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Abstrat

We de�ne the ellipti quantum groupEτ,η(so3) and the transfer ma-

trix orresponding to its simplest highest weight representation. We

use Bethe anstaz method to onstrut the reation operators as poly-

nomials of the Lax matrix elements expressed through a reurrene

relation. We give ommon eigenvetors and eigenvalues of the family

of ommuting transfer matries.

1 Introdution

In this artile, we report new results on the appliation of algebrai

Bethe ansatz to the ellipti (or dynamial) quantum group Eτ,η(so3).
The ellipti quantum group is the algebrai struture assoiated to

ellipti solutions of the star-triangle relation. This equation appears

in interation-round-a-fae models in statistial mehanis. As it was

shown by Felder [4℄, this struture is also related to Knizhnik-Zamolodhikov-

Bernard equation of onformal �eld theory on tori. Moreover, in a dif-

ferent diretion, to eah solution of the (see [9℄) star-triangle relation

a dynamial R-matrix an be assoiated. This R-matrix, in turn, will

de�ne an algebra similar to quantum groups appearing in the quantum

inverse sattering method (QISM), it is atually a quasi-Hopf defor-

mation of the more familiar quantum group struture [10℄. Despite

all the di�erenes, this new struture preserves a prominent feature of

quantum groups: a tensor produt of representations an be de�ned.

The adjetive dynamial refers to the fat that the R-matrix ap-

pearing in these strutures ontains a parameter whih in the lassial

limit will be interpreted as the position oordinate on the phase spae

of a lassial system and the resulting lassial r-matrix will depend
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on it. In the quantum setting, apart from the appearane of this ex-

tra parameter the Yang-Baxter equation (YBE) is also deformed. At

the tehnial level, the main di�erene between usual quantum groups

and the one we are about to desribe lies not so muh in the ellipti

nature of the appearing funtions as rather in the introdution of the

extra "dynamial" parameter and the orresponding deformation of

the YBE.

In QISM, the physially interesting quantity is the transfer matrix.

The hamiltonian of the model and other observables are derived from

it. The knowledge of its spetrum is thus essential. Di�erent kinds

of methods under the federating name of Bethe ansatz have been de-

veloped to alulate the eigenvalues of the transfer matrix [3, 11, 12℄.

The question whether the algebrai Bethe ansatz (ABA) tehnique an

be applied to transfer matries appearing in the ontext of dynamial

quantum groups has reeived an a�rmative answer from Felder and

Varhenko [7, 5℄. They showed how to implement ABA for the ellip-

ti quantum group Eτ,η(sl2), they also showed its appliations to IRF

models and Lamé equation. Later, for the Eτ,η(sln) ellipti quantum
group the nested Bethe ansatz method was used [2, 8℄ and a relation to

Ruijsenaars-Shneider [8℄ and quantum Calogero-Moser Hamiltonians

was established [1℄.

In the �rst setion of this paper we introdue the basi de�nitions of

dynamial R-matrix, Yang-Baxter equation, representations, operator

algebra and ommuting transfer matries. We de�ne elements Φn in

the operator algebra whih have the neessary symmetry properties to

be the reation operators of the orresponding Bethe states. As it turns

out, the reation operators are not simple funtions of the Lax matrix

entries, unlike in [5℄, but they are ompliated polynomials of three

generatorsA1(u), B1(u), B2(u) in the ellipti operator algebra. We give

the reurrene relation whih de�nes the reation operators. Moreover,

we fully implement the algebrai Bethe ansatz on the simplest example

of highest weight module. That is we alulate the ation of the transfer

matrix on the Bethe vetors and from the vanishing of the unwanted

terms we derive the Bethe equations. We also give the expliit formulas

for the orresponding eigenvalues.

2 Representations of Eτ,η(so3) and transfer

matries

2.1 De�nitions

Let us �rst reall the basi de�nitions whih will enter our onstru-

tion. First, we �x two omplex numbers τ, η suh that Im(τ) > 0. The
entral objet in this paper is the R-matrix R(q, u) whih depends on

two arguments q, u ∈ C: the �rst one is referred to as the dynamial

parameter, the seond one is alled the spetral parameter. The ele-
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ments of the R-matrix are written in terms of Jaobi's theta funtion:

ϑ(u) = −
∑

j∈Z

exp

(
πi

(
j +

1

2

)2

+ 2πi

(
j +

1

2

)(
u+

1

2

))

