane. We will also write d for the degree of Γ and p for its genus.

It is known (see [7] Theor. 2.5) that X is singular unless Γ is a rational cubic or

an elliptic quartic curve. So, from now on, being mostly interested in the case of smooth

congruences, we could confine ourself to consider the case of these two curves, but we

prefer to study a more general situation.

Proposition 2.1. Let Γ be as above. Then the congruence X of bisecants to Γ has

bidegree (a, b) = ( 12 (d−1)(d−2)−p, 12d(d−1)) and sectional genus g = 1
2 (d−2)(d−3+2p).

Proof: The congruence is naturally parametrized by the second symmetric product

S = C(2) of C. We will regard S as the quotient of C × C under the standard involution.
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Let L be the line bundle giving the embedding of C into P3, and write L1 and L2 for the

corresponding pullbacks of L to C × C via the two natural projections. If D denotes the

diagonal of C × C, there is an epimorphism L1 ⊕ L2 → OD(L). Its kernel is invariant

under the involution of C × C hence it is the pullback of a rank-two vector bundle Q on

S (the so-called secant bundle). This vector bundle is the one that gives the map from S

to G(1, 3) whose image is the congruence X .

In the intersection ring of S consider the following classes: P will represent the class

of pairs containing a fixed point of C, and ∆ will be the diagonal class, i.e. the image of

D. We recall the following intersection numbers: P · P = P ·∆ = 1, ∆ ·∆ = 2(2− 2g).

With this notation, the Chern classes of Q are c1(Q) = dP − 1
2∆ and c2(Q) =

1
2
d(d−1)). From this one can readily obtain the bidegree by using that a = c1(Q)2−c2(Q)

and b = c2(Q). Notice that this bidegree could also be obtained by simple geometric

arguments.

In order to obtain the sectional genus of X we need to obtain the canonical class of

S. This can be easily done since C ×C is a double cover of S ramified along the diagonal.

We then have that numerically KS ≡ (2− 2p)P + 1
2∆ and from here the wanted equality

for g follows.

Remark: In the same way it is easy to find the rest of the invariants for S. In particular,

K2
S = 4p2 − 13p+ 9 and χ(OS) =

1
2 (p− 1)(p− 2).

Definition: Let Γ be as above and consider two distinct points x, y of it. The chord

< x, y > through x and y is said to be stationary if the tangent lines tx and ty to Γ, at x

and y respectively, are incident.

Denote by T (x, y) the tangent plane to the congruence X at the point corresponding

to a chord < x, y >. It is quite easy to verify that, if the chord < x, y > is stationary, then

the plane T (x, y) is contained in the Grassmannian G(1, 3), actually it is the beta-plane

generated by tx and ty, as we will show in the following (probably well known) lemmas.

Lemma 2.2. Let Γ be as above and let C be the Chow complex of lines intersecting Γ.

Let x be a point of Γ, consider a line L passing through x, denote by tx the tangent line of

Γ at x, and by Π the plane generated by L and tx. Then the corresponding branch of C is

smooth at the point represented by L if and only if L is different from tx. Moreover, in this

case the embedded tangent space of this branch of C at L is generated by the alpha-plane

α(x) and the beta-plane β(Π).

Proof: This is just an easy local computation. Choose coordinates z0, z1, z2, z3 in P3

so that the point x becomes (1 : 0 : 0 : 0) and the tangent line tx is z2 = z3 = 0. Working

in the open affine set z0 = 1, we can parametrize Γ locally at x (which is now the origin)

by z1 = t, z2 = f(t), z3 = g(t) with f(0) = g(0) = f ′(0) = g′(0) = 0. Let L be the line
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passing through x and through the point of coordinates (0 : a1 : a2 : a3), and assuming

a1 6= 0, put a1 = 1, a2 = u, a3 = v. Then a local parametrization in the open subset

{p01 6= 0} ⊂ G(1, 3) of the corresponding branch of H at the point represented by L is

given by

(t, u, v) 7→ (p02, p03, p12, p13) = (u, v, ut− f(t), vt− g(t))

Hence, the corresponding branch of H at L is smooth if and only if (u, v) 6= (0, 0), i.e., if

and only if L is different from the tangent line at x. In this case, the embedded tangent

space of H at L has (affine) parametric equations















































p01 =1

p02 =u+ λ

p03 =v + µ

p12 =νu

p13 =νv

p23 =0

i.e. it is the projective plane vp12 − up13 = p23 = 0, which is generated by the alpha-

plane α(x) (of equations p12 = p13 = p23 = 0) and the beta-plane β(Π) (of equations

vp02 − up03 = vp12 − up13 = p23 = 0).

Lemma 2.3. Let Γ be as above and X the congruence of bisecants to Γ. Let L be line

having exactly two intersection points x and y with Γ. Then L represents a smooth point

of X if and only if it is different from both tx and ty. In this case, denote by Πx the plane

generated by L and tx and by Πy the plane generated by L and ty, then the embedded

tangent space to X at L is generated by the pencils Ω(x,Πy) and Ω(y,Πx).

Proof: In fact, locally at L the congruence X is the complete intersection of the two

branches of the Chow complex of Γ corresponding to the points x and y. Hence, L is a

smooth point of X if and only if the two branches are smooth at L and their embedded

tangent spaces are different. This, due to Lemma 2.2, happens if and only if L is neither

tx nor ty and x 6= y. If this is the case, the embedded tangent plane of X at L will be the

intersection of the embedded tangent spaces of the two branches, which, due to Lemma

2.2, gives the thesis.

Remark: The Lemma above immediately implies that, if the chord L =< x, y > is

stationary, then the plane T (x, y) is contained in the Grassmannian G(1, 3): actually it is

the beta-plane β(Πx) = β(Πy). Since a curve has in general a one-dimensional family of

stationary bisecants, the corresponding congruence of bisecants will have a focal surface,

even if one would expect the focal locus to be just the curve Γ.
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From Propositions 2.1 and 1.7, it follows that the degree of the (total) focal surface

must be 2(d − 3)(d − 1 + p), which coincides with the degree of the ruled surface of

stationary bisecants to Γ (see [9], Remark 5.2). The twisted cubic is the only curve in P3

without stationary bisecants, so we study next in detail the only other example of smooth

congruence of bisecants.

