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1 Fachbereich 1, Physik, Universität Bremen

28334 Bremen, Germany
2 on leave from Department of Mathematical Sciences,

Loughborough University, LE11 3TU, UK

H.R.Dullin@lboro.ac.uk
3 Institut Fourier, Université Grenoble
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Abstract

We show that near a focus-focus point in a Liouville integrable
Hamiltonian system with two degrees of freedom lines of locally con-
stant rotation number in the image of the energy-momentum map are
spirals determined by the eigenvalue of the equilibrium. From this rep-
resentation of the rotation number we derive that the twist condition
for the isoenergetic KAM condition vanishes on a curve in the image
of the energy-momentum map that is transversal to the line of con-
stant energy. In contrast to this we also show that the frequency map
is non-degenerate for every point in a neighborhood of a focus-focus
point.
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1 Introduction

Consider a neighborhood of an equilibrium point of a Hamiltonian system
with two degrees of freedom. In local symplectic coordinates (x, y, px, py) ∈
R
4 with standard symplectic structure Ω = dx∧dpx+dy∧dpy the Hamilto-

nian is H(x, y, px, py), where the equilibrium is taken to be the origin. The
Hamiltonian vector field in these coordinates is

XH = JdH, J =

(

0 1
−1 0

)

(1)

or in components

ẋ =
∂H

∂px
, ẏ =

∂H

∂py
, ṗx = −

∂H

∂x
, ṗy = −

∂H

∂y
. (2)

Since an equilibrium of a dynamical system is a zero of the vector field one
has dH(0) = 0. The critical value H(0) of the critical point 0 is assumed to
be 0. The equilibrium is characterized by the eigenvalues λ of its lineariza-
tion Jd2H(0). If λ = α+iω is an eigenvalue, so is λ̄, −λ, and −λ̄. Real pairs
of non-zero eigenvalues ±α are called hyperbolic, non-zero pure imaginary
pairs ±iω are called elliptic, and quadruples of eigenvalues with non-zero
real and non-zero imaginary part ±α ± iω are called loxodromic. Near a
loxodromic equilibrium there exist symplectic coordinates (x̃, ỹ, p̃x, p̃y) such
that the quadratic part H2 of H is [23, 1]

H2 = αJ1 + ωJ2, J1 = x̃p̃x + ỹp̃y, J2 = x̃p̃y − ỹp̃x . (3)

Introducing z = x̃ + iỹ and pz = p̃x − ip̃y gives Ω = ℜ(dz ∧ dpz), and
J1 − iJ2 = zpz. Outside z = 0 this extends to a multivalued symplec-
tic coordinate system (ln z, zpz), and the flow of H2 is easily found to be
(z, pz) = (exp(λt)z0, exp(−λt)pz0). The quadratic Hamiltonian has a two-
dimensional stable eigenspace spanned by the eigenvectors of eigenvalues
with negative real part, and a two-dimensional unstable eigenspace spanned
by the eigenvectors of eigenvalues with positive real part. In each eigenspace
the dynamics is that of a focus point in the plane. The invariant manifolds of
the equilibrium point of the full Hamiltonian are tangent to these eigenspaces
at the equilibrium. In general the stable and unstable invariant manifolds
will have transverse intersections, and the system is non-integrable.

Here we are concerned with the dynamics near an equilibrium with lox-
odromic eigenvalues of a Liouville integrable Hamiltonian system with two
degrees of freedom. Under some additional hypothesis (see below) we call
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such an equilibrium focus-focus point. Let L be an independent second inte-
gral that commutes with H, i.e. the Poisson bracket {H,L} = Ω(JdH, JdL)
vanishes. The system is called Liouville integrable if the energy-momentum
map F = (H,L) is regular almost everywhere, and {H,L} = 0. The values
in the image of F are denoted by c = (h, l). The Liouville-Arnold theo-
rem states that near any compact connected component of regular points
Tc of F

−1(c) there are so called action-angle coordinates (θ1, θ2, I1, I2) with
Ω = dθ1 ∧ dI1+dθ2 ∧ dI2 and I1 and I2 are commuting constants of motion
with periodic flows on (and near) the two-dimensional torus Tc ⊆ F−1(c).
In these coordinates the Hamiltonian is a function of I1 and I2 alone, and
the quasiperiodic flow of H is the solution of θ̇i = ∂H/∂Ii = ωi(I), i = 1, 2.
In other words, the Hamiltonian vectorfield XH is a linear combination of
the periodic flows of the actions

XH = ω1XI1 + ω2XI2 . (4)

The coefficients of the linear combination are the frequencies ωi(I) of the
angles θi, i = 1, 2. The frequencies ω = (ω1, ω2) in general depend on the
actions I = (I1, I2). The map from actions I to frequencies ω(I) is called
the frequency map.