This funtion has two essential properties. It is quasiperiodi:

ϑ(u + 1) = −ϑ(u); ϑ(u+ τ) = −e−iτ−2iuϑ(u)

and it veri�es the identity:

ϑ(u + x)ϑ(u − x)ϑ(v + y)ϑ(v − y) = ϑ(u + y)ϑ(u− y)ϑ(v + x)ϑ(v − x) +

ϑ(u + v)ϑ(u− v)ϑ(x + y)ϑ(x − y)

The entries of the R-matrix are written in terms of the following

funtions.

g(u) =
ϑ(u− η)ϑ(u − 2η)

ϑ(η)ϑ(2η)

α(q1, q2, u) =
ϑ(η − u)ϑ(q12 − u)

ϑ(η)ϑ(q12)

β(q1, q2, u) =
ϑ(η − u)ϑ(u)ϑ(q12 − 2η)

ϑ(−2η)ϑ(η)ϑ(q12)

ε(q, u) =
ϑ(η + u)ϑ(2η − u)

ϑ(η)ϑ(2η)
−

ϑ(u)ϑ(η − u)

ϑ(η)ϑ(2η)

(
ϑ(q + η)ϑ(q − 2η)

ϑ(q − η)ϑ(q)
+

ϑ(q − η)ϑ(q + 2η)

ϑ(q + η)ϑ(q)

)

γ(q1, q2, u) =
ϑ(u)ϑ(q1 + q2 − η − u)ϑ(q1 − 2η)ϑ(q2 + η)

ϑ(η)ϑ(q1 + q2 − 2η)ϑ(q1 + η)ϑ(q2)

δ(q, u) =
ϑ(u− q)ϑ(u − q + η)

ϑ(q)ϑ(q − η)

The R-matrix itself will at on the tensor produt V ⊗ V where V

is a three-dimensional omplex vetor spae with the standard basis

{e1, e2, e3}. The matrix units Eij are de�ned in the usual way: Eijek =
δjkei. We will also need the following diagonal matrix later on: h =
E11 − E33.

Now we are ready to write the expliit form of the R-matrix.

R(q, u) = g(u)E11 ⊗ E11 + g(u)E33 ⊗ E33 + ε(q, u)E22 ⊗ E22

+ α(η, q, u)E12 ⊗ E21 + α(q, η, u)E21 ⊗ E12 + α(−q, η, u)E23 ⊗ E32

+ α(η,−q, u)E32 ⊗ E23

+ β(η, q, u)E11 ⊗ E22 + β(q, η, u)E22 ⊗ E11 + β(−q, η, u)E22 ⊗ E33

+ β(η,−q, u)E33 ⊗ E22

+ γ(−q, q, u)E11 ⊗ E33 + γ(−q, η, u)E12 ⊗ E32 − γ(η, q, u)E21 ⊗ E23

+ γ(q,−q, u)E33 ⊗ E11 + γ(q, η, u)E32 ⊗ E12 − γ(η,−q, u)E23 ⊗ E21

+ δ(q, u)E31 ⊗ E13 + δ(−q, u)E13 ⊗ E31

This R-matrix also enjoys the unitarity property:

R12(q, u)R21(q,−u) = g(u)g(−u)1 (1)
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and it is of zero weight:

[h⊗ 1+ 1⊗ h,R12(q, u)] = 0 (h ∈ h)

TheR-matrix also obeys the dynamial quantum Yang-Baxter equa-

tion (DYBE) in End(V ⊗ V ⊗ V ):

R12(q − 2ηh3, u12)R13(q, u1)R23(q − 2ηh1, u2) =

R23(q, u2)R13(q − 2ηh2, u1)R12(q, u12)

where the "dynamial shift" notation has the usual meaning:

R12(q − 2ηh3, u) · v1 ⊗ v2 ⊗ v3 = (R12(q − 2ηλ, u)v1 ⊗ v2)⊗ v3 (2)

whenever hv3 = λv3. Shifts on other spaes are de�ned in an analogous

manner.

Let us also desribe a more intuitive way of looking at this shift.

De�ne �rst the shift operator ating on funtions of the dynamial

parameter:

exp(2η∂q)f(q) = f(q + 2η) exp(2η∂q)

Then equation (2) an also be written in the following form:

R12(q − 2ηh3, u) = exp(−2ηh3∂q)R12(q, u) exp(2ηh3∂q)

in the sequel we will use whihever de�nition is the �ttest for the

partiular point in our alulation.