Example 2.4: Let X be the congruence of bisecants to an elliptic quartic curve Γ ⊂ P3.

It is then known that X is a smooth congruence of bidegree (2, 6) and sectional genus

g = 3. The strict focal “surface” F0 will be Γ, while F consists of the four quadric cones

containing Γ. Indeed it is easy to see that a bisecant to Γ is stationary if and only if it

is contained in one of the quadric cones containing Γ. Observe that we then obtain the

expected degree eight for the focal surface of X .

§3. Congruences of bitangents and flexes to a smooth surface in

P3: global study

Let Σ ⊂ P3 be a surface of degree d, that we will assume, unless otherwise specified, to be

smooth. In fact we will also sometimes assume Σ to be general enough, so that, for d ≥ 4,

its Picard group will be generated by the hyperplane section. Following the ideas of [12]

and [21], we consider the projective bundle p : Y = P(ΩΣ(2)) → Σ. Any point of Y can

be regarded as a pair (x, L), where x is a point of Σ and L is a tangent line to Σ at x.

Therefore there is a map ϕ : Y → G(1, 3). In fact the twist in the projective bundle was

chosen so that the tautological line bundle of Y became the pull-back of the hyperplane

section of G(1, 3). Let us write OY (ℓ) for the tautological line bundle on Y and OY (h) for

the pull-back via p of the hyperplane line bundle of Σ ⊂ P3. In terms of vector bundles,

the map ϕ is defined by the rank-two vector bundle Q on Y defined as a push-forward in

the commutative diagram:

(3.1)

0 0
↓ ↓

0 → ΩY/Σ(ℓ− h) → p∗ΩΣ(h) → OY (ℓ− h) → 0
|| ↓ ↓

0 → ΩY/Σ(ℓ− h) → p∗(P 1(OΣ(1))) → Q → 0
↓ ↓

OY (h) = OY (h)
↓ ↓
0 0

Here the top horizontal sequence is the universal sequence on the projective bundle Y

tensored with OY (−h) and the middle vertical sequence is the pull-back of the one defining
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the bundle of principal parts of OΣ(1). The map ϕ is precisely defined by the composed

epimorphism H0(P3,OP3(1))⊗ OY → p∗(P 1(OΣ(1))) → Q. The following closed surfaces

of Y will play an important role in the sequel:

Y ′ := {(x, L) ∈ Y | x is a parabolic point of Σ}

Y1 := {(x, L) ∈ Y | L is a bitangent line of Σ}

Y2 := {(x, L) ∈ Y | L is an inflection line of Σ}.

Of course, all the above sets are defined as a closure (for the definition of parabolic point,

see for instance [12]).

Proposition 3.2. The classes of Y ′, Y1, Y2 in the Picard group of Y are: [Y ′] = 4(d−2)h,

[Y1] = (d+ 2)(d− 3)ℓ− 4(d− 3)h and [Y2] = 2ℓ+ (d− 4)h.

Proof: The surface Y ′ is just the pullback via p of the parabolic curve on Σ, where it

has class 4(d−2)h, as shown in [12] (anyway, the idea is that the parabolic curve is defined

by the Hessian matrix to be singular).

The class of Y1 is computed in [21] Prop. 3.14 for d = 4. We essentially reproduce

here Welters’ ideas. Since its class is not so crutial, we chose the simplest but least general

of his proofs.

If Σ is sufficiently general and d ≥ 4, then the Picard group of Y is generated by the

classes of ℓ and h. Hence the class of Y1 will be of the form mℓ + nh. The first integer

m is in fact the degree of the projection Y1 → Σ, hence it is the number of tangents at a

general point of x ∈ Σ that are tangent to Σ at another point.

To compute this number, consider Π the tangent plane to Σ at x and let C be the

intersection of Σ with Π. Hence C is a plane curve of degree d with one ordinary node at

x (hence of geometric genus d(d−3)
2

) and m is the number of lines which are tangent to C

outside x and pass through x. In other words, m is the number of branch points of the

(d − 2) : 1 morphism C → P1 defined by the projection from x. From Hurwitz theorem

one immediately gets m = (d+ 2)(d− 3).

To compute n we can use the fact that the order of the congruence of bitangents to Σ

is 1/2d(d− 2)(d− 3)(d+ 3) (the number of bitangents of a general plane curve of degree

d). Since the map Y1 → G(1, 3) (restriction of ϕ) is a double cover of such a congruence,

it follows that c2(QY1
) = d(d− 2)(d− 3)(d+ 3). This Chern class can be computed (with

the help of the Maple package Schubert) from diagram (3.1) in terms of n, and making it

equal to the second term one gets the required value of n.

The class of Y2 can be computed in a more direct way. First we recall that in-

flectional tangent vectors to Σ are those in the kernel of the second fundamental form

II : Symm2TΣ → NΣ. Here, NΣ = OΣ(d) is the normal bundle of Σ. Hence we are
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looking at the points of Σ for which the section of Symm2(ΩΣ)(d) corresponding to II

is zero. Regarding this section as a section of Symm2(ΩΣ(2))(d − 4), we see from the

projection formula that this corresponds to a section of OY (2ℓ + (d − 4)h), whose zero

locus is precisely Y2.

Let us write Xi = ϕ(Yi) and ϕi = ϕ|Yi
for i = 1, 2. Then X1 is the congruence of

bitangents of Σ and X2 is the congruence of inflectional lines of Σ. They both are contained

in the complex H := ϕ(Y ) of lines tangent to Σ. What makes this approach so different

among these two congruences is that, while the map ϕ1 : Y1 → X1 is a double cover, the

map ϕ2 : Y2 → X2 is birational (in both cases, the map ϕi is finite as long as Σ does not

contain any line). Hence we can easily compute the bidegree of both congruences, but it

will be possible only for X2 to compute all its invariants. As remarked in [21] page 30,

the map ϕ1 is branched over the curve of hyperflexes; the study of such a curve would

certainly allow to compute all the invariants of X1 from the ones of Y1. We will use however

a different way (see Proposition 3.5 below), which is more elegant and will also allow us

to remove the genericity hypothesis for Σ.