The KAM theorem (see e.g. [1, 18]) asserts that under small perturba-
tions the invariant torus Tc with frequencies ω(I) persists if 1) the frequency
map is non-degenerate and 2) the frequencies ω(I) are Diophantine. In the
isoenergetic KAM theorem persistence of invariant tori is considered for
the same energy h. Then a torus is characterized by its rotation number
W (I) which is the frequency ratio [ω1 : ω2] ∈ RP 1. The iso-energetic non-
degeneracy condition ∂W/∂l 6= 0, where the derivative is taken at constant
energy, replaces the non-degeneracy condition on the frequency map, see
e.g. [1]. In a semi-global Poincaré section transversal to XH on Tc the
iso-energetic non-degeneracy condition ensures that the Poincaré map is a
twist map near the invariant curve corresponding to Tc. The twist condition
∂W/∂l 6= 0 implies that the rotation number changes between neighboring
tori. An invariant torus Tc for which the twist vanishes is called a twistless
torus, for short. To check the non-degeneracy of the frequency map in an
example requires tools from complex analysis, see e.g. Horozov’s work on
the spherical pendulum [10]. General results in the neighborhood of critical
points of the energy momentum map are due to Knörrer [13] and Nguyên
Tiên Zung [24]. We are not aware of general results about the iso-energetic
non-degeneracy condition; the spherical pendulum has again been treated
by Horozov [11].
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The twist condition is only a sufficient condition for persistence, and
KAM theorems with weaker conditions exist, see [17]. However, the per-
turbed dynamics is quite unusual when the unperturbed twistless torus is
resonant, i.e. when it has a rational rotation number. A resonant torus with
twist breaks into a Poincaré-Birkhoff island chain, see e.g. [15, 18, 2]. A
twistless resonant torus instead breaks into two island chains, and near the
collision of these chains interesting dynamics occurs on so called meander-
ing invariant curves, see [12, 4, 19, 8] and the references therein. Our goal
is to show that such dynamics occurs near a loxodromic equilibrium of a
generically perturbed integrable system. More precisely we will prove the
following

Theorem 1. In every integrable Hamiltonian system with two degrees of
freedom and a focus-focus singularity with loxodromic eigenvalues there ex-
ists a regular torus with vanishing twist for each value of the energy close to
the critical one. For this energy all other tori close enough to the singular
fibre have non-vanishing twist.

This theorem might look surprising when compared to a result by Nguyen
Tien Zung [24]: He showed that near a focus-focus point the Kolmogorov
non-degeneracy condition is always satisfied, i.e. on almost all tori the
frequency map is non-degenerate. Zung did not provide a way to find the tori
for which the non-degeneracy condition fails; but, as we show in section 4,
our techniques improve his theorem by showing that the frequency map is
non-degenerate for all regular tori close enough to the singular fiber.

It is well known that the Kolmogorov condition and the Twist condi-
tion are independent, and our results show that whenever there is a focus-
focus point the twist-condition is violated while the frequency map is non-
degenerate.

2 Rotation Number

Let the critical value of the equilibrium be (h, l) = (0, 0). For simplicity, we
assume that the corresponding singular fibre F−1(0) contains only a single
critical point m. We then need to assume that the component of F−1(0)
containing m is compact. Such a singularity is called of focus-focus type.
Since we are interested in tori close to the singular component of F−1(0)
we may disregard other connected components. Then (0, 0) is an isolated
critical value in the image of the energy-momentum map F restricted to
those tori. Additional structure appears near the loxodromic equilibrium by
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the assumption that the system be integrable. Eliasson showed [9] that the
momenta J1 and J2 of the quadratic normal form are the components of a
momentum map J = (J1, J2) of the full system near the focus-focus point in
some symplectic coordinates. This means that we may assume that both H
and L (and not only their quadratic parts) are functions of J1 and J2 near
m:

H = Φ ◦ J and L = Ψ ◦ J, . (5)

where g = (Φ,Ψ) is a local diffeomorphism of R2 near the origin. Recall that
(5) is valid only near the focus-focus point m. However this gives a way of
extending the momentum map J to a whole neighborhood of the singular
fiber simply by enforcing J = g−1(H,L).