2.2 Representation; operator algebra

Now we desribe the notion of representation of (or module over)

Eτ,η(so3). It is a pair (L(q, u),W ) where W is a diagonalizable h-

module, that is, W is a diret sum of the weight subspaes W =
⊕∈CW [] and L(q, u) is an operator in End(V ⊗W ) obeying:

R12(q − 2ηh3, u12)L13(q, u1)L23(q − 2ηh1, u2) =

L23(q, u2)L13(q − 2ηh2, u1)R12(q, u12)

L(q, u) is also of zero weight

[hV ⊗ 1+ 1⊗ hW ,LV,W (q, u)] = 0 (h ∈ h)

where the subsripts remind the areful reader that in this formula h

might at in a di�erent way on spaes W and V .

An example is given immediately by W = V and L(q, u) = R(q, u−
z) whih is alled the fundamental representation with evaluation point

z and is denoted by V (z). A tensor produt of representations an also

be de�ned whih orresponds to the existene of a oprodut-like stru-

ture at the abstrat algebrai level. Let (L(q, u), X) and (L′(q, u), Y )
be two Eτ,η(so3) modules, then L1X(q − 2ηhY , u)L1Y (q, u), X ⊗ Y is

a representation of Eτ,η(so3) on X ⊗ Y endowed, of ourse, with the

tensor produt h-module struture.
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The operator L is reminisent of the quantum Lax matrix in the

FRT formulation of the quantum inverse sattering method, although

it obeys a di�erent exhange relation, therefore we will also all it a Lax

matrix. This allows us to view the L as a matrix with operator-valued

entries.

Inspired by that interpretation, for any module over Eτ,η(so3) we
de�ne the orresponding operator algebra of �nite di�erene opera-

tors. Let us take an arbitrary representation L(q, u) ∈ End(V ⊗W ).
The elements of the operator algebra orresponding to this represen-

tation will at on the spae Fun(W ) of meromorphi funtions of q

with values in W . Namely let L ∈ End(V ⊗ Fun(W )) be the operator
de�ned as:

L(u) =




A1(u) B1(u) B2(u)
C1(u) A2(u) B3(u)
C2(u) C3(u) A3(u)


 = L(q, u)e−2ηh∂q

(3)

We an view it as a matrix with entries in End(Fun(W )): It follows

from equation (3) that L veri�es:

R12(q − 2ηh, u12) L1W (q, u1)L2W (q, u2) = L2W (q, u2)L1W (q, u1) R̃12(q, u12) (4)

with R̃12(q, u) := exp(2η(h1 + h2)∂q)R12(q, u) exp(−2η(h1 + h2)∂q)
The zero weight ondition on L yields the relations:

[h,Ai] = 0; [h,Bj ] = −Bj (j = 1, 3), [h,B2] = −2B2

[h,Cj ] = Cj (j = 1, 3), [h,C2] = 2C2

so Bi's at as lowering and Ci's as raising operators. From the de�ni-

tion (3) one an derive the ation of the operator algebra generators

on funtions:

A1(u)f(q) = f(q − 2η)A1(u); B1(u)f(q) = f(q)B1(u);

B2(u)f(q) = f(q + 2η)B2(u)

and analogously for the other generators. We display here those om-

mutation relations whih are neessary for the onstrution of the

Bethe vetors, the remaining ones an be extrated from (4).

B1(u1)B1(u2) = ω21

(
B1(u2)B1(u1)−

1

y21(q)
B2(u2)A1(u1)

)
+

1

y12(q)
B2(u1)A1(u2)

A1(u1)B1(u2) = z21(q)B1(u2)A1(u1)−
α21(η, q)

β21(q, η)
B1(u1)A1(u2)

A1(u1)B2(u2) =
1

γ21(q,−q)
(g21B2(u2)A1(u2) + γ21(η,−q)B1(u1)B1(u2)− δ21(−q)B2(u1)A1(u1))

B1(u2)B2(u1) =
1

g21
(β21(−q, η)B2(u1)B1(u2) + α21(η,−q)B1(u1)B2(u2))

B2(u2)B1(u1) =
1

g21
(β21(η,−q)B1(u1)B2(u2) + α21(−q, η)B2(u1)B1(u2))
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where

ω(q, u) =
g(u)γ(q,−q, u)

ε(q, u)γ(q,−q, u) + γ(q, η, u)γ(η,−q, u)

y(q, u) =
γ(q,−q, u)

γ(q, η, u)

z(q, u) =
g(u)

β(q, η, u)

and as usual

y12(q) = y(q, u1 − u2) et.