Proposition 3.3. The congruence X1 has bidegree ( 12d(d−1)(d−2)(d−3), 12d(d−2)(d−
3)(d+3), while the bidegree ofX2 is (d(d−1)(d−2), 3d(d−2)) and the sectional (geometric)

genus g = 5d3 − 18d2 + 14d+ 1. Moreover, the congruence X2 is never smooth.

Proof: The map ϕi, as a map to G(1, 3), is given by the rank-two vector bundle QYi
.

Since ϕ1 is a double cover, then the class ofX1 is
1
2c2(QY1

), and in fact we have already seen

(or rather impose) in the proof of Prop. 3.2 that this is 1
2
d(d−2)(d−3)(d+3). Analogously,

its order is 1
2(c1(QY1

)2−c2(QY1
)) = 1

2d(d−1)(d−2)(d−3), as easily computed again with

the help of the Maple package Schubert.

In a similar but easier way, since ϕ2 is now birational, the class of X2 is just b =

c2(QY2
) = 3d(d− 2) (which in fact corresponds to the number of flexes of a general plane

curve of degree d) while its order is a = c1(QY2
)2 − c2(QY2

) = d(d − 1)(d − 2). On the

other hand, assume now that X2 is smooth. Hence, if Σ does not contain any line, the map

ϕ2 : Y2 → G(1, 3) is necessarily an immersion, and the double-point formula for it would

yield a2+b2−c2(N) = 0, where N is the cokernel of the bundle inclusion TY2
→ ϕ∗TG(1,3).

But taking into account that ϕ∗TG(1,3)
∼= SY2

⊗QY2
(where SY2

is the dual of the kernel

of a natural epimorphism O⊕4
Y2

→ QY2
, and in fact the pull-back to Y2 of the universal

bundle S on G(1, 3)), with the help once more of the Schubert package we get that the

double-point formula reads

d(d− 3)(d4 − 3d3 + 13d2 − 48d+ 40) = 0

which is absurd if d 6= 3. The case d = 3 (or more generally when Σ contains a line)

is treated separately in the following lemma. All the invariants of X2 (in particular the
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sectional genus) are computed using the isomorphism with Y2 and the fact that Y2 is a

smooth divisor of Y of a known class.

Lemma 3.4. If L is a line contained in Σ, then the corresponding point of X2 is singular

of multiplicity 3(d− 2).

Proof: Let us consider the point pL ∈ X2 corresponding to the line L ⊂ Σ. By abuse

of notation, let us still call L to ϕ−1
2 (pL). In other words, we are identifying L with the

curve in Y2 which contracts to pL. Since ϕ2 is birational, the multiplicity of pL will be

precisely minus the self-intersection of L in Y2. By adjunction we have L2 +KY2
L = −2,

so it is enough to prove that KY2
L = 3d − 8. But this is an immediate consequence of

the equality KY2
= c1(ΩY |Y2

)− (2ℓ+ (d− 4)h) = (3d− 8)h|Y2
, since we can then compute

KY2
L as the intersection in Y of (3d− 8)h with L.

Remark: A similar statement was proved in [21] (1.1) and (1.2) for the congruence X1 of

bitangents in case d = 4.

Proposition 3.5. The congruence X1 of bitangents to a smooth surface Σ ⊂ P3 of degree

d is smooth only for d = 4. The geometric genus of its hyperplane section is g = d5 −
5
2d

4 − 35
2 d

3 + 60d2 − 36d+ 1.

Proof: The idea is to work on the Hilbert scheme T = Hilb2P3 parametrizing (un-

ordered) couples of points of P3 (and then study the subset of those that produce a bi-

tangent line to Σ). Since two points (possibly infinitely close) determine a line, there is a

map q : T → G(1, 3). On the other hand, the set of pairs of points on a fixed line is a P2,

parametrized by the quadratic forms (up to a constant) on the line. Therefore, the map q

endows T with a projective bundle structure T = P(Symm2Q∗). In this projective bundle

we have the universal quadratic form given by the bundle inclusion

OT (−1) →֒ q∗Symm2Q

which assigns at each couple of points the quadratic form (defined on the line spanned by

them) vanishing on those points. We can similarly construct from this a bundle inclusion

OT (−2) →֒ q∗Symm4Q

which corresponds for every couple to the quartic forms vanishing doubly at each of the

points of the couple. The multiplication of (d−4)-forms by this universal form determines

then another bundle inclusion i which defines the bundle R as a cokernel:

0 → q∗Symmd−4Q⊗OT (−2)
i−→q∗SymmdQ→ R→ 0
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A surface Σ ⊂ P3 of degree d corresponds to a section OG(1,3) → SymmdQ, and we

are interested in the locus at which the pull-back of this section lies in the image of i. In

other words, the zero locus of the corresponding section of R (obtained as the composition

OT → q∗SymmdQ→ R) is the set X̃1 of couples of points of Σ such that the line defined

by them is tangent at those points. The congruence X1 is the image by q of X̃1. If X1 is

smooth (and Σ does not contain any line), then p defines in fact an isomorphism between

X̃1 and X1, so everything reduces to computing the invariants of X̃1. This is easily done

by using that X̃1 is defined as the zero locus of the rank-four vector bundle R, of which

we can compute its Chern classes from the exact sequence defining it.

To be honest, there is a technical problem that cannot be completely solved by using

the package Schubert: the Chern classes of a symmetric power of a bundle can be computed

only for a fixed exponent, but not depending on a parameter d. We write the exact result

we need in Lemma 3.6 below, so that the interested reader can reproduce from it all our

calculations. These calculations will provide easily the sectional genus (from the product

of the canonical class of X̃1 and the pull-back of the hyperplane section of G(1, 3)), as well

as the rest of the invariants. In particular, one gets that, if N is the normal bundle of X1

in G(1, 3), then a2 + b2 − c2(N) = 1
2d(d− 4)(d6 − 4d5 + 2d4 − 20d3 + 9d2 + 396d− 540).

Hence X1 is only smooth for d = 4.

