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A Microscopic Interpretation for Adaptive

Dynamics Trait Substitution Sequence Models

Nicolas Champagnat∗

Abstract

We consider an interacting particle Markov process for Darwinian evolu-
tion in an asexual population with non-constant population size, involving a
linear birth rate, a density-dependent logistic death rate, and a probability µ

of mutation at each birth event. We introduce a renormalization parameter
K scaling the size of the population, which leads, when K → +∞, to a de-
terministic dynamics for the density of individuals holding a given trait. By
combining in a non-standard way the limits of large population (K → +∞)
and of small mutations (µ → 0), we prove that a time scales separation be-
tween the birth and death events and the mutation events occurs and that
the interacting particle microscopic process converges for finite dimensional
distributions to the biological model of evolution known as the “monomorphic
trait substitution sequence” model of adaptive dynamics, which describes the
Darwinian evolution in an asexual population as a Markov jump process in
the trait space.

Keywords: measure-valued process; interacting particle system; mutation-selection
processes; Darwinian evolution; trait substitution sequence; adaptive dynamics; fi-
nite dimensional distributions convergence; time scale separation; stochastic dom-
ination; branching processes; large deviations.

AMS subject classification: 60F99; 60K35; 92D15.

1 Introduction and main results

We will study in this article the link between two biological models of Darwinian
evolution in an asexual population. The first one is a system of interacting particles
modeling evolution at the individual level, referred below as the microscopic model,
which has been already proposed and studied in Bolker and Pacala (1997, 1999),
Dieckmann and Law (2000), Law et al. (2003) and Fournier and Méléard (2004)
either as a model of Darwinian evolution or as a model of dispersal in a spatially
structured population. This model involves a finite population with non-constant
population size, in which each individual’s birth and death events are described.
Each individual’s ability to survive and reproduce is characterized by a finite num-
ber of phenotypic traits (e.g. body size, rate of food intake, age at maturity), or
simply traits. The birth rate of an individual depends on its phenotype, and its
death rate depends on the distribution of phenotypes in the population and involves
a competition kernel of logistic type. A mutation may occur at each birth event.
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The second model describes the evolution at the population level as a jump
Markov process in the space of phenotypic traits characterizing individuals. It
is called “trait substitution sequence” (Metz et al., 1996), and referred below as
the TSS model. In this model, the population is monomorphic at each time (i.e.
composed of individuals holding the same trait value), and the evolution proceeds
by a sequence of appearance of new mutant traits, which invade the population
and replace, after a short competition, the previous dominant trait. The TSS
model belongs to the recent biological theory of evolution called adaptive dynamics
(Hofbauer and Sigmund, 1990; Marrow et al., 1992; Metz et al., 1992), and has
been introduced by Metz et al. (1996) and Dieckmann and Law (1996) and math-
ematically studied in Champagnat et al. (2001). The theory of adaptive dynamics
investigates the effects of the ecological aspects of population dynamics on the
evolutionary process, and thus describes the population on the phenotypic level,
instead of the genotypic level. The TSS model is one of the fundamental models of
this theory. It has revealed a powerful tool for understanding various evolutionary
phenomena, such as polymorphism (stable coexistence of different traits, cf. Metz
et al., 1996) or evolutionary branching (evolution of a monomorphic population to
a polymorphic one that may lead to speciation, Dieckmann and Doebeli, 1999) and
is the basis of other biological models, such as the “canonical equation of adaptive
dynamics” (Dieckmann and Law, 1996; Champagnat et al., 2001).

The heuristics leading to the TSS model (cf. Metz et al., 1996 and Dieckmann
and Law, 1996) are based on the biological assumptions of large population and
rare mutations, and on another assumption stating that no two different types of
individuals can coexist on a long time scale: the competition eliminates one of
them. In spite of this heuristic, this model still lacks a firm mathematical basis.

We propose to prove in this article a convergence result of the microscopic model
to the TSS model when the parameters are normalized in a non-standard way, lead-
ing to a time scales separation. Our limit combines a large population asymptotic
with a rare mutations asymptotic. It will appear that this convergence holds only
for finite dimensional distributions, and not for the Skorohod topology, for reasons
that are linked to the time scale separation. For these reasons, and because we
have to combine two limits simultaneously (large population and rare mutations),
this result is different from classical time scale separation results (averaging prin-
ciple, cf. Freidlin and Wentzell, 1984). The proof requires original methods, based
on comparison, convergence and large deviation results on branching processes and
logistic Markov birth and death processes. Our convergence result provides a math-
ematical justification of the TSS model and of the biological heuristic on which it
is based, and gives precise conditions on the scalings of the biological parameters
in the microscopic model required for the time scales separation to hold.

In Section 2, we describe precisely the microscopic model and the TSS model,
and we state our main results. Our proof is based on a careful study of the behavior
of the population before the first mutation, and of the competition phase between
the mutant trait and the original trait, taking place just after the first mutation.
We will give an outline of the proof and of the methods in Section 3, as well as some
notations used throughout the paper. Section 4 gives comparison results and large
deviation results on birth and death processes (Sections 4.1 and 4.2), and several
results on branching processes (Section 4.3). Based on these properties, the proof
of the convergence of the microscopic model to the TSS model is given in Section 5.

2 Models and main results

Let us first describe the microscopic model. In a population, Darwinian evolution
acts on a set of phenotypes, or traits, characterizing each individual’s ability to
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survive and reproduce. We consider a finite number of quantitative traits in an
asexual population (clonal reproduction), and we assume that the trait space X is
a compact subset of Rl (l ≥ 1).

The microscopic model involves the three basic mechanisms of Darwinian evo-
lution: heredity, which transmits traits to new offsprings, mutation, driving a varia-
tion in the trait values in the population, and selection between these different trait
values. The selection process, and thus a proper definition of the selective ability
of a trait, or fitness (cf. Metz et al., 1992), should (and will) be the consequence
of interactions between individuals in the population and of the competition for
limited resources or area, modeled as follows.

For any x, y ∈ X , we introduce the following biological parameters

b(x) ∈ R+ is the rate of birth from an individual holding trait x.

d(x) ∈ R+ is the rate of “natural” death for an individual holding trait x.

α(x, y) ∈ R+ is competition kernel representing the pressure felt by an individual
holding trait x from an individual holding trait y.

µ(x) ∈ [0, 1] is the probability that a mutation occurs in a birth from an individual
with trait x.

m(x, dh) is the law of h = y−x, where the mutant trait y is born from an individual
with trait x. It is a probability measure on R

l, and since y must belong to
the trait space X , the support of m(x, ·) is a subset of

X − x = {y − x : y ∈ X}.

K ∈ N is a parameter rescaling the competition kernel α(·, ·). Biologically, K can
be interpreted as scaling the resources or area available, and is related to the
biological concept of “carrying capacity”. It is also called “system size” by
Metz et al. (1996). As will appear later, this parameter is linked to the size of
the population: large K means a large population (provided that the initial
condition is proportional to K).

uK ∈ [0, 1] is a parameter depending on K rescaling the probability of mutation
µ(·). Small uK means rare mutations.

Let us also introduce the following notations, used throughout this paper:

n̄x =
b(x)− d(x)

α(x, x)
, (1)

β(x) = µ(x)b(x)n̄x (2)

and f(y, x) = b(y)− d(y)− α(y, x)n̄x. (3)

As will appear below, n̄x can be interpreted as the equilibrium density of a mono-
morphic population when there is no mutation, β(x) as the mutation rate in this
population, and f(y, x) as the fitness of a mutant individual with trait y in this
population.

We consider, at any time t ≥ 0, a finite number Nt of individuals, each of them
holding a trait value in X . Let us denote by x1, . . . , xNt the trait values of these
individuals. The state of the population at time t ≥ 0, rescaled by K, can be
described by the finite point measure on X

νKt =
1

K

Nt
∑

i=1

δxi , (4)
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where δx is the Dirac measure at x. Let MF denote the set of finite nonnegative
measures on X , and define

MK =

{

1

K

n
∑

i=1

δxi : n ≥ 0, x1, . . . , xn ∈ X

}

,

An individual holding trait x in the population νKt gives birth to another indi-
vidual with rate b(x) and dies with rate

d(x) +

∫

α(x, y)νKt (dy) = d(x) +
1

K

Nt
∑

i=1

α(x, xi).

The parameter K scales the strength of competition, thus allowing the coexistence
of more individuals in the population.

A newborn holds the same trait value as its progenitor’s with probability 1 −
uKµ(x), and with probability uKµ(x), the newborn is a mutant whose trait value
y is chosen according to y = x+h, where h is a random variable with law m(x, dh).

In other words, the process (νKt , t ≥ 0) is a MK-valued Markov process with
infinitesimal generator defined for any bounded measurable functions φ from MK

to R by

LKφ(ν) =

∫

X

(

φ

(

ν +
δx
K

)

− φ(ν)

)

(1− uKµ(x))b(x)Kν(dx)

+

∫

X

∫

Rl

(

φ

(

ν +
δx+h
K

)

− φ(ν)

)

uKµ(x)b(x)m(x, dh)Kν(dx)

+

∫

X

(

φ

(

ν −
δx
K

)

− φ(ν)

)(

d(x) +

∫

X

α(x, y)ν(dy)

)

Kν(dx). (5)

When the measure ν has the form (4), the integrals with respect to Kν(dx) in (5)
correspond to sums over all individual in the population. The first term (linear)
describes the births without mutation, the second term (linear) describes the births
with mutation, and the third term (non-linear) describes the deaths by oldness
or competition. This logistic density-dependence models the competition in the
population, and hence drives the selection process.

Let us denote by (A) the following three assumptions

(A1) b, d and α are measurable functions, and there exist b̄, d̄, ᾱ < +∞ such that

b(·) ≤ b̄, d(·) ≤ d̄ and α(·, ·) ≤ ᾱ.

(A2) m(x, dh) is absolutely continuous with respect to the Lebesgue measure on
R
l with density m(x, h), and there exists a function m̄ : Rl → R+ such that

m(x, h) ≤ m̄(h) for any x ∈ X and h ∈ R
l, and

∫

m̄(h)dh <∞.

(A3) µ(x) > 0 and b(x)−d(x) > 0 for any x ∈ X , and there exists α > 0 such that

α ≤ α(·, ·).

For fixed K, under (A1) and (A2) and assuming that E(〈νK0 ,1〉) < ∞ (where
〈ν, f〉 denotes the integral of the measurable function f with respect to the measure
ν), the existence and uniqueness in law of a process with infinitesimal generator
LK has been proved by Fournier and Méléard (2003). When K → +∞, they
also proved, under more restrictive assumptions and assuming the convergence
ot the initial condition, the convergence on D(R+,MF ) of the process νK to a
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deterministic process solution to a non-linear integro-differential equation. We will
only use particular cases of their result, stated in the next section, that can be
proved under assumptions (A1) and (A2).

The biological assumption of large population corresponds to the limit K →
+∞, and the assumption of rare mutations to uK → 0. As mentionned in the
introduction, the biological heuristics suggest another assumption: the impossibil-
ity of coexistence of two different traits on a long time scale. As will appear in
Proposition 3 in the next section, this assumption can be stated mathematically as
follows:

(B) Given any x ∈ X , Lebesgue almost any y ∈ X satisfies one of the two following
conditions:

either (b(y)− d(y))α(x, x) − (b(x)− d(x))α(y, x) < 0, (6)

or

{

(b(y)− d(y))α(x, x) − (b(x)− d(x))α(y, x) > 0,
(b(x)− d(x))α(y, y) − (b(y)− d(y))α(x, y) < 0.

(7)

Before coming back to this assumption in the next section, let us only observe that
condition (6) is equivalent to f(y, x) < 0 and condition (7) to f(y, x) > 0 and
f(x, y) < 0.

The TSS model of evolution that we obtain from the microscopic model is a
Markov jump process in the trait space X with infinitesimal generator given, for
any bounded measurable function ϕ from X to R, by

Aϕ(x) =

∫

Rl

(ϕ(x + h)− ϕ(x))β(x)
[f(x + h, x)]+
b(x+ h)

m(x, h)dh, (8)

where [a]+ denotes the positive part of a ∈ R, and where β(x) and f(y, x) are
defined in (2) and (3). The existence and uniqueness in law of a process generated
by A holds as soon as β(x)[f(y, x)]+/b(y) is bounded (see e.g. Ethier and Kurtz,
1986), which is true under assumption (A) ([f(y, x)]+/b(y) ≤ 1). The biological
interpretation of the fonction f as a fitness function becomes natural in view of this
generator: because of the positive part function [·]+ in (8), the TSS process can
only jump from a trait x to the traits x + h such that f(x + h, x) > 0. Therefore,
the function f(y, x) measures the selective ability of trait y in a population made
of individuals with trait x (see Metz et al., 1992, 1996).