Furthermore, the funtion ω(q, u) is atually independent of q, a prop-
erty whih will prove important later on, and takes the following simple

form:

ω(u) =
ϑ(u + η)ϑ(u − 2η)

ϑ(u − η)ϑ(u + 2η)

This funtion also veri�es the following property:

ω(u)ω(−u) = 1 .

Finally the following theorem shows how to assoiate a family of om-

muting quantities to a representation of the ellipti quantum group

Theorem 2.1. Let W be a representation of Eτ,η(so3). Then the

transfer matrix de�ned by t(u) = TrL̃(u) ∈ End(Fun(W )) preserves

the subspae Fun(W )[0] of funtions with values in the zero weight

subspae of W . When restrited to this subspae, they ommute at

di�erent values of the spetral parameter:

[t(u), t(v)] = 0

Proof. The proof is analogous to referenes [6, 1℄

3 Bethe ansatz

In this setion we �x a highest weight module W = V (z1)⊗. . .⊗V (zn).
The vetor |0〉 = e1 ⊗ . . .⊗ e1 ∈ Fun(W ) is a highest weight vetor of

weight n of this module, and every highest weight vetor an be written

in the form |Ω〉 = f(q)|0〉 with a non-zero meromorphi funtion f . We

have indeed:

Ci(u)|Ω〉 = 0 (i = 1, 2, 3)

showing that |Ω〉 is a highest weight vetor.

A1(u)|Ω〉 = a1(u)
f(q − 2η)

f(q)
|Ω〉

A2(u)|Ω〉 = a2(q, u)|Ω〉 A3(u)|Ω〉 = a3(q, u)
f(q + 2η)

f(q)
|Ω〉
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with the eigenvalues:

a1(u) =

n∏

i=1

ϑ(u − zi − η)ϑ(u − zi − 2η)

ϑ(η)ϑ(2η)

a2(q, u) =
ϑ(q − 2ηn− η)

ϑ(q − η)

n∏

i=1

ϑ(u − zi − η)ϑ(u − zi)

ϑ(η)ϑ(2η)

a3(q, u) =
ϑ(q − 2ηn)ϑ(q − 2ηn+ η)

ϑ(q + η)ϑ(q)

n∏

i=1

ϑ(u− zi)ϑ(u− zi + η)

ϑ(η)ϑ(2η)

Notie that a1 is independent of q. It is easy to see, that the zero

weight subspae W [0] is nontrivial for this module.

In this situation we annot look for the ommon eigenvetors of t(u)
in the form Φ(u1, . . . , un) = B1(u1) . . . B1(un)|Ω〉 sine B1(u)B1(v) 6=
B1(v)B1(u) and the resulting Bethe vetor would not be symmetri

under the interhange of the parameters ui.

Instead, we should be inspired by Tarasov's implementation of the

algebrai Bethe ansatz to the Izergin-Korepin model [15℄. In that ase

the R-matrix is nondynamial, but has nonzero entries at the same

positions as the dynamial R-matrix onsidered here. The omparison

suggests that the Bethe operator will ontain B1(u1) . . . B1(un) with
oe�ient 1 but will also have a "orretion" to that expressed in

terms of B2(u) and A1(u). It also suggests that the symmetry under

the interhange of spetral parameters is replaed by the property:

Φn(u1, . . . , un) = ζi+1,iΦn(u1, . . . , ui−1, ui+1, ui, ui+2, . . . , un) (i = 1, . . . , n− 1)

with a funtion ζ to be determined. In the sequel we give the Bethe

reation operator in a reurrene form and desribe its generalized

symmetry property.

De�nition 3.1. Let Φn be de�ned be the reurrene relation for n ≥ 0:

Φn(u1, . . . , un) = B1(u1)Φn−1(u2, . . . , un)

−

n∑

j=2

∏j−1
k=2 ωjk

y1j(q)

n∏

k=2
k 6=j

zkj(q + 2η) B2(u1)Φn−2(u2, . . . , ûj , . . . , un)A1(uj)

where Φ0 = 1; Φ1(u1) = B1(u1) and the parameter under the hat is

omitted.

It may be useful to give expliitly the �rst three reation operators.