Lemma 3.6. Let Q be a rank-two vector bundle on a smooth variety and let c1, c2 be its

Chern classes. Then a symmetric power of Q has Chern classes:

c1(Symm
dQ) =

1

2
d(d+ 1)c1

c2(Symm
dQ) =

1

24
d(d− 1)(d+ 1)(3d+ 2)c21 +

1

6
d(d+ 1)(d+ 2)c2

c3(Symm
dQ) =

1

48
d2(d− 1)(d− 2)(d+ 1)2c31 +

1

12
d2(d− 1)(d+ 2)(d+ 1)c1c2

c4(Symm
dQ) =

1

1570
d(d− 1)(d− 2)(d− 3)(d+ 1)(15d3 + 15d2 − 10d− 8)c41

+
1

720
d(d− 1)(d− 2)(d+ 2)(d+ 1)(15d2 − 5d− 12)c21c2

+
1

360
d(d− 1)(d− 2)(d+ 1)(5d+ 12)c22.

Proof: This is just a straightforward (but terribly annoying) calculation using the

splitting principle.

§4. Congruences of bitangents and flexes to a smooth surface in

P3: local study
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In this section we analyze when a bitangent or inflectional line to a surface becomes

a focal line of the corresponding congruence. We will find then that in both types of

congruences we always get at least one component of the focal surface made out of focal

lines. On the other hand, we will observe that the surface Σ will have a big multiplicity as

a component of the focal surface. We will finally check that these two atypical situations

are reflected in the formula for the degree of the focal surface, which can be derived from

the invariants of the congruences computed in the previous section.

We prove first a series of local results about tangent spaces that will be useful later

on.

Lemma 4.1. Let Σ be a surface in P3 and let H be the complex of lines tangent to Σ.

a) If x is a smooth point of Σ, Π = TxΣ the tangent plane of Σ at x, and L a line

contained in Π passing through x, then the corresponding branch of H is smooth at

the point represented by L if and only if the intersection multiplicity at x of L and Σ

is exactly two. Moreover, in this case the embedded tangent space of this branch of

H at L is generated by the alpha-plane α(x) and the beta-plane β(Π).

b) The surface Y2 is singular at the points (x, L) for which x is a parabolic point (and

hence L is the unique asymptotic line at x).

Proof: This is just based on a tedious local computation to study the differential of

ϕ at the point (x, L). Choose coordinates z0, z1, z2, z3 in P3 so that the point x becomes

(1 : 0 : 0 : 0), the plane Π has equation z3 = 0 and the line L is z2 = z3 = 0. Working in

the open affine set {z0 = 1}, we can parametrize Σ locally at x (which is now the origin)

by z3 = f(z1, z2). Hence a local parametrization of the corresponding branch of H at the

point represented by L is given by assigning to local parameters λ, u, v the line generated

by the rows of the matrix

(4.2)

(

1 u v f
0 1 λ fu + λfv

)

(fu and fv denoting the partial derivatives of f with respect to u and v respectively). In

this way, the Plücker coordinates of this line in the open affine set of G(1, 3) given by

{p01 = 1} are:

p02 =λ

p03 =fu + λfv

p12 =λu− v

p13 =ufu + λufv − f

(These are therefore local equations for ϕ at (x, L)). The Jacobian matrix with respect to
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λ, u, v is then





1 fu u ufv
0 fuu + λfuv λ fu + ufuu + λfv + λfuv − fu
0 fuv + λfvv −1 ufuv + λufvv − fv





We now specialize to the point represented by L (i.e. λ = u = v = 0) taking into account

that fu(0, 0) = fv(0, 0) = 0 (since z3 = 0 is the tangent plane at p) and get the matrix





1 0 0 0
0 fuu(0, 0) 0 0
0 fuv(0, 0) −1 0





Hence, the corresponding branch of H at L is smooth if and only if fuu(0, 0) 6= 0, which is

clearly equivalent to the fact that L meets Σ with multiplicity exactly two. In this case, the

tangent space of H at L (in the embedded tangent space of G(1, 3) at L, which is p23 = 0)

has equation p13 = 0. Hence the embedded tangent space of H at L is p13 = p23 = 0,

which is generated by the alpha-plane α(x) (of equations p12 = p13 = p23 = 0) and the

beta-plane β(Π) (of equations p03 = p13 = p23 = 0). This proves a)

As for b), with the same coordinates as above, the equation of Y2 is f2
uu + 2fuvλ +

fvvλ
2 = 0. If x is parabolic and L is the unique asymptotic line at x, then fuu(0, 0) =

fuv(0, 0) = 0. Hence, the equation of Y2 does not have linear monomials and therefore the

point (x, L) is singular.

Lemma 4.3. Let Σ be a surface in P3 and X1 the congruence of bitangents to Σ.

a) Let L be line having exactly two tangency points x and y with Σ (x and y being

smooth). Then L represents a smooth point of X1 if and only if the intersection

multiplicity of L and Σ at both x and y is two. In this case, the embedded tangent

space to X1 at L is generated by the pencils Ω(x, TyΣ) and Ω(y, TxΣ).

b) Let L be a line of X1 having only one tangency point with Σ. Then L an Σ has

intersection multiplicity at least four at the contact point. Moreover, if the intersection

multiplicity is exactly four, then the line L is a smooth point ofX1 and is not contained

in the focal surface.

Proof: To prove a), we first observe that L represents to a double point of the complex

of tangents H, whose branches correspond to the image by ϕ of the points (x, L) and (y, L).

In fact, locally at L the congruence X1 is the complete intersection of these two branches.

Hence, L will be a smooth point of X1 if and only if the two branches are smooth at L and

their embedded tangent spaces are different. This second statement is always true since

x 6= y. Therefore, by Lemma 4.1, L is smooth if and only if the intersection multiplicity

of L and Σ at both x and y is two. If this is the case, the embedded tangent plane of X1
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at L will be the intersection of the embedded tangent spaces of the two branches. Using

again Lemma 4.1 and the fact that x 6= y, the intersection with G(1, 3) of the embedded

tangent spaces of the two branches of H, which are α(x) ∪ β(TxΣ) and α(y) ∪ β(TyΣ) is

either Ω(x, TyΣ) ∪Ω(y, TxΣ) (if TxΣ 6= TyΣ) or β(TxΣ) (if TxΣ = TyΣ). In either case, a)

follows. This fact could also be deduced from the second remark after Prop. 1.7.