Our main result is:

Theorem 1 Assume (A) and (B). Fix a sequence (uK)K∈N in [0, 1]N such that

∀V > 0, exp(−V K) ≪ uK ≪
1

K logK
(9)

(where f(K) ≪ g(K) means that f(K)/g(K) → 0 when K → ∞). Fix also
x ∈ X , γ > 0 and a sequence of N-valued random variables (γK)K∈N, such that
(γK/K)K∈N converges in law to γ and is bounded in L

1. Consider the process
(νKt , t ≥ 0) generated by (5) with initial state (γK/K)δx. Then, for any n ≥ 1,
ε > 0 and 0 < t1 < t2 < . . . < tn < ∞, and for any measurable subsets Γ1, . . . ,Γn
of X ,

lim
K→+∞

P
(

∀i ∈ {1, . . . , n}, ∃xi ∈ Γi : Supp(ν
K
ti/KuK

) = {xi}

and |〈νKti/KuK
,1〉 − n̄xi | < ε

)

= P(∀i ∈ {1, . . . , n}, Xti ∈ Γi) (10)

where for any ν ∈ MF , Supp(ν) is the support of ν and (Xt, t ≥ 0) is the TSS
process generated by (8) with initial state x.
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Remark 1 The time scale 1/KuK of Theorem 1 is the time scale of the mutation
events for the process νK (the population size is proportional to K and the individual
mutation rate is proportional to uK). Assumption (9) is the condition leading to
the correct time scales separation between the mutation events and the birth and
death events. The limit (10) means that, when this time scales separation occurs, the
population is monomorphic at any time with high probability, and that the transition
periods corresponding to the invasion of a mutant trait in the resident population
and the ensuing competition are infinitesimal on this mutation time scale. Observe
also that this convergence result holds only for monomorphic initial conditions. We
will make some comments on more general initial conditions in the next section.

Corollary 1 Assume additionally in Theorem 1 that (γK/K)K∈N is bounded in
L
p for some p > 1. Then the process (νKt/KuK

, t ≥ 0) converges when K → +∞,
in the sense of the finite dimensional distributions for the topology on MF induced
by the functions ν 7→ 〈ν, f〉 with f bounded and measurable on X , to the process
(Yt, t ≥ 0) defined by

Yt =

{

γδx if t = 0
n̄XtδXt if t > 0.

This corollary follows from the following long time moment estimates.

Lemma 1 Assume (A) and that supK≥1 E(〈νK0 , 1〉
p) < +∞ for some p ≥ 1, then

sup
K≥1

sup
t≥0

E
(

〈νKt ,1〉
p
)

< +∞,

and therefore, if p > 1, the family of random variables {〈νKt ,1〉}{K≥1, t≥0} is uni-
formly integrable.

Proof of Corollary 1 Let Γ be a measurable subset of X . Let us prove that

lim
K→+∞

E(〈νKt/KuK
,1Γ〉) = E(n̄Xt1{Xt∈Γ}). (11)

Fix ε > 0, and observe that n̄x ∈ [0, b̄/α]. Write [0, b̄/α] ⊂ ∪qi=1Ii, where q is the
first integer greater than b̄/εα, and Ii = [(i−1)ε, iε[. Define Γi = {x ∈ X : n̄x ∈ Ii}
for 1 ≤ i ≤ q, and apply (10) to the sets Γ ∩ Γ1, . . . ,Γ ∩ Γq with n = 1, t1 = t and
the constant ε above. Then, by Lemma 1, there exists a constant C > 0 such that

lim sup
K→+∞

E(〈νKt/KuK
,1Γ〉) ≤ lim sup

K→+∞
E(〈νKt/KuK

,1Γ〉1{〈νK
t/KuK

,1〉≤C}) + ε

≤

q
∑

i=1

lim sup
K→+∞

E(〈νKt/KuK
,1Γ∩Γi〉1{〈νK

t/KuK
,1〉≤C}) + ε

≤

q
∑

i=1

(i+ 1)εP(Xt ∈ Γ ∩ Γi) + ε

≤

q
∑

i=1

(

E(n̄Xt1{Xt∈Γ∩Γi}) + 2εP(Xt ∈ Γi)
)

+ ε

≤ E(n̄Xt1{Xt∈Γ}) + 3ε.

A similar estimate for the lim inf ends the proof of (11), which implies the conver-
gence of one-dimensional laws for the required topology.

The same method gives easily the required limit when we consider a finite
number of times t1, . . . , tn. �
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As suggested by the fact that the limit process Y is not continuous at 0+,
it is not possible to obtain the convergence in law for the Skorohod topology on
D([0, T ],MF ). More generally, we can prove:

Proposition 1 For any s < t, the convergence of νK·/KuK
to Y in Corollary 1 does

not hold for the Skorohod topology on D([s, t],MF ), for any topology on MF such
that the total mass function ν 7→ 〈ν,1〉 is continuous.

Proof of Proposition 1 Assume the converse. Then, for some s < t, the total
mass NK

t = 〈νKt/KuK
,1〉 converges for the Skorohod topology on D([s, t],R+) to the

total mass of the process Y . In particular, by Ascoli’s theorem for càdlàg processes
(cf. Billingsley, 1968), for any ε > 0 and η > 0, there exists δ > 0 such that

lim sup
K→+∞

P(ω′(NK , δ) > η) ≤ ε,

where the modulus of continuity ω′ is defined by

ω′(ϕ, δ) := inf

{

max
i=0,...,r−1

ω(ϕ, [ti, ti+1))

}

where the infimum is taken over all r ∈ N and all the finite partitions s = t0 < t1 <
. . . < tr = t of [s, t] such that ti+1 − ti > δ for any i ∈ {0, . . . , r − 1}, and where
ω(ϕ, I) := supx,y∈I |ϕ(x) − ϕ(y)| for any interval I.

Now, for any function ϕ ∈ D([s, t],R), ω(ϕ, δ) ≤ 2ω′(ϕ, δ) + supx∈[s,t] |ϕ(x) −
ϕ(x−)| (cf. Billingsley, 1968), where ω(ϕ, δ) := supx,y∈[s,t], |x−y|≤δ |ϕ(x) − ϕ(y)|,

and for any K ≥ 1, supx∈[s,t] |N
K
x − NK

x−| = 1/K. Therefore, for any ε > 0 and
η > 0, there exists δ > 0 such that

lim sup
K≥1

P(ω(NK , δ) > η) ≤ ε.

This implies that the sequence (NK)K is actually C-tight (cf. Billingsley, 1968) and
that its limit is necessarily continuous, which is not true for 〈Yt,1〉. �

3 Notations and outline of the proof of Theorem 1

We start with some definitions needed to explain the idea of the proof of Theorem 1
and the precise meaning of assumption (B).

Definition 1
(a) For any K ≥ 1, b, d, α ≥ 0 and for any N/K-valued random variable z, we will

denote by PK(b, d, α, z) the law of the N/K-valued Markov birth and death
process with initial state z and with transition rates

ib from i/K to (i+ 1)/K,
i(d+ αi/K) from i/K to (i− 1)/K.

(b) For any K ≥ 1, bk, dk, αkl ≥ 0 with k, l ∈ {1, 2}, and for any N/K-valued
random variables z1 and z2, we will denote by

QK(b1, b2, d1, d2, α11, α12, α21, α22, z1, z2)

7



the law of the (N/K)2-valued Markov birth and death with initial state
(z1, z2) and with transition rates

ib1 from (i/K, j/K) to ((i+ 1)/K, j/K),
jb2 from (i/K, j/K) to (i/K, (j + 1)/K),
i(d1 + α11i/K + α12j/K) from (i/K, j/K) to ((i− 1)/K, j/K),
j(d2 + α21i/K + α22j/K) from (i/K, j/K) to (i/K, (j − 1)/K).

These two Markov processes have absorbing states at 0 and (0, 0), respectively.
Observe also that, when α = 0, the Markov process of point (a) is a continuous-time
binary branching process divided by K.

Fix x and y in X . The proof of the following two results can be found in
Chap. 11 of Ethier and Kurtz (1986).

Proposition 2
(a) Assume µ ≡ 0 and νK0 = NK

x (0)δx. Then, for any t ≥ 0, νKt = NK
x (t)δx,

where NK
x has the law PK(b(x), d(x), α(x, x), NK

x (0)). Assume NK
x (0) →

nx(0) in probability when K → +∞. Then, the sequence (NK
x ) converges in

probability on [0, T ] for the uniform norm to the deterministic function nx
with initial condition nx(0) solution to

ṅx = (b(x)− d(x) − α(x, x)nx)nx. (12)

(b) Assume µ ≡ 0 and νK0 = NK
x (0)δx + NK

y (0)δy. Then, for any t ≥ 0, νKt =

NK
x (t)δx +NK

y (t)δy, where (NK
x , N

K
y ) has the law

QK(b(x), b(y), d(x), d(y), α(x, x), α(x, y), α(y, x), α(y, y), NK
x (0), NK

y (0)).

Assume NK
x (0) → nx(0) and N

K
y (0) → ny(0) in probability when K → +∞.

Then, (NK
x , N

K
y ) converges in probability when K → +∞ on [0, T ] for the

uniform norm to the deterministic function (nx, ny) with initial condition
(nx(0), ny(0)) solution to

{

ṅx = (b(x)− d(x) − α(x, x)nx − α(x, y)ny)nx
ṅy = (b(y)− d(y)− α(y, x)nx − α(y, y)ny)ny.

(13)

Note that, under assumption (A3), the logistic equation (12) has two steady
states, 0, unstable, and n̄x, defined in (1), stable. The system (13) has at least
three steady states, (0, 0), unstable, (n̄x, 0) and (0, n̄y).

The assumption (B) of Section 2 is the mathematical formulation of the impos-
sibility of coexistence of two different traits, in the sense that, starting in the neigh-
borhood of the equilibrium (n̄x, 0) of system (13), either its solution converges to
this equilibrium or to the equilibrium (0, n̄y). More precisely, the following propo-
sition follows fron an elementary analysis of system (13) (cf. e.g. Istas, 2000, pp.
25–27):

Proposition 3 If x and y satisfy (6), then (n̄x, 0) is a stable steady state of (13).
If x and y satisfy (7), then (n̄x, 0) is an unstable steady state, (0, n̄y) is stable, and
any solution to (13) with initial state in (R∗

+)
2 converges to (0, n̄y) when t→ +∞.

Let us now give the main ideas of the proof of Theorem 1. It is based on two
main ingredients: first, when µ ≡ 0 and νK0 is monomorphic with trait x, we have
seen in Proposition 2 (a) the convergence of νK to n(t)δx, where n(t) is solution
to (12). Any solution to this equation with positive initial condition converges for
large time to n̄x. The large deviations estimates for this convergence will allow us
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to show that the time during which the stochastic process stays in a neighborhood
of its limit (problem of exit from domain, Freidlin and Wentzell, 1984) is of the
order of exp(KV ) with V > 0. Now, when uK is small, the process νK with a
monomorphic initial condition with trait x is close to the same process with µ ≡ 0,
as long as no mutation occurs. Therefore, the left inequality in (9) will allow us to
prove that, with high probability, the first mutation event (occuring on the time
scale t/KuK) occurs before the total density drifts away from n̄x.

The second ingredient of our proof is the study of the invasion of a mutant trait
y that has just appeared in a monomorphic population with trait x. This invasion
can be divided in three steps (Fig. 1), in a similar way as is done classically by
population geneticists dealing with selective sweeps (Kaplan et al., 1989; Durrett
and Schweinsberg, 2004):

✲

✻

0

ε

n̄y

n̄x

population size

t1 t2 t3 t

〈νKt ,1{y}〉

〈νKt ,1{x}〉

Figure 1: The three steps of the invasion of a mutant trait y in a monomorphic
population with trait x.