Since H is loxodromic the coefficient α in (3) is non-zero hence ∂1Φ(0) 6=
0. Then by the implicit function theorem the additional integral L can be
chosen equal to J2.

Observe that J2 has a 2π periodic flow near m, and this still holds in a
neighborhood of the singular fiber, as was shown in [21]. Therefore J2 is a
generator of an S1 action on the neighboring tori and hence is equal to one
action, say I2.

Instead of using the energy-momentum map F it is advantageous to use
the momentum map J instead, and whenever the Hamiltonian enters the
calculation to use Φ.

In [22] it is shown using only the momentum map J without the Hamil-
tonian (or, equivalently, with Hamiltonian equal to J1) that the 2π periodic
flow XI1 of the first action is given by

2πXI1 = τ1XJ1 + τ2XJ2 (6)

where the periods τi, i = 1, 2 satisfy

τ1(j) =σ1(j)−ℜ(ln ζ),

τ2(j) =σ2(j) + ℑ(ln ζ),
(7)

and σi(j), i = 1, 2, are smooth and single-valued functions near the origin.
Here the point j = (j1, j2) in the image of the momentum map J is identified
with the complex number ζ = j1 + ij2. The smooth contribution comes
from the dynamics far away from the focus-focus point, while the singular
contribution is obtained from the flows of J1 and J2 near the focus-focus
point, see [22] for the details. The points (τ1, τ2) and (0, 2π) form a basis of
the period lattice of the foliation. Using this result we obtain
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Lemma 2. The rotation number W (j) near a focus-focus point is

2πW (j) = −A(j)ℜ(ln ζ)−ℑ(ln ζ) + σ(j) (8)

where A(j) is smooth and determined from the Hamiltonian H = Φ ◦ J by

A(j) =
∂2Φ

∂1Φ
(j), A(0) =

ω

α
, (9)

and σ(j) is a smooth (and single-valued) function near the origin.

Proof. The Hamiltonian vector field XH is obtained from (5) as

XH = ∂1ΦXJ1 + ∂2ΦXJ2 . (10)

Now eliminating XJ1 with the aid of (6) and using J2 = I2 gives

XH =
2π

τ1
∂1ΦXI1 +

(

∂2Φ−
τ2
τ1
∂1Φ

)

XI2 . (11)

Comparing with (4) the frequencies ωj can be read off, and the rotation
number as a function of j is

W (j) =
ω2(j)

ω1(j)
=

1

2π
(τ1(j)A(j) − τ2(j)) . (12)

Finally using (7) gives the result with σ = Aσ1 − σ2. From (3) we see that
A(0) = ω/α.

The fact that ℑ(ln ζ)/2π is multivalued and increases by 1 upon com-
pleting a cycle ζ = exp(iφ) is a manifestation of the fact that a simple
focus-focus point has Monodromy with index 1, see [5, 14, 25, 21].

The functions τi that determines the period lattice depend on the folia-
tion alone, while A(j) is determined by the Hamiltonian alone. In order to
understand the behaviour ofW (j) near the origin we now prove the following

Theorem 3. There is a local diffeomorphism of R2 near the origin which
is C1 at the origin and C∞ elsewhere which maps the level sets of W to
the integral curves of the equation ζ̇ = −λ̄ζ. In particular these curves are
spirals determined by the eigenvalue λ of the focus-focus point.

Proof. We use the notation of lemma 2. The strategy is to change the
coordinates such that the level sets of W in the new coordinates satisfy a
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linear differential equation. Let ϕ be the change of variables defined in polar
coordinates ζ = j1 + ij2 = ρeiθ by

(

ρ
θ

)

→

(

ρ̃ = ρA(j)/A(0) exp(−σ(j)/A(0))

θ̃ = θ

)

.

Writing A(j) = A(0) + 〈j, Ã(j)〉, where Ã is smooth, we have ϕ(j) =
f(j)j, where f : R2 → R locally near the origin is given by

f(j) = ρ〈j,Ã(j)〉/A(0) exp(−σ(j)/A(0)).

We see that f is continuous at the origin, with f(0) = exp(−σ(0)/A(0)),
and that the partial derivatives of f are of order ln ρ at the origin. Hence ϕ
is C1 at the origin, with Jacobian

dϕ(0) = f(0)Id = exp(−σ(0)/A(0))Id.