As for b), let L be a line of the congruence with only one tangency point x with σ.

From the bundle construction in the proof of Proposition 3.5, the equation of Σ restricted

to L is divisible by four times the equation of x (the universal quadratic form on L is the

form vanishing twice at x, so that its square vanishes four times). Hence the intersection

multiplicity of L and Σ is at least four at x.

Now we assume that L and Σ have intersection multiplicity four at x and choose

coordinates as in the proof of Lemma 4.1 (so that x has affine coordinates (0, 0, 0), L is

the line z2 = z3 = 0 and the tangent plane of Σ at x is z3 = 0). We can assume the local

equation of Σ at x is

z3 = f(z1, z2) = a1z1z2 + a2z
2
2 + a3z

2
1z2 + a4z1z

2
2 + a5z

3
2

+z41 + a6z
3
1z2 + a7z

2
1z

2
2 + a8z1z

3
2 + a9z

4
2 + . . .

The line of affine Plücker coordinates p02, p03, p12, p13 is then the one of affine equations

z2 =− p12 + p02z1

z3 =− p13 + p03z1

That line will be in the congruence X1 if and only if the above substitution in the polyno-

mial P (z1, z2, z3) = −z3 + f(z1, z2) has two double roots. But we now observe that

P (z1, p02 + p03z1, p12 + p13z1) =

= (p13 + a2p
2
12 − a5p

3
12 + a9p

4
12)

+(−p03 − a1p12 + a4p
2
12 − 2a2p02p12 + 3a5p02p

2
12 − a8p

2
12 − 4a9p02p

3
12)z1

+(a1p02 − a3p12 + a2p
2
02 + a7p

2
12 − 2a4p02p12 + 6a9p

2
02p

2
12 − 3a5p

2
02p12 + 3a8p02p

2
12)z

2
1

+(a3p02 − a6p12 + a4p
2
02 − 2a7p02p12 + a5p

3
02 − 3a8p

2
02p12 − 4a9p

3
02p12)z

3
1

+(1 + a6p02 + a7p
2
02 + a8p

3
02 + a9p

4
02)z

4
1 + . . .

The main point now is the technical Lemma 4.4, which we state and prove after the

end of this proof. That technical lemma implies that X1 is defined locally at L by two

polynomials whose linear parts are p13 and −p03 − a1p12. Hence, X1 is smooth at L, and

the embedded tangent space at that point is p13 = p23 = p03 + a1p12 = 0, which clearly

is not contained in G(1, 3). (This tangent plane can be viewed as the only plane in the

pencil determined by α(x) and β(TxΣ) which contains the infinitely close line to L in the

quadric z3 = a1z1z2 + a2z
2
2 , which is the osculating quadric to Σ at x).
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Lemma 4.4. Let Ad be the projective space of nonzero polynomials (up to multiplication

by a nonzero constant) in K[T ] of degree at most d (for a fixed d ≥ 4) and let Bd be

the subset of polynomials with a factor of degree four which is a perfect square. Let the

coordinates (b0 : . . . : bd) define the polynomial b0 + . . .+ bdX
d ∈ Ad. Then, locally at a

polynomial X4P (with P (0) 6= 0 and P square-free), Bd is defined by two affine equations

in K[b0, . . . , b̂4 . . . , bd] whose linear parts are b0 and b1.

Proof: We start with the easy case in which d = 4. Then we can work in the affine

space of monic polynomials, and the polynomial b0 + b1X + b2X
2 + b3X

3 +X4 is in B if

and only if it the square of a polynomial c0 + c1X +X2. Therefore one gets the relations:

b0 =c20

b1 =2c0c1

b2 =2c0 + c21

b3 =2c1

From the last two equations one can obtain c0 and c1 as polynomials in b0, b1 without con-

stant term, and substituting in the first two equations one gets the wanted local equations,

with linear terms b0 and b1.

For a general d, we consider the obvious multiplication map

ψ : A4 × Ad−4 → Ad.

A polynomial as in the statement is the image of a (X4, P ), and we can assume P to have

constant term equal to 1. As before, we take the obvious affine coordinates in c1, . . . cd−4

in Ad−4 and d0, d1, d2, d3 near P and X4. Observe that X4 becomes the origin, but P can

have arbitrary coordinates c10, . . . , cd−4,0. The map ψ is defined in these affine sets by:

b0 =d0

b1 =c1d0 + d1

b2 =c2d0 + c1d1 + d2

b3 =c3d0 + c2d1 + c1d2 + d3

b4 =c4d0 + c3d1 + c2d2 + c1d3 + 1

b5 =c5d0 + c4d1 + c3d2 + c2d2 + c1

. . .

bd−4 =cd−4d0 + cd−5d1 + cd−6d2 + cd−7d3 + cd−8

bd−3 =cd−4d1 + cd−5d2 + cd−6d1 + cd−7

bd−2 =cd−4d2 + cd−5d3 + cd−6

bd−1 =cd−4d3 + cd−5

bd =cd−4
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We can work on the open affine b4 = 1 and divide the rest of the coordinates by the above

expression for b4. It is not difficult to check that the Jacobian matrix of ψ with respect

to d0, d1, d2, d3, c1, . . . , cd−4 at (0, 0, 0, 0, c10, . . . , cd−4,0) is lower triangular with 1’s in the

diagonal (just observe that dividing by b4 does not change that much the aspect of the

matrix). Therefore ψ is locally an isomorphism. Our hypothesis implies that (X4, P ) is

the only element of B4×Ad−4 whose image is X4P . We therefore get a local isomorphism

between B4 ×Ad−4 and Bd. From what we already proved for d = 4, the tangent space of

B4 at X4 is given by d0 = d1 = 0. Looking at the differential of ψ we then conclude that

the tangent space of Bd at X4P is defined by b0 = b1 = 0, as wanted.

Corollary 4.5. If d ≥ 5, the congruence X1 has a singular curve consisting of bitangent

lines to Σ having multiplicity three at one of the tangency points. The degree of this curve

in G(1, 3) is d(d− 3)(d− 4)(d2 + 6d− 4).