• Firstly, as long as the mutant population size 〈νKt ,1{y}〉 (initially equal to
1/K) is smaller than a fixed small ε > 0 (before t1 in Fig. 1), the resident
dynamics is very close to what it was before the mutation, so 〈νKt ,1{x}〉
stays close to n̄x. Then, the death rate of a mutant individual is close to
the constant d(y) + α(y, x)n̄x. Since its birth rate is constant, equal to b(y),
we can approximate the mutant dynamics by a binary branching process.
Therefore, the probability that 〈νKt ,1{y}〉 reaches ε is approximately equal
to the probability that this branching process reaches εK, which converges
when K → +∞ to its probability of non-extinction [f(y, x)]+/b(y).

• Secondly, once 〈νKt ,1{y}〉 has reached ε, by Proposition 2 (b), for large K,
νK is close to the solution to (13) with initial state (n̄x, ε) (represented with
dotted lines in Fig. 1) with high probability. By Proposition 3, this solution
will be shown to reach the ε-neighborhood of (0, n̄y) in finite time (t2 in
Fig. 1).

• Finally, once 〈νKt ,1{y}〉 is close to n̄y and 〈νKt ,1{x}〉 is small,K〈νKt ,1{x}〉 can
be approximated, in a similar way as in the first step, by a binary branching
process, which is subcritical and hence gets extinct a.s. in finite time (t3 in
Fig. 1).

We will see in Sections 4.2 and 4.3 that the time needed to complete the first
and third steps is proportional to logK, whereas the time needed for the second
step is bounded. Therefore, since the time between two mutations is of the order of
1/KuK, the right inequality in (9) will allow us to prove that, with high probability,
the three steps above are completed before a new mutation occurs.
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Remark 2 As observed by Metz et al. (1996), the biologial heuristics leading to the
TSS model extend to the case of polymorphic initial condition, where the population
is composed of a finite number of distinct traits (see also Champagnat, 2004). Our
mathematical method can also be extended easily to n-morphic initial conditions,
except for one difficulty: one has to replace assumption (B) by another assumption
stating that, for any n, any solution to the n-morphic logistic systems generaliz-
ing (13) converges to an equilibrium (as in Proposition 3), and that the equilibria
of these systems are non-degenerate, in the sense that the branching processes in
the first and third steps above are not critical, or, equivalently, that a first-order
linear analysis of these equilibria allows to determine their stability. Then, one
could construct a polymorphic TSS model in which the number of coexisting traits
is not fixed. However, the asymptotic analysis of n-dimensional logistic systems is
non-trivial and may exhibit cycles or chaos, except when n = 1 or 2, and analytical
assumptions ensuring the condition above are difficult to find.

Section 4 will provide the large deviations and branching process results needed
to make formal the previous heuristics. We will also prove several comparison
results between 〈νKt ,1〉 and the birth and death processes of Definition 1. In
Section 5, the proof of Theorem 1 is achieved by computing, for any t, the limit law
of νKt/KuK

according to the random number of mutations having occured between

0 and t/KuK.

Notations

• ⌈a⌉ denotes the first integer greater or equal to a, and ⌊a⌋ denotes the integer
part of a.

• For any K ≥ 1 and ν ∈ MK , we will denote by PKν the law of the process νK

generated by (5) with initial state ν, and by EKν the expectation with respect
to PKν .

• The convergence in probability of finite dimensional random variables will be

denoted by
P
→.

• We will denote by L(Z) the law of the stochastic process (Zt, t ≥ 0).

• We will denote by � the following stochastic domination relation: if Q1 and
Q2 are the laws of R-valued processes, we will write Q1 � Q2 if we can
construct on the same probability space (Ω,F ,P) two processes X1 and X2

such that L(X i) = Qi (i = 1, 2) and ∀t ≥ 0, ∀ω ∈ Ω, X1
t (ω) ≤ X2

t (ω).

• Finally, if X1 and X2 are two random processes and T is a random time
constructed on the same probability space as X1, we will write X1

t � X2
t

for t ≤ T (resp. X2
t � X1

t for t ≤ T ) if we can construct a process X̂2 on
the same probability space as X1, such that L(X̂2) = L(X2) and ∀t ≤ T ,
∀ω ∈ Ω, X1

t (ω) ≤ X̂2
t (ω) (resp. X̂

2
t (ω) ≤ X1

t (ω)).

4 Birth and death processes

We will collect in this section various results on the birth and death processes that
appeared in Definition 1.

4.1 Comparison results

The following theorem gives various stochastic domination results.
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Theorem 2
(a) Assume (A). For any K ≥ 1 and any L

1 initial condition νK0 of the process νK ,

L(〈νK ,1〉) � PK(2b̄, 0, α, 〈νK0 ,1〉).

(b) With the same assumptions as in (a), let AKt denote the number of mutations
occuring in νK between times 0 and t, and let a, a1, a2 ≥ 0. Then, for
t ≤ inf{s ≥ 0 : 〈νKs ,1〉 ≥ a},

AKt � BKt ,

where BK is a Poisson process with parameter KuKab̄.

If moreover νK0 = 〈νK0 ,1〉δx, define τ1 = inf{t ≥ 0 : AKt = 1} (the first
mutation time). Then, for t ≤ τ1 ∧ inf{s ≥ 0 : 〈νKs ,1〉 6∈ [a1, a2]},

BKt � AKt � CKt , (14)

whereBK and CK are Poisson processes with respective parameterKuKa1µ(x)b(x)
and KuKa2µ(x)b(x).

(c) Fix K ≥ 1 and take b, d, α, z as in Definition 1 (a). Then, for any ε1, ε2, ε3 ≥ 0
and any N/K-valued random variable ε4,

PK(b, d+ ε2, α+ ε3, z) � PK(b+ ε1, d, α, z + ε4).

(d) Let (Z1, Z2) be a stochastic process with law

QK(b1, b2, d1, d2, α11, α12, α21, α22, z1, z2)

where the parameters are as in Definition 1 (b). Fix a > 0 and define T =
inf{t ≥ 0, Z2 ≥ a}. Then, for t ≤ T ,

M1
t � Z1

t �M2
t ,

where L(M1) = PK(b1, d1 + aα12, α11, z1)

and L(M2) = PK(b1, d1, α11, z1).

(e) Take (Z1, Z2) as above, fix 0 ≤ a1 < a2 and a > 0, and define T = inf{t ≥
0, Z1 6∈ [a1, a2] or Z

2 ≥ a}. Then, for t ≤ T ,

M1
t � Z2

t �M2
t ,

where L(M1) = PK(b2, d2 + a2α21 + aα22, 0, z2)

and L(M2) = PK(b2, d2 + a1α21, 0, z2).

Remark 3 Point (a) explains why it is necessary to combine simultaneously the
limits K → +∞ and uK → 0 in order to obtain the TSS process in Theorem 1.
The limit K → +∞ taken alone leads to a deterministic dynamics (Fournier and
Méléard, 2003), so making the rare mutations limit afterwards cannot lead to a
stochastic process. Conversely, taking the limit of rare mutations without making
the population larger would lead to an immediate extinction of the population in
the mutations time scale, because the stochastic domination of Theorem 2 (a) is
independent of uK and µ(·), and because a process Z with law PK(2b̄, 0, α, γK/K)
gets a.s. extinct in finite.

Before proving Theorem 2, let us deduce from Point (a) the Lemma 1 stated in
Section 2.
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Proof of Lemma 1 By Theorem 2 (a), it suffices to prove that

sup
K≥1

sup
t≥0

E((ZKt )p) < +∞,

where L(ZK) = PK(2b̄, 0, α, zK0 ) when supK≥1 E((zK0 )p) < +∞.

Let us define vkt = P(ZKt = k/K). Then

d

dt
E((ZKt )p) =

∑

k≥1

(

k

K

)p
dvkt
dt

=
1

Kp

∑

k≥1

kp
[

2b̄(k − 1)vk−1
t + α

(k + 1)2

K
vk+1
t − k

(

2b̄+ α
k

K

)

vkt

]

=
1

Kp

∑

k≥1

[

2b̄

((

1 +
1

k

)p

− 1

)

+ α
k

K

((

1−
1

k

)p

− 1

)]

kp+1vkt .

Now, for k/K > 4b̄/α, the quantity inside the square brackets in the last expression
can be upper bounded by −2b̄[3− 2(1− 1/k)p− (1 + 1/k)p], which is equivalent to
−2b̄p/k when k → +∞. Therefore, there exists a constant k0 that can be assumed
bigger than 4b̄/α such that, for any k ≥ k0, −2b̄[3−2(1−1/k)p−(1+1/k)p] ≤ −b̄p/k.
Then, using the fact that (1 + x)p − 1 ≤ x(2p − 1) for any x ∈ [0, 1], we can write

d

dt
E((ZKt )p) ≤

Kk0−1
∑

k=1

2b̄(2p − 1)

(

k

K

)p

vkt −
∑

k≥Kk0

b̄p

(

k

K

)p

vkt

≤ 2b̄(2p − 1)kp0 + b̄pkp0 − b̄pE((ZKt )p).

Writing C = (2(2p − 1) + p)kp0/p, this differential inequality solves as

E((ZKt )p) ≤ C + [E((zK0 )p)− C]e−b̄pt,

which gives the required uniform bound. �

Proof of Theorem 2 The proof is essentially intuitive if one computes upper
and lower bounds of the birth and death rates for each processes considered in
the statement of the theorem. We will simply give the explicit construction of
the process νK , and the proof of (14) as an example. We leave the remaining
comparison results to the reader.

We will use the construction of the process νK given by Fournier and Méléard
(2003): let (Ω,F ,P) be a sufficiently large probability space, and consider on this
space the following five independent random objects:

(i) a MK-valued random variable νK0 (the initial distribution),

(ii) a Poisson point measure N1(ds, di, dv) on [0,∞[×N× [0, 1] with intensity mea-
sure q1(ds, di, dv) = b̄ ds

∑

k≥1 δk(di)dv (the birth without mutation Poisson
point measure),

(iii) a Poisson point measure N2(ds, di, dh, dv) on [0,∞[×N × R
l × [0, 1] with in-

tensity measure q2(ds, di, dh, dv) = b̄ds
∑

k≥1 δk(di)m̄(h)dhdv (the birth with
mutation Poisson point measure),

(iv) a Poisson point measure N3(ds, di, dv) on [0,∞[×N× [0, 1] with intensity mea-
sure q3(ds, di, dv) = d̄ ds

∑

k≥1 δk(di)dv (the natural death Poisson point
measure),
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(v) a Poisson point measure N4(ds, di, dj, dv) on [0,∞[×N×N×[0, 1] with intensity
measure q4(ds, di, dj, dv) = (ᾱ/K)ds

∑

k≥1 δk(di)
∑

m≥1 δm(dj)dv (the com-
petition death Poisson point measure).

We will also need the following function, solving the purely notational problem
of associating a number to each individual in the population: for any K ≥ 1, let
H = (H1, . . . , Hk, . . .) be the map from MK into (Rl)N defined by

H

(

1

K

n
∑

i=1

δxi

)

= (xσ(1), . . . , xσ(n), 0, . . . , 0, . . .),

where xσ(1) 2 . . . 2 xσ(n) for the lexicographic order 2 on R
l. For convenience, we

have omitted in our notation the dependence of H and Hi on K.
Then a process νK with generator LK and initial state νK0 can be constructed

as follows: for any t ≥ 0,

νKt = νK0 +

∫ t

0

∫

N

∫ 1

0

1{i≤K〈νK
s−,1〉}

δHi(νK
s−)

K

1{
v≤

[1−uKµ(Hi(νK
s−

))]b(Hi(νK
s−

))

b̄

}N1(ds, di, dv)

+

∫ t

0

∫

N

∫

Rl

∫ 1

0

1{i≤K〈νK
s−,1〉}

δHi(νK
s−)+h

K

1{
v≤

uKµ(Hi(νK
s−

))b(Hi(νK
s−

))

b̄

m(Hi(νK
s−

),h)

m̄(h)

}N2(ds, di, dh, dv)

−

∫ t

0

∫

N

∫ 1

0

1{i≤K〈νK
s−,1〉}

δHi(νK
s−)

K
1{

v≤
d(Hi(νK

s−
))

d̄

}N3(ds, di, dv)

−

∫ t

0

∫

N

∫

N

∫ 1

0

1{i≤K〈νK
s−,1〉}

1{j≤K〈νK
s−,1〉}

δHi(νK
s−)

K

1{
v≤

α(Hi(νK
s−

),Hj (νK
s−

))

ᾱ

}N4(ds, di, dj, dv). (15)

Although this formula is quite complicated, the principle is simple: for each type
of event, the corresponding Poisson point process jumps faster than νK has to.
We decide whether a jump of the process νK occurs by comparing v to a quantity
related to the rates of the various events. The indicator functions involving i and
j ensures that the ith and jth individuals are alive in the population (because
K〈νKt ,1〉 is the number of individuals in the population at time t).