Under this diffeomorphism, the rotation number is simplified and we
only need to study the level sets of

2πW ◦ ϕ−1(j̃) = (−A(0)ℜ(ln ζ̃)−ℑ(ln ζ̃)).

Forget now the tildes. Viewing W as a local Hamiltonian for the standard
canonical structure dj2∧dj1, we compute the levels sets of W as the integral
curves of the associated Hamiltonian vector field: d

ds(j1, j2) = (∂2W,−∂1W ).
Rescaling the time s by 2π|ζ|2α and rewriting the dynamical system in
complex form gives the equation ζ̇ = −λ̄ζ.

From Lemma 2 we know that W (j) diverges when j approaches the
origin. These statements are compatible because different branches of the
complex logarithm are involved. After each complete turn of the spiral the
rotation number jumps by one. Alternatively one could view the rotation
number as globally defined on the Riemann surface of the complex logarithm.

Recall that as coordinates in R
2 we may use j = (j1, j2) or c = (h, l),

and that they are related by l = j2 and h = Φ(j). Therefore the spirals in
the image of the momentum map J will be mapped to spirals in the image
of the momentum map F . Near the origin the transformation between the
two is the linear map (h, l) = (j1α+ j2ω, j2).

3 Vanishing Twist

In the isoenergetic problem fixing the energy H = h gives a smooth curve
Ch in the image of the momentum map. The twist condition is obtained
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from W (j) by differentiating along this curve. Since ∂1Φ(0) = α 6= 0 we
may apply the implicit function theorem and the curve Ch is the graph of a
function j1(j2). The slope of this curve near the origin is given by implicit
differentiation of Φ(j1, j2) = h which yields ∂j1/∂j2 = −∂2Φ/∂1Φ = −A(j).
Therefore the twist is found to be

T (j) =
∂W (j)

∂j2

∣

∣

∣

∣

Ch

= ∂1W
∂j1
∂j2

+ ∂2W = −A(j)∂1W + ∂2W . (13)

Expanding the remaining derivatives gives

2πT (j) = −A2∂1τ1 + 2A∂2τ1 − ∂2τ2 − τ1A∂1A+ τ1∂2A (14)

where ∂1τ2 = ∂2τ1 has been used, which follows from the fact that both peri-
ods can be obtained by differentiating a single action function, see [22]. The
main contribution near the origin comes from differentiating the complex
logarithm in (7), which produces terms proportional to 1/|j|2. Therefore we
now define T̃ (j) = 2π|j|2T (j) and have the following

Lemma 4. T̃ is a C1 map at the origin that satisfies

T̃ (0) = 0, ∂1T̃ (0) = A2(0)− 1, ∂2T̃ (0) = −2A(0) (15)

Proof. Using (7) where σi is smooth we find that the last two terms in (14),
τ1A∂1A and τ1∂2A, are both of the form f(j)+g(j) ln |j| with smooth f and
g, while the remaining first three terms are of the form f(j) + g(j)/|j|2 for
some smooth f and g. Since |j|2 ln |j| is of class C1 at the origin the first
statement follows. A simple computation gives

T̃ (j) = A2j1 − 2Aj2 − j1 +O(|j|2 ln |j|) , (16)

and the result follows.
Since the derivatives of T̃ cannot both vanish at the origin, T −1(0) is a

C1 curve through the origin. By Lemma 4 the equation for the tangent of
this curve at the origin is

(A(0)2 − 1)j1 = 2A(0)j2 (17)

Using h = j1α+ j2ω at the origin to express this tangent in (h, j2) gives

h = ω
ω2 + α2

ω2 − α2
j2 . (18)

When ω 6= 0 the curve T̃ (0) therefore transversally intersects the curves
{h = const} near the origin, and we have proven Theorem 1. Note that the
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condition ω 6= 0 is only needed in the last step. Therefore also for ω = 0
twistless tori exist near the origin, but transversality is lost. Therefore
twistless tori might exist only for positive or only for negative values of h,
but possibly not for both.

Different choices of actions are possible. The semi-global S1 action L =
J2 = I2 is unique up to sign ε = ±1, but the other action I1 can be changed,
Ĩ1 = εI1 + kI2, k ∈ Z, so that new and old actions are related by a uni-
modular transformation. The frequencies ω change into ω̃1 = εω1 and ω̃2 =
εω2−kω1, so that the rotation number transforms as W̃ = W−kε. Therefore
a different choice of actions amounts to a different choice of sheet of the
Riemann surface of the complex logarithm. This argument also shows that
the vanishing twist is independent of the choice of actions.