Proof: The first statement follows at once from Lemma 4.3. The degree of the curve

can be found, for instance, in [17], art. 598 (pages 286-287). To see a modern proof, a

simple way would be the following. Observe that a pair (x, L) ∈ Y1 will belong also to

Y2 if and only if either the multiplicity of intersection of L and Σ at x is at least three

(when there is another tangency point) or the intersection multiplicity is at least four

(when there is only one tangency point). The second possibility produces a curve, whose

degree in G(1, 3) is given in Corollary 4.7 below. Once this degree is subtracted from the

intersection [Y1][Y2]ℓ in Y , the remaining degree is 2d(d−3)(d−4)(d2+6d−4). But, as the

proof of Lemma 4.1 shows, the point of Y2 are in the ramification locus of ϕ : Y → G(1, 3),

so that the above degree is counted twice.

Lemma 4.6. Let Σ be a surface in P3 and X2 the congruence of inflectional lines to Σ.

a) If L is an inflectional line to Σ at a non-parabolic point x, then L represents a smooth

point of X2 if and only if the intersection multiplicity of L and Σ at x is exactly three.

In this situation, L is never contained in the focal locus of X2, and the ramification

index of IX2
→ P3 at (x, L) is two.

b) If L is an inflectional line to Σ at a parabolic point x and the intersection multiplicity

of L and Σ at x is exactly three, then L represents a smooth point of X2 and the

embedded tangent plane of X2 at L is the beta-plane β(TxΣ).

Proof: In order to prove a), let as choose coordinates as in Lemma 4.1. Since x is not

parabolic, we can also assume that the other asymptotic line of Σ at x = (1 : 0 : 0 : 0) is

z1 + z2 = z3 = 0 (this apparently strange choice is made in order to guarantee that 1
fvv

below has a Taylor expansion). In other words, there is a local affine parametrization of

Σ at x given by

(z1, z2, z3) = (u, v, f(u, v)) = (u, v, uv + v2 + a0u
3 + a1u

2v + a2uv
2 + a3v

3 + . . .)
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(where + . . . means that we are omitting terms of higher degree). The asymptotic lines at

a point parametrized by (u, v) are given as the span of the rows of matrix (4.2), where λ

is one of the roots of the equation fuu + 2fuvλ+ fvvλ
2 = 0. Taking into account that

fuu =6a0u+ 2a1v + . . .

fuv =1 + 2a1u+ 2a2v + . . .

fvv =2 + 2a2u+ 6a3v + . . .

and using the Taylor expressions
√
1 + z = 1 + 1

2
z + . . . and 1

2+z
= 1

2
− 1

4
z + . . . ... to find

a determination of λ in the above equation, one finds that the asymptotic lines are locally

parametrized by the rows of the matrix:

(

1 u v uv + v2 + a0u
3 + a1u

2v + a2uv
2 + a3v

3 + . . .
0 1 −3a0u− a1v + . . . v + (a1 − 6a0)uv + (a2 − 2a1)v

2 + . . .

)

.

This gives a local affine parametrization of X2:

p02 =− 3a0u+ a1v + . . .

p03 =v + (a1 − 6a0)uv + (a2 − 2a1)v
2 + . . .

p12 =− v − 3a0u
2 − a1uv + . . .

p13 =− v2 − 6a0u
3 − 6a0u

2v − 2a1uv
2 − a3v

3 + . . .

which must be an isomorphism at smooth points of X2. Hence, looking at the linear part,

L represents a smooth point if and only if a0 6= 0, i.e. if and only if the line L does not

meet Σ with multiplicity greater than or equal to four. In this case, the embedded tangent

plane is then p03 + p12 = p13 = p23 = 0, which is not contained in G(1, 3). (This tangent

plane can be interpreted as at the end of the proof of Lemma 4.3).

To compute the ramification index of IX2
→ P3, at (x, L), just observe that the

alpha plane α(x) is given, in the above local coordinates of G(1, 3), by the equations

p12 = p13 = 0. Look at the above value of these coordinates in the local parametrization

of X2 and using that a0 6= 0, we obtain a curvilinear scheme of degree three supported at

(x, L). Therefore, the ramification index is two. This completes the proof of a).

Statement b) is proved in a similar way, but observing now that, since we are in the

ramification locus of p|Y2
, u, v is not a system of parameters for X2 at L. Anyway, take

coordinates as in Lemma 4.1 or a), and we can assume that our f takes now the form

f(u, v) = v2 + a0u
3 + a1u

2v + a2uv
2 + a3v

3 + . . .

The new coordinate we have to choose now will be w, where

w2 = f2
uv − fuufvv = −12a0u− 4a1v + . . .
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Since by hypothesis a0 6= 0, we can take v, w as a system of parameters and substitute

u = − a1

3a0

v + . . . in f, fu, fv, fuu, fuv, fvv. In particular, we get

λ =
−fuv + w

fvv
=
a21 − 3a0a2

a0
v +

1

2
w + . . .

We get now a local parametrization for X2 (substituting in (4.2)):

p02 =
a21 − 3a0a2

a0
v +

1

2
w + . . .

p03 =terms of degree ≥ 2

p12 =− v + . . .

p13 =terms of degree ≥ 2

This shows that L represents a smooth point of X2 and its embedded tangent plane is

p03 = p13 = p23 = 0. i.e. the beta plane β(TxΣ).

Corollary 4.7. If d ≥ 4, the congruence X2 has a singular curve consisting of the closure

of non-parabolic inflectional lines meeting Σ with multiplicity at least four. The degree of

this curve in G(1, 3) is 2d(d− 3)(3d− 2).

Proof: The first statement is an immediate corollary of Lemma 4.6. The degree of

the curve can be found in [17], art. 597 (page 286). An alternative way of computing this

degree is to use the construction in the proof of 3.5. The universal quadratic form can be

also viewed as a map q∗Q∗(−1) → Q, so that its determinant (whose zeros correspond to

the pairs of coincident points) is a section of (
∧2

Q)⊗2(2). Intersecting X̃1 with that class

and the class of a hyperplane one gets the wanted number. Of course, a better way would

be to work directly on P(Symm4Q∗).