Under (A1), (A2) and the assumption that E(〈νK0 ,1〉) < ∞, Fournier and
Méléard (2003) prove the existence and uniqueness of the solution to (15), and
that this solution is a Markov process with infinitesimal generator (5).

Now, let us come to the proof of (14). The process AK can be written as

AKt :=

∫ t

0

∫

N

∫

Rl

∫ 1

0

1{i≤K〈νK
s−,1〉}

×

× 1{
v≤

uKµ(Hi(νK
s−

))b(Hi(νK
s−

))

b̄

m(Hi(νK
s−

),h)

m̄(h)

}N2(ds, di, dh, dv).

In the case where νK0 = 〈νK0 ,1〉δx, as long as t < τ1, ν
K
t = 〈νKt ,1〉δx. Therefore,
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for t ≤ τ1 ∧ inf{s ≥ 0 : 〈νKs ,1〉 6∈ [a1, a2]},

∫ t

0

∫

N

∫

Rl

∫ 1

0

1{i≤Ka1}1
{

v≤
uKµ(x)b(x)

b̄

m(x,h)
m̄(h)

}N2(ds, di, dh, dv) ≤ AKt

≤

∫ t

0

∫

N

∫

Rl

∫ 1

0

1{i≤Ka2}1
{

v≤
uKµ(x)b(x)

b̄

m(x,h)
m̄(h)

}N2(ds, di, dh, dv). (16)

Since the intensity measure of N2 is

q2(ds, di, dh, dv) = b̄ ds
∑

k≥1

δk(di)m̄(h)dhdv,

the left-hand side and the right-hand side of (16) are Poisson processes with pa-
rameters KuKa1µ(x)b(x) and KuKa2µ(x)b(x), respectively. �

4.2 Problem of exit from a domain

Let us give some results on PK(b, d, α, z) when α > 0. Points (a) and (b) of the
following theorem strengthen Proposition 2, and point (c) studies the problem of
exit from a domain.

Theorem 3
(a) Let α, T > 0 and b, d ≥ 0, let C be a compact subset of R∗

+, and write PKz =

PK(b, d, α, z) for z ∈ N/K. Let φz denote the solution to

φ̇ = (b− d− αφ)φ (17)

with initial condition φz(0) = z. Then

r := inf
z∈C

inf
0≤t≤T

|φz(t)| > 0 and R := sup
z∈C

sup
0≤t≤T

|φz(t)| < +∞.

Moreover, for any δ < r,

lim
K→+∞

sup
z∈C

PKz

(

sup
0≤t≤T

|wt − φz(t)| ≥ δ

)

= 0, (18)

where wt is the canonical process on D(R+,R).

(b) Let T, αij > 0 and bi, di ≥ 0 (i, j ∈ {1, 2}), let C be a compact subset of (R∗
+)

2,
and write QK

z1,z2 = QK(b1, b2, d1, d2, α11, α12, α21, α22, z1, z2) for z1 and z2 in
N/K. Let φz1,z2 = (φ1z1,z2 , φ

2
z1,z2) denote the solution to

{

φ̇1 = (b1 − d1 − α11φ
1 − α12φ

2)φ1

φ̇2 = (b2 − d2 − α21φ
1 − α22φ

2)φ2

with initial conditions φ1z1,z2(0) = z1 and φ2z1,z2(0) = z2. Then

r := inf
z∈C

inf
0≤t≤T

‖φz1,z2(t)‖ > 0 and sup
z∈C

sup
0≤t≤T

‖φz1,z2(t)‖ < +∞. (19)

Moreover, for any δ < r,

lim
K→+∞

sup
z∈C

QK
z1,z2( sup

0≤t≤T
‖ŵt − φz1,z2(t)‖ ≥ δ) = 0,

where ŵt = (ŵ1
t , ŵ

2
t ) is the canonical process on D(R+,R

2).
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(c) Let b, α > 0 and 0 ≤ d < b. Observe that (b− d)/α is the unique stable steady
state of (17). Fix 0 < η1 < (b − d)/α and η2 > 0, and define on D(R+,R)

TK = inf

{

t ≥ 0 : wt 6∈

[

b− d

α
− η1,

b − d

α
+ η2

]}

.

Then, there exists V > 0 such that, for any compact subset C of ](b− d)/α−
η1, (b− d)/α+ η2[,

lim
K→+∞

sup
z∈C

PKz (TK < eKV ) = 0. (20)

Proof of (a) and (b) Observe that any solution to (17) with positive initial
condition is bounded (φ̇ < 0 as soon as φ > (b − d)/α). This implies that R <∞.
Moreover, a solution to (17) can be written as

φ(t) = φ(0) exp

(
∫ t

0

(b − d− αφ(s))ds

)

≥ φ(0) exp((b − d− αR)t),

which implies that r > 0.
Equation (18) is a consequence of large deviations estimates for the sequence of

laws (PKz )K≥1. As can be seen in Theorem 10.2.6 in Chap. 10 of Dupuis and Ellis
(1997), a large deviations principle on [0, T ] with a good rate function IT holds for
Z/K-valued Markov jump processes with transition rates

Kp(i/K) from i/K to (i+ 1)/K,
Kq(i/K) from i/K to (i− 1)/K,

where p and q are functions defined on R and with positive values, bounded, Lips-
chitz and uniformly bounded away from 0. The rate function IT writes

IT (φ) =







∫ T

0

L(φ(t), φ̇(t))dt if φ is absol. cont. on [0, T ]

+∞ otherwise
(21)

for some function L : R2 → R+ such that L(y, z) = 0 if and only if z = p(y)− q(y).
Therefore, IT (φ) = 0 if and only if φ is absolutely continuous and

φ̇ = p(φ)− q(φ). (22)

Moreover, this large deviation is uniform with respect to the initial condition.
This means that, if RK

z denotes the law of this process with initial condition z, for
any compact set C ⊂ R, for any closed set F and any open set G of D([0, T ],R),

lim inf
K→+∞

1

K
log inf

z∈C
RK
z (G) ≥ − sup

z∈C
inf

ψ∈G, ψ(0)=z
IT (ψ) (23)

and lim sup
K→+∞

1

K
log sup

z∈C
RK
z (F ) ≤ − inf

ψ∈F, ψ(0)∈C
IT (ψ). (24)

Our birth and death process does not satisfy these asumptions. However, if we
define

p(z) = bχ(z) and q(z) = dχ(z) + αχ(z)2,

where χ(z) = z if z ∈ [r − δ, R+ δ]; r − δ if z < r − δ; R + δ if z > R+ δ,
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then RK
z = PKz on the time interval [0, τ ], where τ = inf{t ≥ 0, wt 6∈ [r− δ, R+ δ]},

and p and q satisfy the assumptions above. Therefore, by (24),

lim sup
K→+∞

1

K
log sup

z∈C
PKz

(

sup
0≤t≤T

|wt − φz(t)| ≥ δ

)

≤ − inf
ψ∈F δ

IT (ψ), where

F δ :=
{

ψ ∈ D([0, T ],R) : ψ(0) ∈ C and ∃t ∈ [0, T ], |ψ(t)− φψ(0)(t)| ≥ δ
}

By the continuity of the flow of (22) (which is a classical consequence of the fact
that z 7→ p(z)− q(z) is Lipschitz and of Gronwall’s Lemma), the set F δ is closed.
Since IT is a good rate function, the infimum of IT over this set is attained at some
function belonging to F δ, which cannot be a solution to (22), and thus is non-zero.
This ends the proof of (18).

The proof of (b) can be made in a very similar way. �

Proof of (c) Define the function χ on R by χ(z) = z if z ∈ [(b− d)/α− η1, (b−
d)/α+ η2], χ(z) = (b− d)/α− η1 for z < (b− d)/α− η1 and χ(z) = (b− d)/α+ η2
for z > (b− d)/α− η2. As in the proof of (a), we can construct from the functions
p(z) = bχ(z) and q(z) = dχ(z)+αχ(z)2 a family of laws (RK

z ) such that RK
z = PKz

on the time interval [0, TK ], and such that (23) and (24) hold for the good rate
function IT defined in (21).

Observe that any solution to (22) are monotonous and converge to (b − d)/α
when t → +∞. Therefore, the following estimates for the time of exit from an
attracting domain are classical (Freidlin and Wentzell, 1984, Chap. 5, Section 4):
there exists V̄ ≥ 0 such that, for any δ > 0,

lim
K→+∞

inf
z∈C

RK
z

(

eK(V̄−δ) < TK < eK(V̄+δ)
)

= 1,

which implies (20) if we can prove that V̄ > 0.
The constant V̄ is obtained as follows (see Freidlin and Wentzell, 1984, pp.

108–109): for any y, z ∈ R, define

V (y, z) := inf
t>0, ϕ(0)=y, ϕ(t)=z

It(ϕ).

Then

V̄ := V

(

b − d

α
,
b− d

α
− η1

)

∧ V

(

b− d

α
,
b− d

α
+ η2

)

.

Now, Theorem 5.4.3. of Freidlin and Wentzell (1984) states that, for any y, z ∈
R, the infimum defining V (y, z) is attained at some function φ linking y to z, in
the sense that, either there exists an absolutely continuous function φ defined on
[0, T ] for some T > 0 such that φ(0) = y, φ(T ) = z and V (y, z) = IT (φ) =
∫ T

0
L(φ(t), φ̇(t))dt, or there exists an absolutely continuous function φ defined on

]−∞, T ] for some T > −∞ such that limt→−∞ φ(t) = y, φ(T ) = z and V (y, z) =
∫ T

−∞ L(φ(t), φ̇(t))dt.
Since any solution to (22) is decreasing as long as it stays in [(b − d)/α,+∞[,

a function φ defined on [0, T ] or ] − ∞, T ] linking (b − d)/α to (b − d)/α + η2
cannot be a solution to (22), and thus V ((b− d)/α, (b− d)/α+ η2) > 0. Similarly,
V ((b − d)/α, (b − d)/α − η1) > 0, and so V̄ > 0, which concludes the proof of
Theorem 3. �

4.3 Some results on branching processes

When α = 0, PK(b, d, 0, z) is the law of a binary branching process divided by K.
Let us give some results on these processes.
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Theorem 4 Let b, d > 0. As in Theorem 3, define, for any K ≥ 1 and any
z ∈ N/K, PKz = PK(b, d, 0, z). Define also, for any ρ ∈ R, on D(R+,R), the
stopping time

Tρ = inf{t ≥ 0 : wt = ρ}.

Finally, let (tK)K≥1 be a sequence of positive numbers such that logK ≪ tK .

(a) If b < d (sub-critical case), for any ε > 0,

lim
K→+∞

PK1/K(T0 ≤ tK ∧ T⌈εK⌉/K) = 1, (25)

and lim
K→+∞

PK⌊εK⌋/K(T0 ≤ tK) = 1. (26)

Moreover, for any K ≥ 1, k ≥ 1 and n ≥ 1,

PKn/K(Tkn/K ≤ T0) ≤
1

k
. (27)

(b) If b > d (super-critical case), for any ε > 0,

lim
K→+∞

PK1/K(T0 ≤ tK ∧ T⌈εK⌉/K) =
d

b
(28)

and lim
K→+∞

PK1/K(T⌈εK⌉/K ≤ tK) = 1−
d

b
. (29)

Proof Let us denote by Qn the law of the binary branching process with initial
state n ∈ N, with individual birth rate b and individual death rate d. Then (25),
(26), (27), (28) and (29) rewrite respectively

lim
K→+∞

Q1(T0 ≤ tK ∧ T⌈εK⌉) = 1, (30)

lim
K→+∞

Q⌊εK⌋(T0 ≤ tK) = 1, (31)

Qn(Tkn ≤ T0) ≤
1

k
, (32)

lim
K→+∞

Q1(T0 ≤ tK ∧ T⌈εK⌉) =
d

b
(33)

and lim
K→+∞

Q1(T⌈εK⌉ ≤ tK) = 1−
d

b
. (34)

The limit (31) follows easily from the distribution of the extinction time for
binary branching processes when b 6= d (cf. Athreya and Ney, 1972, p. 109): for
any t ≥ 0 and n ∈ N,

Qn(T0 ≤ t) =

(

d
(

1− e−(b−d)t
)

b− de−(b−d)t

)n

. (35)

Since tK → +∞, Q1(T0 ≤ tK ∧ T⌈εK⌉) → Q1(T0 < ∞), which gives (30)
and (33) (the probability of extinction of a binary branching process can be recov-
ered easily from (35) ).