When there are more than one critical point in the singular leave similar
results can be derived, based on modified formulas (7) whose derivation is
sketched in [22].

As an application of the above results one can consider the integrable
normal form of the Hamiltonian Hopf bifurcation, see [20, 6] and the refer-
ences therein. In [7] the rotation number in the compact case was computed
explicitly in terms of elliptic integrals. Expansion of these integrals at the
focus-focus point gave the above results (8) and (18) for the first time in this
special case. Pictures of the spirals of constant W can also be found in [7].
But the method employed could not deal with the case in which the normal
form has a non-compact singular leave. And even with a compact singular
fibre in a more complicated system this approach might lead to hyperelliptic
integrals, and their expansion at the singular point would be quite difficult.
A prominent example of an integrable system with a focus-focus point is the
spherical pendulum, see e.g. [3]. In this case the eigenvalues are degenerate
because ω = 0, and the spiral of Theorem 3 degenerates into a star.

4 Kolmogorov Condition

Near a focus-focus point we can improve Zung’s theorem [24].

Theorem 5. On regular tori close to the focus-focus singular fiber, the
Jacobian determinant of the frequency map admits the following asymptotic
expansion (recall that τ1 is of order ln |j|):

det
∂ω

∂I
= −

(

2πα

|j|τ21

)2

+O(
1

|j|τ31
) . (19)
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In particular this shows that the Kolmogorov condition is uniformly satisfied
for every torus near the singular fibre of a simple focus-focus point.

Proof. First notice that the Jacobian of the frequency map does not depend
on the choice of action variables and hence does not care about monodromy;
in our case, this means that it does not depend on the determination of the
complex logarithm in (7). Thus the leading order of this Jacobian can easily
be calculated. We need to compute

∂ω

∂I
=

∂ω

∂J

∂J

∂I
.

From (6) we know that by definition

2π
∂I1
∂J1

= τ1, 2π
∂I1
∂J2

= τ2 .

Since J2 = I2 we easily find that det ∂I/∂J = τ1/2π. The frequencies can
be read off from (11); they are

ω1 =
2π

τ1
Φ1, ω2 = Φ2 −

τ2
τ1
Φ1 .

The subscripts of Φ denote partial derivatives. Using that τ1 is of order
ln |j| and that the first derivatives of τi have all leading order 1/|j|, one
easily computes:

∂1ω1 = −2πΦ1
τ11
τ21

+O(1/τ1) = O(
1

|j|τ21
)

∂2ω1 = −2πΦ1
τ12
τ21

+O(1/τ1) = O(
1

|j|τ21
)

∂1ω2 = −
(τ1τ21 − τ2τ11)

τ21
Φ1 +O(1) = O(

1

|j|τ1
)

∂2ω2 = −
(τ1τ22 − τ2τ12)

τ21
Φ1 +O(1) = O(

1

|j|τ1
)

(20)

Here the second index of τ denotes a partial derivative. At leading order τ1
can be replaced by ln |j|. The leading order of the determinant det ∂ω/∂J
is obtained by taking the determinant of the matrix in which only the terms
that are given explicitly in (20) are kept, provided one shows a posteriori
that the result has the expected order of 1

|j|2τ3
1

= 1
|j|2 ln3 |j|

. The result is

det
∂ω

∂J
= 2π(τ11τ22 − τ212)

Φ2
1

τ31
+O(

1

|j|τ21
) .

10



Using the form of τ1 and τ2 we find

det
∂τ

∂J
= τ11τ22 − τ212 = −

1

|j|2
+O(1/|j|)

so that

det
∂ω

∂J
= −2π

α2

|j|2τ31
+O(

1

|j|τ21
) = −2π

α2

|j|2 ln3 |j|
+O(

1

|j|2 ln4 |j|
) .

Since by hypothesis α 6= 0 the leading term has indeed the required order.
Returning to the true actions I the final result is

det
∂ω

∂I
= −

(

2πα

|j|τ21

)2

+O(
1

|j|τ31
) ,

thereby proving the theorem.

Remark. In the process of finishing this paper we became aware of a preprint
by Rink [16] in which the determinant of the Jacobian of the frequency map
was calculated in a very similar way.
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