Φ1(u1) = B1(u1)

Φ2(u1, u2) = B1(u1)B1(u2)−
1

y12(q)
B2(u1)A1(u2)

Φ3(u1, u2, u3) = B1(u1)B1(u2)B1(u3)−
1

y23(q)
B1(u1)B2(u2)A1(u3)

−
z32(q + 2η)

y12(q)
B2(u1)B(u3)A1(u2)−

ω32z23(q + 2η)

y13(q)
B2(u1)B1(u2)A1(u3)
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The Bethe vetor is then not ompletely symmetri under the inter-

hange of two neighboring spetral parameters but veri�es the following

property instead:

Φ2(u1, u2) = ω21Φ2(u2, u1)

Φ3(u1, u2, u3) = ω21Φ3(u2, u1, u3) = ω32Φ3(u1, u3, u2)

For general n we prove the following theorem.

Theorem 3.1. Φn veri�es the following symmetry property:

Φn(u1, . . . , un) = ωi+1,iΦn(u1, . . . , ui−1, ui+1, ui, ui+2, . . . , un) (i = 1, 2, . . . , n− 1).
(5)

Proof. For the proof we refer to [13℄.

The next step in the appliation of the Bethe ansatz sheme is the

alulation of the ation of the transfer matrix on the Bethe vetor.

This will yield three kinds of terms. The �rst part (usually alled

wanted terms in the literature) will tell us the eigenvalue of the transfer

matrix, the seond part (alled unwanted terms) must be annihilated

by a areful hoie of the spetral parameters ui in Φn(u1, . . . , un); the
vanishing of these unwanted terms is ensured if the ui are solutions to

the so alled Bethe equations. The third part ontains terms ending

with a raising operator ating on the pseudovauum and thus vanishes.

The ation of A1(u) on Φn is given by

A1(u)Φn =
n∏

k=1

zku(q)ΦnA1(u) + (6)

n∑

j=1

Dj

j−1∏

k=1

ωjkB1(u)Φn−1(u1, ûj , un)A1(uj) +

n∑

l<j

Elj

l−1∏

k=1

ωlk

j−1∏

k=1
k 6=l

ωjkB2(u)Φn−2(u1, ûl, ûj , un)A1(ul)A1(uj)

To alulate the �rst oe�ients we expand Φn with the help of the

reurrene relation, then use the ommutation relations to push A1(u1)
to the right. This yields:

D1 = −
α1u(η, q)

β1u(q, η)

n∏

k=2

zk1(q)

E12 =

(
δ1u(−q)

γ1u(q,−q)y12(q − 2η)
+

z1u(q)α2u(η, q)ωu1

β2u(q, η)yu1(q)

) n∏

k=3

zk1(q + 2η)zk2(q)

The diret alulation of the remaining oe�ients is less straightfor-

ward. However, the symmetry of the left hand side of (6) implies that

Dj for j ≥ 1 an be obtained by substitution u1  uj in D1 and Elj

by the substitution u1  ul, u2  uj

8



The ation of A2(u) and A3(u) on Φn will yield also terms ending

in Ci(u)'s.
The ation of A2(u) on Φn will have the following struture.

A2(u)Φn =
n∏

k=1

zuk(q − 2η(k − 1))

ωuk

ΦnA2(u) +

n∑

j=1

F
(1)
j

j−1∏

k=1

ωjkB1(u)Φn−1(u1, ûj, un)A2(uj) +

n∑

j=1

F
(2)
j

j−1∏

k=1

ωjkB3(u)Φn−1(u1, ûj, un)A1(uj) +

n∑

l<j

G
(1)
lj

l−1∏

k=1

ωlk

j−1∏

k=1
k 6=l

ωjkB2(u)Φn−2(u1, ûl, ûj , un)A1(ul)A2(uj) +

n∑

l<j

G
(2)
lj

l−1∏

k=1

ωlk

j−1∏

k=1
k 6=l

ωjkB2(u)Φn−2(u1, ûl, ûj , un)A1(uj)A2(ul) +

n∑

l<j

G
(3)
lj

l−1∏

k=1

ωlk

j−1∏

k=1
k 6=l

ωjkB2(u)Φn−2(u1, ûl, ûj , un)A2(ul)A1(uj) +

terms ending in C

We give the oe�ients D
(k)
1 and E

(k)
12 , the remaining ones are ob-

tained by the same substitution as for A1(u)

F
(1)
1 = −

αu1(q − 2η, η)