The inequality (32) follows from the fact that, if (Zt, t ≥ 0) is a process with
law Qn, (Zt exp(−(b − d)t), t ≥ 0) is a martingale (cf. Athreya and Ney, 1972, p.
111). Then, Doob’s stopping theorem applied to the stopping time T0 ∧Tkn yields,

En(kne
(d−b)Tkn1{Tkn<T0}) = n,
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whereEn is the expectation with respect toQn. Therefore, when b < d, knQn(Tkn <
T0) ≤ n, and the proof of (32) is completed.

The limit (34) follows from the fact that, if (Zt, t ≥ 0) is a branching process
with law Q1, the martingale (Zt exp(−(b−d)t), t ≥ 0) converges a.s. when t→ +∞
to a random variable W , where W = 0 on the event {T0 < ∞} and W > 0 on
the event {T0 = ∞} (cf. Athreya and Ney, 1972, p. 112). Hence, on the event
{T0 = ∞}, when b > d,

(logZt)/t→ b− d > 0.

Therefore, since logK ≪ tK , for any ε > 0, Q1(T0 = ∞, T⌈εK⌉ ≥ tK) → 0 when
K → +∞. Then, (34) follows from the fact that Q1(T0 = ∞) = 1− d/b. �

5 Proof of Theorem 1

Let us assume, without loss of generality, that νK is constructed by (15) on a
sufficiently large probability space (Ω,F ,P).

We introduce the following sequences of stopping times: for all n ≥ 1, let τn be
the first mutation time after time τn−1, with τ0 = 0 (i.e. τn is the nth mutation
time), and for any n ≥ 0, let θn be the first time after τn when the population
gets monomorphic. Observe that θ0 = 0 if the initial population is monomorphic.
For any n ≥ 1, define the random variable Un as the new trait value appearing at
the mutation time τn, and, when θn < ∞, define Vn by Supp(νKθn) = {Vn}. When
θn = +∞, define Vn = +∞.

Our proof of Theorem 1 is based on the following two lemmas. The first lemma
proves that there is no accumulation of mutations on the time scale of Theorem 1,
and studies the asymptotic behavior of τ1 starting from a monomorphic population,
when K → +∞.

Lemma 2
(a) Assume that the initial condition of νK satisfies supK E(〈νK0 ,1〉) < +∞. Then,

for any η > 0, there exists ε > 0 such that, for any t > 0,

lim sup
K→+∞

PKνK
0

(

∃n ≥ 0 :
t

KuK
≤ τn ≤

t+ ε

KuK

)

< η. (36)

Let x ∈ X and let (zK)K≥1 be a sequence of integers such that zK/K → z > 0.

(b) For any ε > 0,

lim
K→+∞

PKzK
K δx

(

τ1 > logK, sup
t∈[logK,τ1]

|〈νKt ,1〉 − n̄x| > ε

)

= 0. (37)

Since logK ≪ 1/KuK, by (a) with t = 0,

lim
K→+∞

PKzK
K δx

(τ1 < logK) = 0.

In particular, under PKzK
K δx

, νKlogK
P
→ n̄xδx and νKτ1−

P
→ n̄xδx.

If, moreover, z = n̄x, then, for any ε > 0,

lim
K→+∞

PKzK
K δx

(

sup
t∈[0,τ1]

|〈νKt ,1〉 − n̄x| > ε

)

= 0. (38)
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(c) For any t > 0,

lim
K→+∞

PKzK
K δx

(

τ1 >
t

KuK

)

= exp(−β(x)t),

where β(·) has been defined in (2).

The second lemma studies the asymptotic behavior of θ0 and V0 starting from a
dimorphic population, when K → +∞.

Lemma 3 Fix x, y ∈ X satisfying (6) or (7), and let (zK)K≥1 be a sequence of
integers such that zK/K → n̄x. Then,

lim
K→+∞

PKzK
K δx+

1
K δy

(V0 = y) =
[f(y, x)]+
b(y)

, (39)

lim
K→+∞

PKzK
K δx+

1
K δy

(V0 = x) = 1−
[f(y, x)]+
b(y)

, (40)

∀η > 0, lim
K→+∞

PKzK
K δx+

1
K δy

(

θ0 >
η

KuK
∧ τ1

)

= 0 (41)

and ∀ε > 0, lim
K→+∞

PKzK
K δx+

1
K δy

(

|〈νKθ0 ,1〉 − n̄V0 | < ε
)

= 1, (42)

where f(y, x) has been defined in (3).

Observe that (41) implies in particular that

lim
K→+∞

PKzK
K δx+

1
K δy

(θ0 < τ1) = 1.

The proofs of these lemmas are postponed at the end of this section.

Proof of Theorem 1 Observe that the generator A, defined in (8), of the TSS
process (Xt, t ≥ 0) of Theorem 1 can be written as

Aϕ(x) =

∫

Rl

(ϕ(x + h)− ϕ(x))β(x)κ(x, dh), (43)

where the probability measure κ(x, dh) is defined by

κ(x, dh) =

(

1−

∫

Rl

[f(x+ v, x)]+
b(x+ v)

m(x, v)dv

)

δ0(dh)

+
[f(x+ h, x)]+
b(x+ h)

m(x, h)dh. (44)

This means that the TSS model X with initial state x can be constructed as
follows: let (Z(k), k = 0, 1, 2, . . .) be a Markov chain in X with initial state x and
with transition kernel κ(x, dh), and let (N(t), t ≥ 0) be an independent standard
Poisson process. Then, the process (Xt, t ≥ 0) defined by

Xt := Z

(

N

(
∫ t

0

β(Xs)ds

))

is a Markov process with infinitesimal generator (43) (cf. Ethier and Kurtz, 1986,
Chap. 6). Let Px denote its law, let (Tn)n≥1 denote the sequence of jump times of

the Poisson processN and define (Sn)n≥1 by Tn =
∫ Sn

0 β(Xs)ds. By (A1) and (A3),
β(·) > 0, and so Sn is finite for any n ≥ 1. Observe that any jump of the process
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X occurs at some time Sn, but that all Sn may not be effective jump times for X ,
because of the Dirac mass at 0 appearing in (44).

Fix t > 0, x ∈ X and a measurable subset Γ of X . Under Px, S1 and XS1

are independent, S1 is an exponential random variable with parameter β(x), and
XS1 − x has law κ(x, ·). Therefore, for any n ≥ 1, the strong Markov property
applied to X at time S1 yields

Px(Sn ≤ t < Sn+1, Xt ∈ Γ)

=

∫ t

0

β(x)e−β(x)s
∫

Rl

Px+h(Sn−1 ≤ t− s < Sn, Xt−s ∈ Γ)κ(x, dh)ds. (45)

Moreover,
Px(0 ≤ t < S1, Xt ∈ Γ) = 1{x∈Γ}e

−β(x)t. (46)

The idea of our proof of Theorem 1 is to show that the same relations hold
when we replace Sn by τn and Xt by the support of νKt/KuK

(when it is a singleton)
and when K → +∞.

More precisely, fix x ∈ X , t > 0 and a measurable subset Γ of X , and observe
that
{

∃y ∈ Γ : Supp(νKt/KuK
) = {y}, |〈νKt/KuK

,1〉 − n̄y| < ε
}

=
⋃

n≥0

AKn (t,Γ, ε), (47)

where

AKn (t,Γ, ε) :=

{

θn ≤
t

KuK
< τn+1, Vn ∈ Γ, |〈νKt/KuK

,1〉 − n̄Vn | < ε

}

.

Let us define, for any z ∈ N and n ≥ 0,

pKn (t, x,Γ, ε, z) := PKz
K δx

(

θn ≤
t

KuK
< τn+1, Vn ∈ Γ,

sup
s∈[θn,τn+1]

|〈νKs ,1〉 − n̄Vn | < ε

)

and

qK0 (t, x,Γ, ε, z) := PKz
K δx

(

t

KuK
< τ1, V0 ∈ Γ, sup

s∈[logK,τ1]

|〈νKs ,1〉 − n̄V0 | < ε

)

= 1{x∈Γ}P
K
z
K δx

(

t

KuK
< τ1, sup

s∈[logK,τ1]

|〈νKs ,1〉 − n̄x| < ε

)

.

Let us also extend these definitions to ε = ∞ by suppressing the condition involving
the supremum of |〈νK ,1〉 − n̄Vn |.

Then

Lemma 4
(a) For any x ∈ X , n ≥ 1, t > 0, ε ∈]0,∞] and for any sequence of integers (zK)

such that zK/K → z > 0, pn(t, x,Γ) := limK→+∞ pKn (t, x,Γ, ε, zK) exists,
and is independent of (zK), z and ε.

Similarly, p0(t, x,Γ) := limK→+∞ qK0 (t, x,Γ, ε, zK) exists, and is independent
of (zK), z and ε, and, if z = n̄x, limK→+∞ pK0 (t, x,Γ, ε, zK) exists and is also
equal to p0(t, x,Γ).

Finally, if we assume that (zK) is a sequence of N-valued random variables
such that zK/K converge in probability to a deterministic z > 0, then the
limits above hold in probability (with the same restriction that z has to be
equal to n̄x for pK0 ).
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(b) The functions pn(t, x,Γ) are continuous with respect to t and measurable with
respect to x, and satisfy

p0(t, x,Γ) = 1{x∈Γ}e
−β(x)t and ∀n ≥ 0,

pn+1(t, x,Γ) =

∫ t

0

β(x)e−β(x)s
∫

Rl

pn(t− s, x+ h,Γ)κ(x, dh)ds. (48)

Let us postpone the proof of this lemma after the proof of Theorem 1.
Observe that, because of (45) and (46), Lemma 4 (b) implies that Px(Sn ≤ t <

Sn+1, Xt ∈ Γ) = pn(t, x,Γ).
Now, let P̃Kν denote the law of the process νK with random initial state ν. Since

νK is Markov, P̃KγK/Kδx = E[PKγK(ω)/Kδx
]. By (47),

P̃KγK
K δx

(

∃y ∈ Γ : Supp(νKt/KuK
) = {y},

|〈νKt/KuK
,1〉 − n̄y| < ε

)

=
∑

n≥0

P̃KγK
K δx

(AKn (t,Γ, ε)),

where (γK) is the sequence of N-valued random variables of Theorem 1.
For any K ≥ 1 and n ≥ 1,

pKn (t, x,Γ, ε, γK) ≤ PKγK
K δx

(AKn (t,Γ, ε)) ≤ pKn (t, x,Γ,∞, γK),

and qK0 (t, x,Γ, ε, γK) ≤ PKγK
K δx

(AKn (t,Γ, ε)) ≤ pKn (t, x,Γ,∞, γK),

so, by Lemma 4 (a), for any n ≥ 0, PK(γK/K)δx
(AKn (t,Γ, ε))

P
→ pn(t, x,Γ), and

therefore,
lim

K→+∞
P̃K(γK/K)δx

(AKn (t,Γ, ε)) = pn(t, x,Γ). (49)

Now, by (47), for any K ≥ 1,

+∞
∑

n=0

[

P̃KγK
K δx

(AKn (t,Γ, ε)) + P̃KγK
K δx

(AKn (t,Γc, ε))
]

≤ 1, (50)

where Γc denotes the complement of Γ. Moreover,
∑+∞

n=0[pn(t, x,Γ)+pn(t, x,Γ
c)] =

1. Therefore, for any η > 0, there exists n0 such that

n0
∑

n=0

[pn(t, x,Γ) + pn(t, x,Γ
c)] ≥ 1− η.