Remarks: 1) From the invariants of the congruence of bitangents X1 found in Props. 3.3

and 3.5, the degree of the (total) focal surface F ofX1 must be d(d−3)(2d3+2d2−35d+26).

Clearly, the strict focal surface F0 is Σ. As already noticed in the proof of Prop. 3.2, the

map Y1 → Σ has degree (d+2)(d−3), so that F0 counts with multiplicity (d+2)(d−3) in F .

Therefore, F has still some extra components of total degree 2d(d−3)(d3+d2−18d+12).

2) Similarly, from the invariants of the congruence X2 of flexes to Σ found in Prop.

3.3, the degree of the total focal surface F of X2 is 2d(6d2 − 21d + 16). The strict total

surface is again Σ. Since through a general point of Σ there are two asymptotic lines and

the ramification at each of them is two (see Lemma 4.6), Σ now counts with multiplicity

four. Hence, the extra components of F have total degree 2d(6d2 − 21d+ 14).

The following propositions will explain where these extra components come from.
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Proposition 4.8. Let Σ be a general surface Σ ⊂ P3 of degree d and let X1 ⊂ G(1, 3) be

the congruence of bitangents to Σ. Then there are two curves of X1 all of whose lines are

entirely contained in the (total) focal surface F of X1: The singular curve of Corollary 4.5

and the curve of stationary bitangents to Σ (i.e. bitangents such that the tangent plane

to Σ at the two tangency points is the same). Moreover, the degree of the ruled surface

consisting of such stationary bitangents has degree d(d− 2)(d− 3)(d2 + 2d− 4).

Proof: Let L be a bitangent tangent to Σ. If there is only one tangency point, by

Lemma 4.3then L has intersection multiplicity at least four at the contact point and, if this

multiplicity is exactly four, then L not contained in the focal locus. But, if Σ is general,

the set of lines with intersection multiplicity at least five at some point of Σ should be

finite (and there would be precisely 5d(d− 4)(7d− 12) such lines). Hence there is no curve

of focal lines whose general element is tangent at two infinitely close points.

Assume now that that there are two different tangency points x1, x2. Suppose first

that L has intersection multiplicity at least three at some of the points. Then, by Lemma

4.3, L is a cuspidal point of X1. Therefore, for any point x ∈ L, the line counts at

least twice as a line of the congruence passing through x, which means that L is entirely

contained in the focal locus.

So we assume that L is simply tangent at x1 and x2, and let Π1, Π2 be the respective

embedded tangent planes to Σ. Obviously the line L (and hence also the points x1 and

x2) is contained in both Π1 and Π2. Then, by Lemma 4.3, the tangent plane to X1 (as

a surface in P5) at the point represented by L is generated by the pencils Ω(x1,Π2) and

Ω(x2,Π1). Therefore, it is clear that this plane is contained in G(1, 3) (and is in fact a

beta-plane) if and only if Π1 = Π2.

Finally, the degree of the ruled surface of stationary bitangents can be found in [17],

art. 613 (page 305).

Remark: Observe that X1 possesses another singular curve, namely the curve of tritan-

gent lines. This is a curve of degree 1
3
d(d− 3)(d− 4)(d− 5)(d2 + 3d − 2), from [17], art.

599, pages 287-288. However, it is a triple nodal curve (while the curve of Corollary 4.5 is

a cuspidal curve). This is what makes that its lines are not properly focal lines.

Proposition 4.9. Let Σ be a general surface Σ ⊂ P3 of degree d and let X2 be the

congruences of flexes to Σ. Then there are two curves of X2 all of whose lines are entirely

contained in the (total) focal surface F of X2: The singular curve of Corollary 4.7 and

the curve of parabolic inflectional lines to Σ. Moreover, the degree of the ruled surface of

parabolic inflectional lines to Σ has degree 2d(d− 2)(3d− 4).

Proof: By Lemma 4.6, a curve consisting of focal lines such that its general element is

non-parabolic must be the singular curve of asymptotic lines with intersection multiplicity
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at least four. As in the previous Proposition 4.8, that curve clearly consists of focal lines.

Assume now that a general line of such a curve is parabolic. By Lemma 4.6, a general

point of such a curve (i.e. a line having intersection multiplicity three at the tangency

point) is a focal line. The degree of the ruled surface of asymptotic lines at parabolic

points can be obtained as follows (of course, it can also be found in [17], art. 576, Ex. 3,

page 255):

We observe from Lemma 4.1 that the surface Y2 is double along its intersection with

the surface Y ′ (of pairs (x, L) ∈ Y with x parabolic). Therefore, the degree of their set-

theoretical intersection will be 1
2
[Y2][Y

′]ℓ. From Prop. 3.2, an easy calculation shows that

the wanted degree is 2d(d− 4)(3d− 4).

§5. Smooth congruences of bitangents to arbitrary surfaces in P3.

In the previous section we dealt with congruences of bitangents and flexes to smooth

surfaces and, with the only exception of the bitangents to a smooth quartic surface, we

always got singular congruences. However, our scope is to find smooth congruences. On

the other hand, we have seen that all lines of a smooth congruence are bitangent to their

focal surface, which is in general very singular. So it is natural to study congruences of

bitangents to arbitrary surfaces in P3, hoping to then understand any smooth congruence.

The main problem is then how to compute the invariants of of such a congruence. The

bidegree is not difficult to find. We will give it when the singularitites of Σ and Σ∗ are not

too bad:

Lemma 5.1. Let Σ ⊂ P3 be a surface of degree d, class d∗, class of the hyperplane section

µ1, ordinary nodal curve of degree δ, ordinary cuspidal curve of degree κ and no other

singular curves. Assume the same hypothesis for the singular locus of the dual surface

holds, and let δ∗ be the number of bitangent planes through a point and κ∗ the number of

inflectional planes through a point. Then the bidegree of the congruence X of bitangents

to Σ is (a, b) with a = 1
2 (µ

2
1 − 3κ∗) + 4d∗ − 5µ1 and b = 1

2(µ
2
1 − 3κ) + 4d− 5µ1.