βu1(q, η)

n∏

k=2

z1k(q − 2η(k − 1))

ω1k

F
(2)
1 =

1

yu1(q)

n∏

k=2

zk1(q + 2η)

G
(1)
12 =

1

yu1(q)

(
zu1(q)αu2(q − 2η, η)

βu2(q − 2η, η)
−

αu1(q, η)α12(q − 2η, η)

βu1(q, η)β12(q − 2η, η)

) n∏

k=3

zk1(q + 2η)z2k(q − 2η(k − 1))

ω2k

G
(2)
12 =

αu1(q, η)α12(q − 2η, η)

βu1(q, η)yu1(q)β12(q − 2η, η)

n∏

k=3

zk2(q + 2η)z1k(q − 2η(k − 1))

ω1k

G
(3)
12 =

αu1(q, η)

βu1(η,−q)

(
zu1(q)

ωu1yu2(q)
−

αu1(η,−q)

y12(q)βu1(q, η)

) n∏

k=3

zk2(q + 2η)z1k(q − 2η(k − 2))

ω1k

It is instruting to give expliitly the expression of F
(1)
l

F
(1)
l = −

αul(q − 2η, η)

βul(q, η)
×

ϑ(q − 3η)

ϑ(q − 2ηn− η)

n∏

k=1
k 6=l

ϑ(ulk − 2η)

ϑ(ulk)ωlk

9



The ation of A3(u) on the Bethe vetor is somewhat simpler.

A3(u)Φn =

n∏

k=1

βuk(η,−q)

γuk(q − 2η(k − 1),−)
ΦnA3(u) +

n∑

j=1

Hj

j−1∏

k=1

ωjkB3(u)Φn−1(u1, ûj, un)A2(uj) +

n∑

l<j

Ilj

l−1∏

k=1

ωlk

j−1∏

k=1
k 6=l

ωjkB2(u)Φn−2(u1, ûl, ûj, un)A2(ul)A2(uj) +

terms ending in C

where to save spae used the notation γuk(x,−) = γuk(x,−x). We give

the oe�ientsH1 and I12, the rest an be obtained by the substitution

of the spetral parameters as before.

H1 = −
1

yu1(q)

∏

k=2

z1k(q − 2η(k − 2))

ω1k

I12 =
1

γu2(q,−q)

(
δu2(q)

y12(q − 2η)
−

αu1(q, η)

yu2(q − 2η)

)∏

k=3

z2u(q − 2η(k − 2))z1u(q − 2η(k − 2))

ω1kω2k

The next step is to �nd onditions for the anelation of the un-

wanted terms. We write the ation of the transfer matrix in the fol-

lowing form:

t(u)Φn|Ω〉 = ΛΦn|Ω〉+

n∑

j=1

K
(1)
j

j−1∏

k=1

ωjkB1(u)Φn(u1, ûj, un) +

n∑

l<j

K
(2)
lj

l−1∏

k=1

ωlk

j−1∏

k=1
k 6=l

ωjkB2(u)Φn(u1, ûl, ûj, un) +

n∑

j=1

K
(3)
j

j−1∏

k=1

ωjkB3(u)Φn(u1, ûj, un)

The general form of the eigenvalue is written as

Λ(u, {uj}) =

n∏

k=1

zku(q)× a1(q, u)
f(q − 2η)

f(q)
+

n∏

k=1

zuk(q − 2η(k − 1))

ωuk

× a2(q, u) +

n∏

k=1

βuk(η,−q)

γuk(q − 2η(k − 1),−)
× a3(q, u)

f(q + 2η)

f(q)
.

The ondition of anelation is then K
(1)
j = K

(3)
j = 0 for 1 ≤ j and

K
(2)
lj = 0 for 1 ≤ l ≤ j with the additional requirement that these

three di�erent kinds of ondition should in fat lead to the same set of

n nonlinear Bethe equations �xing the n parameters of Φn.
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Let us �rst onsider the oe�ient K
(1)
1 :

K
(1)
1 = D1a1(u1)

f(q − 2η)

f(q)
+ F

(1)
1 a2(q, u1)

The ondition K
(1)
1 = 0 is then equivalent to:

a1(u1)

a2(q, u1)
=

f(q)

f(q − 2η)

n∏

k=2

ϑ(uk1 + η)

ϑ(uk1 − η)
×

ϑ(q − 3η)n

ϑ(q − η)n−1ϑ(q − 2ηn− η)
(7)