Then, one can easily deduce from (49) and (50) that

lim sup
K→+∞

∑

n≥n0

[

P̃KγK
K δx

(AKn (t,Γ, ε)) + P̃KγK
K δx

(AKn (t,Γc, ε))
]

≤ η,

from which follows, by (47), that

lim
K→+∞

P̃KγK
K δx

(

∃y ∈ Γ : Supp(νKt/KuK
) = {y}, y ∈ Γ, |〈νKt/KuK

,1〉 − n̄y| < ε
)

=
∑

n≥0

pn(t, x,Γ) = Px(Xt ∈ Γ),

which is (10) in the case of a single time t.
In order to complete the proof of Theorem 1, we have to generalize this limit

to any sequence of times 0 < t1 < . . . < tn.
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We will specify the method only in the case of two times 0 < t1 < t2. It
can be easily generalized to a sequence of n times. We introduce for any integers
0 ≤ n1 ≤ n2 the probabilities

pKn1,n2
(t1, t2, x,Γ1,Γ2, ε, z)

:= PKz
K δx

(

θn1 ≤
t1

KuK
< τn1+1, Vn1 ∈ Γ1, sup

s∈[θn1 ,τn1+1]

|〈νKs ,1〉 − n̄Vn1
| < ε,

θn2 ≤
t2

KuK
< τn2+1, Vn2 ∈ Γ2 and sup

s∈[θn2 ,τn2+1]

|〈νKs ,1〉 − n̄Vn2
| < ε

)

,

and

qK0,n2
(t1, t2, x,Γ1,Γ2, ε, z)

:= 1{x∈Γ1}P
K
z
K δx

(

t1
KuK

< τ1, sup
s∈[logK,τ1]

|〈νKs ,1〉 − n̄x| < ε,

θn2 ≤
t2

KuK
< τn2+1, Vn2 ∈ Γ2 and sup

s∈[θn2 ,τn2+1]

|〈νKs ,1〉 − n̄Vn2
| < ε

)

.

Then, we can use a calculation very similar to the proof of Lemma 4 to prove
that, asK → +∞, pKn1,n2

(t1, t2, x,Γ1,Γ2, ε, zK) converges to a limit pn1,n2(t1, t2, x,Γ1,Γ2)
independent of ε ∈]0,∞], zK and the limit z > 0 of zK/K (with the restriction
that z has to be equal to n̄x if n1 = 0), and that lim qK0,n2

(t1, t2, x,Γ1,Γ2, ε, z) =
p0,n2(t1, t2, x,Γ1,Γ2), where























p0,n2(t1, t2, x,Γ1,Γ2) = 1{x∈Γ1}e
−β(x)t1pn2(t2 − t1, x,Γ2);

pn1+1,n2+1(t1, t2, x,Γ1,Γ2)

=

∫ t1

0

β(x)e−β(x)s
∫

Rl

pn1,n2(t1 − s, t2 − s, x+ h,Γ1,Γ2)κ(x, dh)ds.

As above, we obtain equation (10) for n = 2 by observing that the same relation
holds for the TSS process X .

This completes the proof of Theorem 1. �

Proof of Lemma 4 First, let us prove that the convergence of pKn (t, x,Γ, ε, zK)
when zK ∈ N in Lemma 4 (a) implies the convergence in probability of these
quantities when zK are random variables: if (zK) is a sequence of random variables

such that zK/K
P
→ z, by Skorohod’s Theorem, we can construct on an auxiliary

probability space Ω̂ a sequence of random variables (ẑK) such that L(ẑK) = L(zK)
and ẑK(ω̂)/K → z for any ω̂ ∈ Ω̂. Then, lim pKn (t, x,Γ, ε, ẑK(ω̂)) = pn(t, x,Γ) for

any ω̂ ∈ Ω̂, which implies that pKn (t, x,Γ, ε, zK)
P
→ pn(t, x,Γ). The same method

applies to qK0 (t, x,Γ, ε, zk).
We will prove Lemma 4 (a) and (b) by induction over n ≥ 0.
First, when t > 0, it follows from the fact that t/KuK > logK for sufficiently

large K, and from Lemma 2 (b) and (c), that

lim
K→+∞

qK0 (t, x,Γ, ε, zK) = 1{x∈Γ}e
−β(x)t,

and that, if z = n̄x,

lim
K→+∞

pK0 (t, x,Γ, ε, zK) = 1{x∈Γ}e
−β(x)t.
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Then, fix n ≥ 0 and assume that Lemma 4 (a) holds for n. We intend to prove
the convergence of pKn+1(t, x,Γ, ε, zK) to pn+1(t, x,Γ) satisfying (48) by applying
the strong Markov property at time τ1, in a similar way as when we obtained (45).
However, the convergence of pKn (t, x,Γ, ε, zK) to pn(t, x,Γ) only holds for non-
random t. Therefore, we will divide the time interval [0, t] in a finite number of
small intervals and use the Markov property at time τ1 when τ1 is in each of these
intervals. Moreover, we will also use the Markov property at time θ1 and we will
use the fact that U1 is independent of τ1 and νKτ1− and that U1 − x is a random
variable with law m(x, h)dh.

Following this program, we can bound pKn+1(t, x,Γ, ε, zK) from above as follows:
fix η > 0; using Lemma 2 (a) in the first inequality, for sufficiently large k ≥ 0 and
K ≥ 1,

pKn+1(t, x,Γ, ε, zK) ≤ PKzK
K δx

(

θn+1 ≤
t

KuK
, τn+2 >

t+ 2/2k

KuK
, Vn+1 ∈ Γ

)

+ η

≤

⌈t2k⌉−1
∑

i=0

PKzK
K δx

(

i

2kKuK
≤ τ1 ≤

i+ 1

2kKuK
, θn+1 ≤

t

KuK
,

τn+2 >
t+ 2/2k

KuK
and Vn+1 ∈ Γ

)

+ η

≤

⌈t2k⌉−1
∑

i=0

EKzK
K δx

[

1{
i

2kKuK
≤τ1≤

i+1

2kKuK

}PKνK
τ1−+ 1

K δU1

(

θn ≤
t− i/2k

KuK
,

τn+1 >
t− (i− 1)/2k

KuK
and Vn ∈ Γ

)]

+ η

≤

⌈t2k⌉−1
∑

i=0

EKzK
K δx

[

1{
i

2kKuK
≤τ1≤

i+1

2kKuK

}

∫

Rl

EKνK
τ1−+ 1

K δx+h

(

1{
θ0≥

1

2kKuK
∧τ1

}

+ 1{
θ0<

1

2kKuK
∧τ1

}PKνK
θ0

(

θn ≤
t− i/2k

KuK
< τn+1, Vn ∈ Γ

))

m(x, h)dh

]

+ η.

≤

⌈t2k⌉−1
∑

i=0

EKzK
K δx

[

1{
i

2kKuK
≤τ1≤

i+1

2kKuK

}

∫

Rl

EKνK
τ1−+ 1

K δx+h

(

1{
θ0≥

1

2kKuK
∧τ1

}

+ 1{
θ0<

1

2kKuK
∧τ1

}pKn (t− i/2k, V0,Γ,∞,K〈νKθ0 ,1〉)

)

m(x, h)dh

]

+ η. (51)

Now, since νKτ1− = 〈νKτ1−,1〉δx, under P
K
νK
τ1−+ 1

K δx+h
, on the event {θ0 < τ1},

pKn (t− i/2k, V0,Γ,∞,K〈νKθ0 ,1〉) = 1{V0=x}p
K
n (t− i/2k, x,Γ,∞,K〈νKθ0 ,1〉)

+ 1{V0=x+h}p
K
n (t− i/2k, x+ h,Γ,∞,K〈νKθ0 ,1〉). (52)

By Lemma 2 (b), νKτ1−
P
→ n̄xδx under P zK

K δx
, so we can use Skorohod’s Theorem

to construct random variables N̂K on an auxiliary probability space Ω̂ with the same
law that 〈νKτ1−,1〉 and converging to n̄x for any ω̂ ∈ Ω̂.

Fix ω̂ ∈ Ω̂. Under PK
N̂K(ω̂)δx+

1
K δx+h

, define

ZK1 = 〈νKθ0 ,1〉1{V0=x, θ0<τ1} +
⌈Kn̄x⌉

K
1{V0 6=x}∪{θ0≥τ1}.

It follows from Lemma 3 (41) and (42), and from assumption (B) that, for Lebesgue
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almost every h, ZK1
P
→ n̄x, so, by the induction assumption, underPK

N̂K(ω̂)δx+
1
K δx+h

,

pKn (t− i/2k, x,Γ,∞,KZK1 )
P
→ pn(t− i/2k, x,Γ).

Now, given two sequences of uniformly bounded random variables (XK)K≥1

and (YK)K≥1 such that XK and YK are defined on the same probability space for
any K ≥ 1, and such that, when K → +∞, XK converges in probability to a
constant C and limK E(YK) exists, it is standard to prove that

lim
K→+∞

E(XKYK) = C lim
K→+∞

E(YK). (53)

Applying this with XK = pKn (t− i/2k, x,Γ,∞,KZK1 ) and YK = 1{V0=x, θ0<τ1},
by Lemma 3 (40) and (41) and assumption (B), for Lebesgue almost any h, and
for any ω̂ ∈ Ω̂,

lim
K→+∞

EK
N̂K(ω̂)δx+

1
K δx+h

(

1{V0=x, θ0<τ1}p
K
n (t− i/2k, x,Γ,∞,K〈νKθ0 ,1〉)

)

=

(

1−
[f(x+ h, x)]+
b(x+ h)

)

pn(t− i/2k, x,Γ).

Finally, we obtain that, for Lebesgue almost any h, under PKzK
K δx

,

EKνK
τ1−+ 1

K δx+h

(

1{V0=x, θ0<τ1}p
K
n (t− i/2k, x,Γ,∞,K〈νKθ0 ,1〉)

)

P
→

(

1−
[f(x+ h, x)]+
b(x+ h)

)

pn(t− i/2k, x,Γ). (54)

Similarly, we can use Lemma 3 (39) and the random variable

ZK2 = 〈νKθ0 ,1〉1{V0=x+h, θ0<τ1} + n̄x+h1{V0 6=x+h}∪{θ0≥τ1}

to prove that, for Lebesgue almost any h, under PKzK
K δx

,

EKνK
τ1−+ 1

K δx+h

(

1{V0=x+h, θ0<τ1}p
K
n (t− i/2k, x+ h,Γ,∞,K〈νKθ0 ,1〉)

)

P
→

[f(x+ h, x)]+
b(x+ h)

pn(t− i/2k, x+ h,Γ). (55)

Moreover, by Lemma 3 (41), for Lebesgue almost any h, under PK(zK/K)δx
,

PKνK
τ1−+ 1

K δx+h

(

θ0 ≥
1

2kKuK
∧ τ1

)

P
→ 0. (56)

Collecting these results together, applying (53) again, it follows from Lem-
ma 2 (c) and (52) that, for Lebesgue almost any h,

lim
K→+∞

EKzK
K δx

[

1{
i

2kKuK
≤τ1≤

i+1

2kKuK

}EKνK
τ1−+ 1

K δx+h

(

1{
θ0≥

1

2kKuK
∧τ1

}

+ 1{
θ0<

1

2kKuK
∧τ1

}pKn (t− i/2k, V0,Γ,∞,K〈νKθ0 ,1〉)

)]

=
(

e−β(x)
i

2k − e−β(x)
i+1

2k

)

[

[f(x+ h, x)]+
b(x+ h)

pn(t− i/2k, x+ h,Γ)

+

(

1−
[f(x+ h, x)]+
b(x+ h)

)

pn(t− i/2k, x,Γ)

]

.
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Finally, taking the integral of both sides with respect to m(x, h)dh, the domi-
nated convergence theorem and (51) yield

lim sup
K→+∞

pKn+1(x, t,Γ, ε, zK)

≤

⌈t2k⌉−1
∑

i=0

(

e−β(x)
i

2k − e−β(x)
i+1

2k

)

∫

Rl

pn(t− i/2k, x+ h,Γ)κ(x, dh) + η.

Taking the limit k → +∞ first and then η → 0, it follows from the fact that

e−β(x)i/2
k

− e−β(x)(i+1)/2k = e−β(x)i/2
k

(β(x)/2k +O(1/22k))

and from the convergence of Riemann sums that

lim sup
K→+∞

pKn+1(x, t,Γ, ε, zK) ≤

∫ t

0

β(x)e−β(x)s
∫

Rl

pn(t− s, x+ h,Γ)κ(x, dh)ds.