Proof: The class b is the number of lines of X in a general plane of P3, i.e. the number

of bitangents of a general hyperplane section of Σ. This hyperplane section has degree d,

class µ1, δ nodes and κ cusps. Then, from Plücker formulas (see for instance [20], V§8.2)
we get that d = µ1(µ1 − 1)− 2b− 3i, κ = 3µ1(µ1 − 2)− 6b− 8i (where i is the number of

flexes of the curve). From this we immediately get the wanted value for b. The value of a

is obtained by duality.

We start now a series of examples to try to illustrate what the general situation should

be.
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Example 5.2: The hypothesis on the dual of Σ is really needed. For instance, consider

the tangent developable of a twisted cubic C. This is a a quartic surface Σ whose singular

locus is C, which appears as a cuspidal locus. Hence, d = 4, µ1 = 3 (its hyperplane section

is a rational quartic with three cusps, so its dual is a nodal cubic), δ = 0 and κ = 3.

Then we get b = 1 (in fact, as we remarked, the dual of the hyperplane section of Σ has

one node). But κ∗ = δ∗ = d∗ = 0, since Σ∗ is a curve. Then the formula for a is not

valid (fortunately, because the corresponding value would be a = −21
2
, negative and not

an integer!). The correct value can be computed as follows.

Let L be a bitangent line with tangency points x1 and x2. Then obviously L is the

intersection of the tangent planes Tx1
Σ and Tx2

Σ. But the converse is also true. Take two

planes Π1, Π2 tangent to Σ. Since Σ is developable, they are tangent respectively along

lines L1, L2. Let L be the intersection of Π1 and Π2. Then L meets L1 in a point x1 and

meets L2 in a point x2. It is now clear that L is a bitangent line with contact points x1

and x2. With this description, the dual congruence will be the congruence of bisecants to

the dual Σ∗ (which is a twisted cubic). This dual congruence has bidegree (1, 3), so that

our congruence has bidegree (3, 1). Its total focal surface has degree four (and a cuspidal

curve), so it is precisely Σ (contrary to the situation for a smooth surface in P3, as we have

seen in Prop. 4.8). Hence the congruence is the set of bitangents to its focal surface (total

or strict). This is not going to be however the situation for a “general” congruence.

Example 5.3: The above example shows that the dual of the congruence of bisecants to

a twisted cubic behaves nicely with respect to is focal surface. So it is natural to see what

happens to the congruence X dual of the other smooth congruence of bisecants, namely

the bisecants to an elliptic quartic C. Then X has bidegree (a, b) = (6, 2) and sectional

genus g = 3. Hence, the total focal surface has degree 16. On the other hand, reasoning

as in the previous example, X will be the congruence of bitangents to the dual C∗, which

is a tangent developable of degree 8 and cuspidal curve of degree 12 (corresponding to

the osculating planes of C∗). Since the hyperplane section has genus one, it follows easily

that Σ has a nodal curve of degree δ = 8 and hence µ1 = 4. What happens now is that

the total focal surface is twice Σ = C∗ (and therefore no formula for the invariants of

the focal surface is valid anymore). Indeed, given a general point x ∈ Σ, there are two

bitangents to Σ with tangency points at x and another point. Summing up, the congruence

of bitangents to the (strict) focal surface coincide with the congruence X itself, but the

(total) focal surface of the congruence is not Σ as a scheme, but only as a set.

Example 5.4: We have observed (Prop. 3.5 or Corollary 4.5) that the only smooth

congruence of bitangents to a smooth surface in P3 is the congruence of bidegree (12, 28)

of bitangents to a smooth quartic Σ ⊂ P3. By duality, we also have a smooth congruence

X of bidegree (28, 12) consisting of the bitangents to the dual Σ∗. This is a surface in P3 of

30



degree 36, a nodal curve of degree 480 and cuspidal curve of degree 96. As in the dual case,

this counts six times in the total focal surface (since through a general point of it there

pass six lines that are tangent at that point and another one). But the total focal surface

has degree 16, so that there are no other components. Hence this congruence verifies the

same property with respect to the focal surface as the one in the previous example.

Example 5.5: Consider in G(1, 3) the congruence X obtained in Example1.13, which

has bidegree (2, 2) and sectional genus g = 1. It is then a very classical result that

the focal surface is the so-called Kummer’s surface, a quartic surface with sixteen nodes,

corresponding to the sixteen fundamental points of X (see for [8] for a thorough study

of this surface). However, the congruence of bisecants to the Kummer’s surface (which

should have bidegree (12, 28)) splits as sixteen beta-planes (corresponding to the singular

planes) and six congruences of bidegree (2, 2) as above.

We conjecture that the general situation should be like the above example (except for

the existence of fundamental points). In other words, a “general congruence” should have

an irreducible reduced focal surface (i.e. the total focal surface coincides with the strict

focal surface), and the congruence of bitangents to the focal surface splits as the original

congruence plus another congruence (in general irreducible). Observe that the fact that

the congruence of bitangents to F splits implies that one does not need to expect to have

excedentary components for the focal surface (as it should happen for the congruence of all

bitangents to a surface, as remarked in Prop. 4.8). Now we explicitly state our conjectures:

Conjecture 5.6. If the total focal surface of a smooth congruence X is not irreducible,

then either X is the congruence of secant lines to a curve in P3 (hence necessarily the one

in Example 2.4), or a congruence of bitangents to a surface in P3 or a congruence of flexes

to a surface in P3.

Conjecture 5.7. It the total focal surface of a smooth congruence X is not reduced, the

either X is the congruence of bitangents to a surface in P3 or a congruence of flexes to a

surface in P3.

These conjectures can be strengthen with the three following ones:

Conjecture 5.8. If the congruence of bitangents to a surface Σ ⊂ P3 is smooth, then ei-

ther Σ is a smooth quartic surface, or its dual (see Example 5.4) or the tangent developable

of a twisted cubic (see Example 5.2) or the one in Example 5.3.

Conjecture 5.9. There is no smooth congruence of flexes to any surface in P3. More

generally, there are no congruences of the third class of Goldstein classification.

Conjecture 5.10. Let X be a smooth congruence and let F0 be its strict focal surface.

Then X coincides with the congruence of bitangents to F0 only in the case of Examples

5.2, 5.3, 5.4or its dual (12, 28) of bitangents to a smooth quartic surface.
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