Now it remains to hek that the remaining two onditions lead to the

same Bethe equations. The ondition

0 = K
(3)
1 = F

(2)
1 a1(u1)

f(q)

f(q + 2η)
+H1a2(q + 2η)

yields the same Bethe equation as in (7) thanks to the identity (from

the unitarity ondition (1)):

α(η, q, u)

β(q, η, u)
= −

α(q, η,−u)

β(q, η,−u)

Finally, the anelation of K
(2)
12 leads also to the same Bethe equation

(7) thanks to the following identity:

0 =

(
δ1u(−q)

γ1u(q,−q)y12(q − 2η)
+

z1u(q)α2u(η, q)ωu1

β2u(q, η)yu1(q)

)
× ϑ(q − 3η)2 +

(
δu1(q)

γu1(q,−q)y12(q − 2η)
−

αu1(q, η)

γu1(q,−q)yu2(q − 2η)

)
× ϑ(q − 3η)2 +

1

yu1(q)

(
zu1(q)αu2(q − 2η, η)

βu2(q − 2η, η)
−

αu1(q, η)α12(q − 2η, η)

βu1(q, η)β12(q − 2η, η)

)
×

ϑ(u21 + η)ϑ(q − 5η)ϑ(q − η)

ϑ(u21 − η)
+

αu1(q, η)α12(q + 2η, η)

βu1(q, η)yu1(q)β12(q − 2η, η)
×

ϑ(u12 + η)ϑ(q − 5η)ϑ(q − η)

ϑ(u12 − η)
+

αu1(q, η)

βu1(η,−q)

(
zu1(q)

ωu1yu2(q)
−

αu1(η,−q)

βu1(q, η)y12(q)

)
×

ϑ(u12 + η)ϑ(q − 3η)ϑ(q − η)2

ϑ(u12 − η)ϑ(q + η)

Now we �x f(q) so as to ensure that the Bethe equation (hene

its solutions) do not depend on q. This an be ahieved by hoosing

f(q) = ecqϑ(q − η)n, where c is an arbitrary onstant.

The simultaneous vanishing of K
(1)
1 , K

(3)
1 and K

(2)
12 then leads to

the ondition:

n∏

k=1

ϑ(u1 − zk − 2η)

ϑ(u1 − zk)
= e2cη ×

n∏

k=2

ϑ(u1 − uk − η)

ϑ(u1 − uk + η)

One again, the symmetry property of the Bethe vetor Φn allows

us to derive easily the onditions for the remaining uj 's by a simple

substitution of the spetral parameters. Thus we obtain the set of

Bethe equations:

n∏

k=1

ϑ(uj − zk − 2η)

ϑ(uj − zk)
= e2cη ×

n∏

k=1
k 6=j

ϑ(uj − uk − η)

ϑ(uj − uk + η)
(j = 1, . . . , n)
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Sine f(q) is now �xed, we an write the expliit form of the eigen-

values of the transfer matrix on the module W = V (z1)⊗ . . .⊗ V (zn)
as a q-independent funtion of the solutions of the Bethe equations :

Λ(u, {uj}) = e−2ηc
n∏

k=1

ϑ(u− zk − η)ϑ(u − zk − 2η)ϑ(u − uk + 2η)

ϑ(η)ϑ(2η)ϑ(u − uk)
+

+

n∏

k=1

ϑ(u− zk − η)ϑ(u − zk)ϑ(u− uk − 2η)

ϑ(η)ϑ(2η)ϑ(u − uk)
+

+e2ηc
n∏

k=1

ϑ(u− zk)ϑ(u− zk + η)ϑ(u − uk − η)

ϑ(η)ϑ(2η)ϑ(u − uk + η)
.

4 Conlusions

We showed in this paper that the algebrai Bethe ansatz method an be

applied to the ellipti quantum group Eτ,η(so3). Similarly to Tarasov's

implementation of the algebrai Bethe ansatz to the Izergin- Korepin

model, the reation operators for the Bethe vetors are not simple prod-

uts of the Lax matrix entries but are onstruted through a reurrene

relation. This analogy omes from the fat that the Izergin-Korepin

R-matrix, although nondynamial, has nonzero entries at the same

positions as the ellipti dynamial R-matrix onsidered here. For the

simplest highest weight module available we gave the Bethe vetors,

and derived the Bethe equations as well as the eigenvalues of the trans-

fer matrix. Detailed proofs of these results will be published elsewhere
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