Using the same method as for (51), we can give a lower bound for pKn as follows:
for any η > 0, for sufficiently large k ≥ 0 and K ≥ 1,

pKn+1(t, x,Γ, ε, zK) ≥ PKzK
K δx

(

θn+1 ≤
t

KuK
, τn+2 >

t− 2/2k

KuK
, Vn+1 ∈ Γ

and sup
s∈[θn+1,τn+2]

|〈νKs ,1〉 − n̄Vn+1 | < ε

)

− η

≥

⌊t2k⌋−3
∑

i=0

EKzK
K δx

[

1{
i

2kKuK
≤τ1≤

i+1

2kKuK

}PKνK
τ1−+ 1

K δU1

(

θn ≤
t− (i+ 1)/2k

KuK
,

τn+1 >
t− (i + 2)/2k

KuK
, Vn ∈ Γ and sup

s∈[θn,τn+1]

|〈νKs ,1〉 − n̄Vn | < ε

)]

− η

≥

⌊t2k⌋−3
∑

i=0

EKzK
K δx

[

1{
i

2kKuK
≤τ1≤

i+1

2kKuK

}

∫

Rl

EKνK
τ1−+ 1

K δx+h

(

1{
θ0<

1

2kKuK
∧τ1

}

pKn (t− (i + 2)/2k, V0,Γ, ε,K〈νKθ0 ,1〉)

)

m(x, h)dh

]

− η.

Then, as above, letting K → +∞, then k → +∞ and finally η → 0, we obtain

lim inf
K→+∞

pKn+1(x, t,Γ, ε, zK) ≥

∫ t

0

β(x)e−β(x)s
∫

Rl

pn(t− s, x+ h,Γ)κ(x, dh)ds,

which completes the proof of Lemma 4 by induction. �

Proof of Lemma 2 (a) Fix η > 0. By Theorem 2 (a) and (c), for any K ≥ 1,

〈νK ,1〉 � ZK ,

where L(ZK) = PK(2b̄, 0, α, 〈νK0 ,1〉+ 1).

Since supK E(〈νK0 ,1〉) < +∞, we can choose M < +∞ such that

sup
K≥1

P(〈νK0 ,1〉+ 1 > M) < η/3.
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Then, apply Theorem 3 (c) to PK(2b̄, 0, α, 〈νK0 ,1〉+1) with C = [1,M ], η2 =M
and η1 such that 0 < 2b̄/α− η1 < 1/2: there exists V > 0 such that

lim sup
K→+∞

P(TK < eKV ) < η/3, (57)

where TK = inf{t ≥ 0, ZKt 6∈ [1/2,M + 2b̄/α]}.

Fix t, ε > 0. Since, for s ≤ TK , 〈νKs ,1〉 ≤M +2b̄/α, if we apply Theorem 2 (b)
to the process (νKs+(t/KuK) − νKt/KuK

, s ≥ 0), we obtain, for s ≤ TK − t/KuK,

AKs+(t/KuK) −AKt/KuK
� BKs ,

where AKs is the number of mutations occuring between 0 and s, and where BK

is a Poisson process with parameter KuK b̄(M + 2b̄/α). Therefore, combining (57)
with the fact that 1/KuK ≪ eKV , we obtain that, for sufficiently large K

P(AK(t+ε)/KuK
−AKt/KuK

≥ 1) ≤ P(BKε/KuK
≥ 1) + 2η/3

= 1− exp(−b̄(M + 2b̄/α)ε) + 2η/3,

which can be made smaller than η if ε is sufficiently small. This ends the proof
of (36). �

Proof of Lemma 2 (b) Fix ε > 0. It follows from the construction (15) of νK

that, for t < τ1, under P
K
zK
K δx

,

νKt = ZKt δx,

where L(ZK) = PK((1− uKµ(x))b(x), d(x), α(x, x), zK/K).

Therefore, by Theorem 2 (c), for K such that uK < ε and for t ≤ τ1,

ZK,1t � 〈νKt ,1〉 � ZK,2t , (58)

where L(ZK,1) = PK((1 − ε)b(x), d(x), α(x, x), zK/K)

and L(ZK,2) = PK(b(x), d(x), α(x, x), zK/K).

Now, let φ1y, resp. φ
2
y, be the solution to

φ̇ = ((1 − ε)b(x)− d(x)− α(x, x)φ)φ,

resp. φ̇ = (b(x) − d(x)− α(x, x)φ)φ,

with initial state y, and observe that, for any y > 0, when t→ +∞, φ1y(t) → e1 :=
n̄x − εb(x)/α(x, x) and φ2y(t) → e2 := n̄x.

Define, for any y > 0, ti,yε the first time such that ∀s ≥ ti,yε , φiy(s) ∈ [ei−ε, ei+ε]
(i = 1, 2). Because of the continuity of the flows of these ODEs,

tiε := sup
y∈[z/2,2z]

ti,yε < +∞.

Let us apply Theorem 3 (a) to ZK,1 and ZK,2 on [0, tε], where tε = t1ε∨t
2
ε: since

zK/K → z, for sufficiently small δ > 0, and for i = 1, 2,

lim
K→+∞

P

(

sup
0≤t≤tε

|ZK,it − φizK/K(t)| > δ

)

= 0.
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If we choose δ < ε, we obtain, for i = 1, 2,

lim
K→+∞

P(|ZK,itε − ei| < 2ε) = 1,

and so, for i = 1, 2,

lim
K→+∞

P(|ZK,itε − n̄x| < Mε) = 1, (59)

where M = 2 + b(x)/α(x, x).
Now, assuming ε sufficiently small for (M +1)ε < n̄x, define the stopping times

TK,iε = inf{t ≥ tε : |Z
K,i
t − n̄x| > (M + 1)ε}

for i = 1, 2, and TKε = TK,1ε ∧ TK,2ε .
For any z ∈ N/K, define also

PK,1z := PK((1 − ε)b(x), d(x), α(x, x), z).

Then, applying Theorem 3 (c) to PK,1z with C = [n̄x −Mε, n̄x +Mε], there exists
V1 > 0 such that

lim
K→+∞

inf
z∈C

PK,1z (T̂ε > eKV1) = 1, (60)

where T̂ε = inf{t ≥ 0 : |wt − n̄x| > (M + 1)ε}.

Therefore, applying the Markov property at time tε, it follows from (59) that

lim
K→+∞

P(TK,1ε > eKV1 + tε) = 1.

Similarly, there exists V2 > 0 such that

lim
K→+∞

P(TK,2ε > eKV2 + tε) = 1,

and thus
lim

K→+∞
P(TKε > eKV ) = 1, (61)

where V := V1 ∧ V2.
Now, because of (58),

∀t ∈ [tε, T
K
ε ∧ τ1], |〈νKs ,1〉 − n̄x| < (M + 1)ε. (62)

Therefore, since logK > tε for sufficiently large K, in order to complete the proof
of (37), it suffices to show that

lim
K→+∞

P(τ1 < TKε ) = 1. (63)

If we denote by AKt the number of mutations occuring between tε and t + tε,
by Theorem 2 (b), for t such that tε + t ≤ TKε ∧ τ1,

BK � AK ,

where BK is a Poisson process with parameter KuK(n̄x − (M + 1)ε)µ(x)b(x).
Therefore, if we denote by SK the first time when BKt = 1, on the event

{tε + SK < TKε },
τ1 ≤ tε + SK .
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Since exp(−KV ) ≪ KuK , limK P(tε + SK < eKV ) = 1, and hence, by (61),

lim
K→+∞

P(tε + SK < TKε ) = 1,

which implies (63).
In the case where zK/K → n̄x, using (60) as above, we obtain easily

lim
K→+∞

P(SKε > eKV ) = 1,

where SKε = inf{t ≥ 0 : |ZK,it − n̄x| > (M + 1)ε, i = 1, 2}.

Then, the proof of (38) can be completed using the same method as the one we
used above. �

Proof of Lemma 2 (c) Fix t > 0 and ε > 0. Take K large enough for logK <
t/KuK. The Markov property at time logK for νK yields

PKzK
K δx

(

τ1 >
t

KuK
, sup
t∈[logK,τ1]

|〈νKt ,1〉 − n̄x| < ε

)

= EKzK
K δx

[

1{τ1>logK}P
K
νK
log K

(

τ1 >
t

KuK
− logK,

sup
t∈[0,τ1]

|〈νKt ,1〉 − n̄x| < ε

)]

. (64)

For any initial condition νK0 = 〈νK0 ,1〉δx of νK , by Theorem 2 (b), the num-
ber AKt of mutations of νK between 0 and t satisfies, for any t ≤ τ1 such that
sups∈[0,t] |〈ν

K
s ,1〉 − n̄x| < ε,

BKt � AKt � CKt ,

where BKt and CKt are Poisson processes with respective parameters KuK(n̄x −
ε)µ(x)b(x) and KuK(n̄x + ε)µ(x)b(x).

Therefore, on the event {sups∈[0,τ1] |〈ν
K
s ,1〉 − n̄x| < ε}, SK ≤ τ1 ≤ TK , where

TK is the first time when BKt = 1, and SK the first time when CKt = 1.

Now, by Lemma 2 (b), under PK(zK/K)δx
, νKlogK

P
→ n̄xδx, so, by Skorohod’s

Theorem, we can construct N̂K with the same law as 〈νKlogK ,1〉 on an auxiliary

probability space Ω̂ such that N̂K(ω̂) → n̄x for any ω̂ ∈ Ω̂. Fix ω̂ ∈ Ω̂. Then, by
Lemma 2 (b),

lim
K→+∞

PK
N̂(ω̂)δx

(

sup
t∈[0,τ1]

|〈νKt ,1〉 − n̄x| < ε

)

= 1,

and so,

lim sup
K→+∞

PK
N̂(ω̂)δx

(

τ1 >
t

KuK
− logK, sup

t∈[0,τ1]

|〈νKt ,1〉 − n̄x| < ε

)

≤ lim sup
K→+∞

PK
N̂(ω̂)δx

(

TK >
t

KuK
− logK

)

= exp(−t(n̄x − ε)µ(x)b(x)).

Therefore, under PK(zK/K)δx
,

lim sup
K→+∞

PKνK
log K

(

τ1 >
t

KuK
− logK, sup

t∈[0,τ1]

|〈νKt ,1〉 − n̄x| < ε

)

≤ exp(−t(n̄x − ε)µ(x)b(x))

28



in probability (where lim supXn ≤ a in probability means that, for any η > 0,
P(Xn > a+ η) → 0).

Similarly, under PK(zK/K)δx
,

lim inf
K→+∞

PKνK
log K

(

τ1 >
t

KuK
− logK, sup

t∈[0,τ1]

|〈νKt ,1〉 − n̄x| < ε

)

≥ exp(−t(n̄x + ε)µ(x)b(x))

in probability.
Now, by Lemma 2 (a) and (b),

lim
K→+∞

PKzK
K δx

(τ1 > logK) = 1

and lim
K→+∞

PKzK
K δx

(

sup
t∈[logK,τ1]

|〈νKt ,1〉 − n̄x| < ε

)

= 1.

So, using property (53), it follows from (64) that

lim sup
K→+∞

PKzK
K δx

(

τ1 >
t

KuK

)

≤ exp(−t(n̄x − ε)µ(x)b(x))

and lim inf
K→+∞

PKzK
K δx

(

τ1 >
t

KuK

)

≥ exp(−t(n̄x + ε)µ(x)b(x)).

Since this holds for any ε > 0, we have completed the proof of Lemma 2 (c). �

Proof of Lemma 3 The proof of this lemma follows the three steps of the
invasion of a mutant described in Section 3 (cf. Fig. 1).

Fix η > 0, ε0 > 0 and 0 < ε < ε0. By Lemma 2 (a), there exists a constant
ρ > 0 that we can assume smaller than η, such that, for sufficiently large K,

PKzK
K δx+

1
K δy

(

τ1 <
ρ

KuK

)

< ε. (65)

Observe that, under PKzK
K δx+

1
K δy

, for t ≤ τ1,

L((〈νK ,1{x}〉, 〈ν
K ,1{y}〉)) = QK((1− uKµ(x))b(x), (1 − uKµ(y))b(y),

d(x), d(y), α(x, x), α(x, y), α(y, x), α(y, y), zK/K, 1/K).

Fix K large enough for uK < ε. Define

SKε := inf{s ≥ 0 : 〈νKs ,1{y}〉 ≥ ε}

By Theorem 2 (c) and (d), for t < τ1 ∧ S
K
ε ,

ZK,1t � 〈νKt ,1{x}〉 � ZK,2t , (66)

where L(ZK,1) = PK((1 − ε)b(x), d(x) + εα(x, y), α(x, x), zK/K)

and L(ZK,2) = PK(b(x), d(x), α(x, x), zK/K).

Using the method that led us to (61), we can deduce from Theorem 3 (c) that
there exists V > 0 such that

lim
K→+∞

P(RKε > eKV ) = 1, (67)

where RKε = inf{t ≥ 0 : |ZK,it − n̄x| > Mε, i = 1, 2},
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with M = 3 + (b(x) + α(x, y))/α(x, x).
Now, observe that, by (66),

∀t ≤ τ1 ∧ S
K
ε ∧RKε , 〈νKt ,1{x}〉 ∈ [n̄x −Mε, n̄x +Mε].

Therefore, by Theorem 2 (c) and (e), for t ≤ τ1 ∧ S
K
ε ∧RKε

ZK,3t � 〈νKt ,1{y}〉 � ZK,4t , where (68)

L(ZK,3) = PK((1 − ε)b(y), d(y) + (n̄x +Mε)α(y, x) + εα(y, y), 0, 1/K)

and L(ZK,4) = PK(b(y), d(y) + (n̄x −Mε)α(y, x), 0, 1/K).

Define, for any K ≥ 1, n ∈ N and i ∈ {3, 4}, the stopping time

TK,in/K = inf{t ≥ 0 : ZK,it = n/K}.

Observe that, if SKε < τ1 ∧R
K
ε ,

TK,4⌈εK⌉/K ≤ SKε ≤ TK,3⌈εK⌉/K (69)

and that, if TK,40 < TK,4⌈εK⌉/K ∧ τ1 ∧R
K
ε ,

θ0 ≤ TK,40 .

If ZK,4 is sub-critical, apply Theorem 4 (25), and if ZK,4 is super-critical, apply
Theorem 4 (28) (the critical case can be excluded by slightly changing the value of
ε). Since logK ≪ 1/KuK, we obtain

lim
K→+∞

P

(

TK,40 ≤
ρ

KuK
∧ TK,4⌈εK⌉/K

)

=
d(y) + (n̄x −Mε)α(y, x)

b(y)
∧ 1 ≥ 1−

[f(y, x)]+
b(y)

−
α(y, x)

b(y)
Mε. (70)

Combining (65), (67), (68) and (70), and using the facts that ρ < η, ε < ε0 and
exp(KV ) > ρ/KuK for sufficiently largeK, we obtain, takingK larger if necessary,

P

(

θ0 < τ1∧
η

KuK
, V0 = x and |〈νKθ0 ,1〉 − n̄x| < Mε0

)

≥ P

(

θ0 < τ1 ∧ S
K
ε ∧RKε ∧

ρ

KuK
and V0 = x

)

≥ P

(

TK,40 < τ1 ∧ T
K,4
⌈εK⌉/K ∧RKε ∧

ρ

KuK

)

≥ 1−
[f(y, x)]+
b(y)

−

(

α(y, x)

b(y)
M + 3

)

ε. (71)

This ends the proof of Lemma 3 in the case where f(y, x) ≤ 0.
Let us assume that f(y, x) > 0, i.e. that b(y) − d(y) − n̄xα(y, x) > 0. If we

choose ε > 0 sufficiently small, then ZK,3 is super-critical. By Theorem 4 (29),

lim
K→+∞

P

(

TK,3⌈εK⌉/K <
ρ

3KuK

)

=
(1− ε)b(y)− d(y)− (n̄x +Mε)α(y, x)− εα(y, y)

(1− ε)b(y)

≥
f(y, x)

(1− ε)b(y)
− ε

b(y) +Mα(y, x) + α(y, y)

(1− ε)b(y)
.
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Therefore, by (67) and (65), assuming (without loss of generality) that ε < 1/2, for
sufficiently large K,

P

(

TK,3⌈εK⌉/K < τ1 ∧R
K
ε ∧

ρ

3KuK

)

≥
f(y, x)

(1 − ε)b(y)
−M ′ε,

where M ′ := 2(b(y)+Mα(y, x)+α(y, y))/b(y)+ 3. Then, it follows from (69) that

P

(

SKε < τ1 ∧R
K
ε ∧

ρ

3KuK

)

≥
f(y, x)

(1− ε)b(y)
−M ′ε. (72)

Observe that, on the event {SKε < τ1 ∧R
K
ε ∧ (ρ/3KuK)},

〈νKSK
ε
,1{y}〉 = ⌈εK⌉/K and |〈νKSK

ε
,1{x}〉 − n̄x| < Mε. (73)

Now, since we have assumed f(y, x) > 0, x and y satisfy (7) and, by Proposi-
tion 3, any solution to (13) with initial state in the compact set [n̄x−Mε, n̄x+Mε]×
[ε/2, 2ε] converges to (0, n̄y) when t → +∞. As in the proof of Lemma 2 (b), be-
cause of the continuity of the flow of system (13), we can find tε < +∞ large enough
such that any of these solutions do not leave the set [0, ε2/2]× [n̄y − ε/2, n̄y + ε/2]
after time tε.

Apply Theorem 3 (b) on [0, tε], with C = [n̄x −Mε, n̄x +Mε] × [ε/2, 2ε] and
with a constant δ < ε2/2 ∧ r, where r is defined in (19) (with T = tε). Then, with
the notations of Theorem 3 (b), because of (72) and (73), the Markov property at
time SKε yields

lim inf
K→+∞

P

(

SKε < τ1 ∧R
K
ε ∧

ρ

3KuK
,

sup
SK
ε ≤s≤SK

ε +tε

∥

∥

(

〈νKs ,1{x}〉, 〈ν
K
s ,1{y}〉

)

− φ〈νK

SK
ε
,1{x}〉,〈ν

K

SK
ε
,1{y}〉

(s)
∥

∥ ≤ δ

)

≥
f(y, x)

(1− ε)b(y)
−M ′ε. (74)

Now, observe that, since δ < r, on the event

{

SKε < τ1 ∧R
K
ε ,

sup
SK
ε ≤s≤SK

ε +tε

∥

∥

(

〈νKs ,1{x}〉, 〈ν
K
s ,1{y}〉

)

− φ〈νK

SK
ε
,1{x}〉,〈ν

K

SK
ε
,1{y}〉

(s)
∥

∥ ≤ δ

}

,

for any t ∈ [SKε , S
K
ε + tε], 〈ν

K
t ,1{x}〉 ≥ r − δ > 0 and 〈νKt ,1{y}〉 ≥ r − δ > 0, and

thus
θ0 > SKε + tε.

Therefore, since δ < ε2/2 < ε/2, by (65) and (74), for sufficiently large K,

P

(

SKε < RKε ∧
ρ

3KuK
, τ1 >

ρ

3KuK
+ tε, θ0 > SKε + tε,

〈νKSK
ε +tε

,1{x}〉 < ε2 and 〈νKSK
ε +tε

,1{y}〉 ∈ [n̄y − ε, n̄y + ε]
)

≥
f(y, x)

(1− ε)b(y)
− (M ′ + 2)ε. (75)

Now, we will compare 〈νK ,1{x}〉 with a branching process after time SKε + tε
in order to prove that trait x gets extinct with a very high probability. We will use
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a method very similar to the one we used in the beginning of this proof. First, on
the event inside the probability in (75), 〈νKSK

ε +tε
,1{x}〉 < ε2. In order to prove that

the population with trait x stays small after SKε + tε, let us define the stopping
time

ŜKε = inf{t ≥ SKε + tε : 〈ν
K
t ,1{x}〉 > ε}

(remind that ε2 < ε since ε < 1/2). Using Theorem 2 (c) and (d) again, we see
that, on the event

FK,ε :=
{

〈νKSK
ε +tε

,1{x}〉 < ε2, 〈νKSK
ε +tε

,1{y}〉 ∈ [n̄y − ε, n̄y + ε]
}

,

for any t ≥ 0 such that SKε + tε + t ≤ ŜKε ∧ τ1,

ZK,5t � 〈νKSK
ε +tε+t

,1{y}〉 � ZK,6t ,

where L(ZK,5) = PK((1− ε)b(y), d(y) + εα(y, x), α(y, y), ⌊(n̄y − ε)K⌋/K)

and L(ZK,6) = PK(b(y), d(y), α(y, y), ⌈(n̄y + ε)K⌉/K).

We can apply Theorem 3 (c) to ZK,5 and ZK,6 as above to obtain a constant
V ′ > 0 such that

lim
K→+∞

P(R̂Kε > eKV
′

) = 1, (76)

where R̂Kε = inf{t ≥ 0 : |ZK,it − n̄y| > M ′′ε, i = 5, 6},

with M ′′ = 3 + (b(y) + α(y, x))/α(y, y).
Observe that, on the event FK,ε, for any t ≤ R̂Kε such that SKε +tε+t ≤ ŜKε ∧τ1,

|〈νKSK
ε +tε+t

,1{y}〉 − n̄y| ≤M ′′ε,

and so, by Theorem 2 (c) and (e), on FK,ε and for t as above,

〈νKSK
ε +tε+t

,1{x}〉 � ZK,7t

where L(ZK,7) = PK(b(x), d(x) + (n̄y −M ′′ε)α(x, y), 0, ⌈ε2K⌉/K).

Now, since x and y satisfy (7), ZK,7 is sub-critical for sufficiently small ε. Fix
such an ε > 0 and define for any n ≥ 0

T̂Kn/K = inf{t ≥ 0 : ZK,7t = n/K}.

If T̂K⌈εK⌉/K ≤ R̂Kε and SKε + tε + T̂K⌈εK⌉/K ≤ τ1, then

ŜKε ≥ SKε + tε + T̂K⌈εK⌉/K

and if T̂K0 ≤ R̂Kε and SKε + tε + T̂K0 ≤ ŜKε ∧ τ1, then

θ0 ≤ T̂K0 .

Moreover, by Theorem 4 (26) and (27), for sufficiently large K,

P

(

T̂K0 ≤
ρ

3KuK

)

≥ 1− ε

and P(T̂K⌈Kε⌉/K ≤ T̂K0 ) ≤ 2ε.
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Combining the last two inequalities with (65), (75) and (76), and reminding
that ρ < η and ε < ε0, we finally obtain, for sufficiently large K,

P

(

θ0 < τ1 ∧
η

KuK
, V0 = y and |〈νKθ0 ,1〉 − n̄y| < M ′′ε0

)

≥ P

(

SKε < RKε ∧
ρ

3KuK
, θ0 > SKε + tε, τ1 >

2ρ

3KuK
+ tε, 〈ν

K
SK
ε +tε

,1{x}〉 < ε2,

〈νKSK
ε +tε

,1{y}〉 ∈ [n̄y − ε, n̄y + ε], T̂K0 <
ρ

3KuK
∧ T̂K⌈Kε⌉/K and R̂Kε >

ρ

KuK

)

≥
f(y, x)

(1 − ε)b(y)
− (M ′ + 7)ε.

Adding this inequality with (71), we obtain

P

(

θ0 < τ1 ∧
η

KuK

)

≥ 1−
ε

1− ε

f(y, x)

b(y)
−

(

M
α(y, x)

b(y)
+M ′ + 10

)

ε ≥ 1−M ′′′ε,

where M ′′′ = 2f(y, x)/b(y) +Mα(y, x)/b(y) +M ′ + 10, which implies (41), and

P
(

|〈νKθ0 ,1〉 − n̄V0 | < (M ∨M ′′)ε0
)

≥ 1−M ′′′ε,

which implies (42).
Therefore,

P(V0 = x) ≥ 1−
f(y, x)

b(y)
− 2M ′′′ε and P(V0 = y) ≥

f(y, x)

(1− ε)b(y)
− 2M ′′′ε.

Since P(V0 = x) ≤ 1−P(V0 = y), we finally obtain (39) and (40). �

Acknowledgments: I would like to thank S. Méléard and R. Ferrière for their
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